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Abstract—Multi-agent pathfinding algorithms are essential to
studies on graph navigation with more than one agent. Their
importance is especially evident in Real-Time Strategy (RTS)
games, as even modern implementations can still lead to unin-
tended agent behaviors that cause frustration. One such problem
occurs if a group of agents breaks military formation when given
the order around a big obstacle, becoming more vulnerable to
enemies. To mitigate this problem, we propose Map Marker,
an extension of the A* algorithm that takes in concepts from
ant colony optimization to improve group cohesion. To evaluate
the new algorithm we constructed three scenarios that stress
the separation of groups. These scenarios were simulated with
different parameters and the best results were then recreated
inside the engine of the game StarCraft II and compared to
A*. As a result, we found that the new algorithm effectively
maintained group cohesion in all scenarios, resulting in fewer
casualties and less time needed to reach the destination when the
group is ambushed by enemies, in addition to being 2.8 faster
than A* when computing multiple paths.

Index Terms—pathfinding, RTS, A*

I. INTRODUCTION

Real-Time Strategy (RTS) games in their classic form are
military simulators where players collect resources, build in-
frastructure, train soldiers, and control their army’s movement
and tactics.When the game’s pathfinder is well implemented,
the army follows the player’s command with precision and
efficiency in a responsive manner that is critical to competitive
RTS games.

When looking at how polished modern implementations are,
pathfinding in RTS games might appear as a solved problem.
There are still cases, even in the market leader StarCraft II
(Blizzard Entertainment, 2010), in which player’s agency is
disrupted by the pathfinder, leading to a lack of responsiveness
that could even cause the loss of a match and frustrate the
player [1], [2].

One of such cases is what we call the separation problem,
which happens when commanding a group of agents around
a large obstacle and the group splits because each agent
computed a different optimal path. While this behavior may
result in the shortest time for the whole group to reach
the destination, it also means that the army moves in a
vulnerable and uncoordinated fashion, making it a weaker
force in numbers if an engagement with the enemy army
occurs.

In this paper, we propose a multi-agent pathfinding algo-
rithm called Map Marker. It computes paths for groups of
agents in a way that units tend to stick together when moving
around large obstacles while allowing some separation when
moving around small obstacles, so that path lengths are not
dramatically increased. We believe this behavior is more in
line with players’ intents when playing RTS games.

To evaluate the Map Marker algorithm, we built three
scenarios that stress the separation problem and computed
paths using both Map Marker and the traditional A* algorithm.
After that, we recreated the scenarios and paths inside the
engine of StarCraft II. Finally, for each algorithm and scenario,
we measured two variables: time to reach destination and
number of casualties in combat.

The remainder of this paper is structured as follows. In
Section II we discuss movement and pathfinding in RTS
games. In Section III we describe the Map Marker algorithm.
In Section IV we present the scenarios that are used to evaluate
the performance of the Map Marker with different combi-
nations of parameters, while in Section V we compare Map
Marker and A* through multiple simulations in StarCraft II. In
Section VI we discuss related work and, finally, in Section VII
we present concluding remarks and ideas to further improve
the new algorithm.

II. MOVEMENT IN RTS GAMES

In an RTS game, players indirectly control agents, called
units, by giving them orders. Such orders include moving
to a specific point in the map or attacking enemy units and
buildings [3].

The first step of agent control is the selection, i.e., how the
player decides to which agent to give each order. In Dune II
(Virgin Games, 1992), the player could only select one unit at
a time. As years passed by, new mechanics for selection were
developed, and players could now select multiple agents and
delegate orders on the whole group instead of having to select
one by one.

After selecting a unit group, the player can delegate orders
to the group. The most basic order an agent can receive is the
one to move to a destination. This is where pathfinders come
in. The second most common order is the one to attack; the
unit will move towards its target and shoot them or whack
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them if they are a melee combatant. Modern RTS games
are also able to mix attack and movement into one action
commonly referred to as “attack-move” or “a-move”, in which
the unit will move towards the target point and engage in battle
with any enemy they find along the way.

A. Pathfinding in RTS games

One of the most commonly used pathfinder solutions in
games, A* [4], is an extension of Dijkstra’s shortest-path
algorithm [5]. The algorithm efficiently finds the optimal
path from node A to node B of a graph, just like Dijkstra’s
algorithm, but uses heuristics during its calculations to speed
up processing.

The core concept in A* is the exploration of nodes based
on their real traveled distance plus their heuristic distance to
the target, making up the total distance. Nodes are explored
based on this total distance so that the next node to be explored
is always the one with the shortest total distance among the
nodes on the found/open nodes list.

Moving the algorithm inside an RTS engine requires a bit
of care. Games built on a grid, like Dune II, could assign
each node to a tile and run A* with a graph that is a perfect
representation of the battlefield with blocked nodes that the
units cannot pass through and open nodes that are traversable.
More modern approaches use navigation meshes to reduce the
number of nodes in the graph, significantly speeding up the
exploration in A*.

A common approach to deal with pathfinding of groups is
to compute a path for each agent [6] using A*. This is the
approach used in StarCraft II1, and it allows each agent to find
the shortest path considering its characteristics, such as size
and ability to climb ledges. Although multiple A* runs would
seem computationally expensive, they are feasible in real
games due to optimizations such as using navigation meshes,
choosing suitable data structures, and performing hierarchical
pathfinding [6]–[8].

Even after integrating graphs into the RTS maps to be able
to use A*, a developer’s job is not over. Making an agent
mindlessly follow the output path of A* will lead to rigid
and clunky movement; if multiple units are present they might
stumble upon one another or even get stuck if they ram directly
into each other. Modern RTS games have very sophisticated
algorithms doing the motion planning that drives the agents
through the paths they receive from A*. Algorithms such as
flocking [9] and flow fields [10] can be used to make units
move around other units and through chokes fluidly.

B. Responsiveness and Frustration

Disruption in the player input and expected outcome is a
common source of frustration found in games. The defining
example of a disruptive agent causing frustration is latency
created by a bad internet connection and input delay [1].
Other examples include elements that unintentionally mess
with the player’s ability to properly control the game, such

1Source: private email from StarCraft II’s Lead Engineer, James Anhalt III.

as a camera that gets stuck or is blocked by the scenario in a
weird angle [2].

In a competitive RTS match, an agent moving in dissonance
to the player’s intent could lead to the death of said agent
or make it give away information of its whereabouts to
opponents, which could lead to the loss of a match. In highly
competitive games, losing to seemingly unresponsive controls
is bound to cause great frustration.

In an email to StarCraft II’s Lead Engineer, James Anhalt III
told us that the game prioritized predictability in the behavior
of its agents. A player wanting to keep their agents close to one
another could do so with direct control, as their inputs would
reliably follow the same rules. This philosophy necessitates
less developer overreach with complex game logic to control
agent behavior as this task is given to the player as another
venue of expression and mastery.

Another philosophy could say that the predictability of agent
behavior is not clear during gameplay. In other words, the
player has expectations towards how the agents should behave
when given an order that are not always met by the pathfinder.
When moving an army around a large obstacle, which player
would expect a couple of their units to disband and follow the
opposite path the army took?

In this work we will venture into this second philosophy,
exploring game logic that tries to add a communication layer
between agents so that they can better consider situations that
would leave the army vulnerable without direct input from the
player.

C. The Separation Problem

The concept of army cohesion is related to the vulnerability
of a group of agents mid-maneuver; if the army can quickly
regroup or it is already unified, it has cohesion. If an obstacle
is too large and the split army cannot re-unify rapidly to face
a potential threat, then the army’s cohesion is broken. The
separation problem is the unexpected separation caused by
the game’s pathfinder that breaks an army’s cohesion.

When moving around a small object, the army may safely
split as it can quickly reassemble to face a threat. A pathfinder
that chooses to split around small obstacles does not cause a
separation problem; instead, this may contribute to making the
agents reach their destination earlier since it avoids unneces-
sary detours.

A good pathfinder should avoid the separation problem
without causing extensive increases in path lengths. The case
of the small obstacle that does not break cohesion when
splitting around is important because a good pathfinder should
be flexible enough to split the agent group in such cases and
not overcompensate by moving the entire army through one
side just to maintain cohesion.

III. THE MAP MARKER ALGORITHM

To solve the separation problem we experimented with
variations on the A* algorithm. Our idea was to equip the
pathfinder with the ability to figure if the obstacles it finds
while mapping a path will break the group’s cohesion or not.
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We came up with the Map Marker algorithm; it uses a
system of path markers that each agent leaves on its found
path so that the next agent of the group that is calculating
its path will consider the marked nodes as more favorable by
applying a cost reduction on its perceived length. We hope
that this duality of independently calculated paths that factors
in the previous path calculations makes the agents more likely
to keep cohesion while maneuvering around large obstacles,
but not overcompensate around smaller ones to the point of
significantly reducing the army’s speed.

The Map Marker is an extension to A* that records the path
of each agent through markers in the nodes so that paths that
keep the group’s cohesion are favored. Although the idea of
path markers is inspired by the virtual pheromones used in ant
colony optimization [11], the markers are used in a group’s
pathfinding and then discarded, so they leave no impact in the
graph for future agents.

The Map Marker algorithm has two parameters: marker
factor and marker cap. The marker factor, between 0.0 and
1.0, is the value that is multiplied by the perceived distance
of each node in selected paths; that way, lower values cause
agents to favor nodes in paths that have been selected by other
agents. The marker cap, also between 0.0 and 1.0, defines the
lowest marker value that can be assigned to a node. Limiting
the lowest marker value prevents that successive applications
of the marker factor result in values that are so attractive
that groups choose to stick together even in the face of small
obstacles.

The algorithm has three core parts: the main body, the
pathfinding step, and the node update function. The main
body (Algorithm 1) controls the whole process. It starts by
ordering the group by their straight-line distance to the target
position. Then it iterates over the now ordered group calling
the pathfinding function and the node updating function for
each agent.

The pathfinding step (Algorithm 2) works mostly as A*
would, taking the starting position the agent is in and finding
the nodes that lead to the target position. The difference is that
the node’s marker value is multiplied by the total distance.

And, finally, the node update function (Algorithm 3) takes in
the mapped path in the previous step and updates the markers
on its nodes and neighboring nodes by multiplying the marker
value by the marker factor. Nodes that are adjacent to the
path have the marker value updated too; however, the marker
factor, in this case, is added 0.02 before the multiplication,
so neighbors are less attractive than the nodes that actually
belong in the path.

A. Discussion

The Map Marker algorithm starts by taking one of the agents
of the group and calculating its path. At this point, all nodes
have the initial marker value, so the path will be exactly the
output an A* algorithm would give. After that, it updates the
path’s nodes and their neighbors. Then, it computes the path
for the second unit; at that moment, each node that was marked
by the first agent now presents a cost reduction, which skews

the pathfinder to select the nodes with markers if they do not
drastically increase the path’s length. The algorithm then keeps
iterating over the remaining agents and updating the node’s
marker values until all paths are calculated.

The nodes start with a marker value of 1.0, meaning that
the first time a path crosses a node, this multiplication will not
change the total distance the pathfinder sees. Once the node
gets marked, its marker value is multiplied by our marker
factor (between 0.0 and 1.0), decreasing further every time it
is selected. The lower the marker, the stronger its effects in
warping paths.

This algorithm, although heavily inspired by ant colony
optimization (ACO), differs from that algorithm in that ACO
is using multiple agents to find an optimal path from a point to
another; here, we have a starting position for each agent and
are not interested in the best path for each agent, but in keeping
all paths close enough to not break the group’s cohesion.

It is worth noting that the markers used in the pathfinder
should impact only the movement of the group in that move-
ment instance and are not meant to stay permanently in the
node.

Another crucial point is that Map Marker is order-
dependent, in that each agent affects all the others coming after
it. We are using a heuristic that prioritizes agents that are the
closest to the target (using Euclidean distance), so they will
influence the farthest agents. In preliminary experiments, we
also tried sorting agents by their distance to the group’s gravity
center. The distance to target heuristic tended to yield smaller
average path lengths, although this cannot be guaranteed in all
scenarios.

As the path computed for the first agent is not influenced
by marker values, it is guaranteed to be optimal (i.e., with
minimal length), since the algorithm is reduced to A*. For
subsequent paths, Map Marker does not guarantee optimality
as it will favor paths that increase the overall group’s cohesion
over individual agent’s path lengths.

IV. PRELIMINARY EVALUATION AND PARAMETER
SELECTION

We have conducted a preliminary evaluation of the Map
Marker algorithm to find suitable parameter configurations
(for marker factor and marker cap) and assess whether path
lengths are significantly increased when compared to A*. To
this end, we have come up with scenarios where the standard
pathfinding solutions fail, and then implemented the algorithm
and the scenarios in a prototype inside the Unity game engine2.
The prototype was run with multiple parameter configurations
for each scenario, including the configuration that makes it
equivalent to A*.

A. Scenarios

We have built three distinct scenarios that stress the sepa-
ration problem, shown in Fig. 1. In the images, green squares
represent empty space, red squares represent obstacles, the flag

2Available at https://unity.com/
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Algorithm 1: Base of the Map Marker algorithm
Input : A group of agents, a target position, a marker factor, and a marker cap
Output: Nothing (a path is assigned for each agent)

1 foreach node in map nodes do
2 node.markerValue ← 1.0;
3 end
4 Sort the group of agents in increasing order of straight line distance to target position ;
5 foreach agent in the group of agents do
6 path ← MapMarkerPathfinder(agent, target position);
7 agent.SetPath(path);
8 UpdateNodes(path, marker factor, marker cap)
9 end

Algorithm 2: The MapMarkerPathfinder function. In red (line 16) you can see the step that integrates the markers into
what would otherwise be an implementation of A*.
Input : An agent and a target position
Output: The path for the agent

1 openList ← new List();
2 closedList ← new List();
3 NodeAux ← agent.GetNode();
4 NodeAux.totalValue ← 0;
5 NodeAux.realValue ← 0;
6 openList.Add(NodeAux);

7 while openList.NotEmpty() do
8 currentNode ← node with lowest totalValue from openList;
9 if currentNode == target position then

10 Return currentNode and its parents recursively as the output path;
11 end

12 neighbors ← currentNode.Getneighbors();
13 foreach NodeAux in neighbors do
14 realDistance ← currentNode.GetRealDistance() + Distance(currentNode, NodeAux);

15 heuristicDistance ← Distance(target position, NodeAux);

16 totalDistance ← (realDistance + heuristicDistance) * GetMarker(NodeAux);

17 if neither openList nor closedList have an instance of NodeAux with totalValue < totalDistance then
18 NodeAux.parent ← currentNode;

19 NodeAux.realValue ← realDistance;

20 NodeAux.totalValue ← totalDistance;

21 openList.Add(NodeAux);
22 end
23 end
24 closedList.Add(currentNode);
25 end
26 Return Failure;
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Algorithm 3: The UpdateNodes function
Input : a path, a marker factor, and a marker cap
Output: Nothing (the nodes get updated)

1 neighborNodes ← new Set;
2 foreach node in the path do
3 neighborNodes.Add(node.GetNeighbors());
4 node.markerValue ← node.markerValue * marker factor;
5 if node.markerValue < marker cap then
6 node.markerValue ← marker cap;
7 end
8 end
9 Since the nodes in a path are adjacent and have already been updated, we will remove them from our set;

10 neighborNodes.Remove(the sequence of nodes in the path);

11 The adjacent nodes have a softer marker update;
12 foreach node in neighborNodes do
13 node.markerValue ← node.markerValue * (marker factor + 0.02);
14 if node.markerValue < marker cap then
15 node.markerValue ← marker cap;
16 end
17 end

(on top) represents the destination, and the red squares with
rounded corners (below) represent units. These scenarios are
not meant to be extreme edge cases, since similar scenarios
can be easily found in RTS games.

Lonely Tree. In our first scenario, the Lonely Tree consists
of a single blocked node between the agents and the target
node (Fig. 1a). This solution is not stressing the separation
problem directly; it is, instead, a benchmark to test if our
pathfinder is overcompensating to guarantee cohesion and will
try to move the whole agent group around one side of the
obstacle instead of ignoring it and splitting the group around
it. For our tests, succeeding in this scenario means dividing the
group around the obstacle, since the units can quickly regroup
due to the small obstacle size.

Chinese Wall. The Chinese Wall scenario plays directly
into the separation problem; the obstacle is a straight line of
blocked nodes (Fig. 1b) that completely breaks the group’s
cohesion if the army does not converge fully to only one of
its sides. To succeed in this scenario, our algorithm has to
make sure all paths calculated are on only one side of the
wall.

Boulder. The Boulder scenario consists of a single massive
obstacle in the way of the agent group (Fig. 1c), it is similar to
the Chinese Wall in the criteria to break cohesion, but its larger
width impacts on the marker distribution, possibly splitting a
group that would remain together in the Chinese Wall scenario.
Succeeding in this scenario is again to pick a side and have
the whole group stick to it.

B. Parameter Selection

Inside Map Marker two parameters need to be tweaked to
yield the best results: the marker factor, which controls the
impact and how fast the marker lowers, and the marker cap,

which is how low the marker can get. We ran different values
in these parameters for each scenario and recorded the mean
path length in the calculated paths.

Other parameters that could also be tweaked but were left
constant for our tests are the heuristic function used (distance
to target in our case), the ordering of the group (we used
the heuristic function to order them), the neighbor marker
increment, and propagation (we increase the marker value by
0.02 and propagate only to the adjacent neighbors).

The balance of the marker factor and marker cap is fun-
damental to make the Map Marker pathfinder work. With a
low marker value, the algorithm skews too rapidly making the
few first agents define the path of the rest of the group while
leaving it too high might not be enough to form a trend that
keeps cohesion. A low cap can create super deep “valleys”
in the graph that forces all future paths to gravitate towards
it, while leaving it too high may not impact the pathfinding
enough.

We have tested the following values for the marker factor:
0.50, 0.60, 0.75, 0.90, 0.95, 0.99. As for the marker cap,
we tried 0.01, 0.50, 0.75, resulting in 18 possible parameter
configurations. We also added the configuration with marker
factor and marker cap both equal to 1.0, which reduces the
algorithm to A*.

C. Results

In Table I, we present the average path length for all
configurations, highlighting those that met the success criteria
of all three scenarios. It is worth noting that the control
group (A*) failed on both the Chinese Wall and the Boulder
scenarios, but have the shortest path lengths.

Out of the tested combinations that passed our three test
scenarios, the one that had the shortest average path length,
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(a) Lonely Tree (b) Chinese Wall (c) Boulder

Fig. 1: Scenarios used to evaluate the Map Marker algorithm.

TABLE I: Average path for different parameter configurations
of the Map Marker algorithm. The line in bold represents the
best configuration; the last line represents a configuration that
reduces the algorithm to A*. Asterisks in column Pass mark
configurations that pass all scenarios.

Average path length
Pass Factor Cap Lonely Tree Ch. Wall Boulder

0.50 0.01 20.88 26.88 26.48
* 0.50 0.50 20.08 26.34 25.37
* 0.50 0.75 19.73 26.12 25.23

0.60 0.01 20.88 26.88 26.37
* 0.60 0.50 20.08 26.34 25.37
* 0.60 0.75 19.73 26.12 25.23

0.75 0.01 20.88 26.88 26.37
* 0.75 0.50 20.08 26.34 25.37
* 0.75 0.75 19.73 26.12 25.23
* 0.90 0.01 20.25 26.41 25.70
* 0.90 0.50 19.93 26.14 25.43
* 0.90 0.75 19.64 26.01 25.23

0.95 0.01 20.18 26.41 24.31
0.95 0.50 20.18 26.41 24.31
0.95 0.75 19.85 26.14 23.30
0.99 0.01 19.51 25.56 23.30
0.99 0.50 19.51 25.56 23.30
0.99 0.75 19.51 25.56 23.30
1.00 1.00 19.51 25.51 23.30

and therefore the best results, was the 0.90 factor with a
0.75 cap. This combination led to a meager 0.6% and 1.9%
increase on path lengths in the Lonely Three and Chinese Wall
scenarios respectively, but a more substantial 8.2% increase in
the Boulder scenario—which is expected, since in this scenario
the obstacle is wider.

The visualization of the best results of the Map Marker
algorithm can be seen in Fig. 2d, Fig. 2e, and Fig. 2f. The
control group, running A*, is shown in Fig. 2a, Fig. 2b, and
Fig. 2c.

D. Complex scenarios
The three scenarios presented previously, although useful

for parameter selection, do not represent realistic scenarios that
would be found in a game match. To evaluate the Map Marker
algorithm concerning its ability to prevent the separation
problem, as well as its run time performance, we have run
both A* and Map Marker on all 75 StarCraft maps available on
Moving AI Lab’s benchmarks for grid-based pathfinding [12].

For each map, we have created 10 possible scenarios by
randomly choosing a start and a target point. The start point
was a reference used to position 50 agents: the first agent
occupied the start point, and each additional agent occupied a
point adjacent to the previous agent. All agents had the same
target point.

For each scenario, we plotted the paths found by both
A* and Map Marker, and inspected visually to determine
whether the separation problem occurred; each scenario was
first inspected by one person and, in case of doubt, all the
authors discussed to reach a consensus. This happened to 12
scenarios.

Of all 750 scenarios, 53 (7̃%) presented the separation
problem. Among those, the separation occurred only in A* in
48 scenarios (9̃1%), and in both algorithms in the remaining
5 scenarios (9̃%).

The results suggest that A* and Map Marker yield similar
results in most scenarios, as exemplified in Fig. 3a. In a
significant number of cases, however, A* suffers from the
separation problem. In the vast majority of these cases, Map
Marker can prevent the problem (see Fig. 3b). Even in the
few cases in which Map Marker suffers from the separation
problem (e.g., Fig. 3c), the agents tend to regroup shortly after
the obstacle.

Regarding run time, A* took on average 8.2 seconds to com-
pute paths for all agents, while Map Marker took 3.0 seconds.
It should be noted that these long times are due to unopti-
mized algorithm implementations in a script language. Using
navigation meshes would greatly improve performance [7], as
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(a) Control result: Lonely Tree with a 1.0 factor
and 1.0 cap. Avg. Length: 19.51252.

(b) Control result: Chinese Wall with a 1.0 factor
and 1.0 cap. Avg. Length: 25.51252.

(c) Control result: Boulder with a 1.0 factor and
1.0 cap. Avg. Length: 23.29859.

(d) Best result: Lonely Tree with a 0.9 factor and
0.75 cap. Avg. Length: 19.63712.

(e) Best result: Chinese Wall with a 0.9 factor
and 0.75 cap. Avg. Length: 26.01089.

(f) Best result: Boulder with a 0.9 factor and 0.75
cap. Avg. Length: 25.22792.

Fig. 2: Best paths found by A* and Map Marker.

well as using Hierarchical Path-Finding A*, which is expected
to be about 10 times faster than traditional A* [8].

Therefore, in addition to mitigating the separation problem,
Map Marker improved run time performance by a factor of
2.8. This can be explained by the fact that markers laid when
computing a path restrict the number of nodes that need to be
explored when computing subsequent paths.

V. EVALUATION USING STARCRAFT II
Although the preliminary results involving path lengths are

encouraging, they are incomplete for two reasons. First, in
a realistic simulation, the time taken to reach the destination
depends not only on path length but also on possible collisions
between agents. Since agents normally cannot pass through
each other, if the computer paths cram our agents together we
run into the risk of having various collisions that slow down
the real movement of the group.

Second, the results do not account for combats, which
not only affect the time to destination but can also result in
casualties. The preliminary evaluation fails to highlight how
important cohesion is in an engagement.

To measure how well Map Marker fares in a real case,
we recreated our test scenarios inside the game StarCraft II
with our best case’s waypoints and checked how well they
performed in comparison to A*. We adopted StarCraft II as
testing grounds because it is a competitive RTS that, although
published in 2010, still has a large player base, with around 1
million players [13].

A. Methods
Inside StarCraft II we were able to create game maps similar

to our scenarios and simulate the orders the agents would
be given if they used our algorithm. We have selected the
classic Zergling as our test agent; this unit was selected due
to it being a fast close combat fighter that heavily relies on
the positioning of its engagement to succeed in battle. In
virtually all competitive matches the faction is present in large
quantities, demanding an efficient multi-agent pathfinder.

The tests were run with either Map Marker or A* paths
in two different categories: without combat, to test the pure
difference of speed, and with combat, to test the impact of
each pathfinder in battle results. In the second category of
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(a) No separation problem (b) Separation problem with A* (c) Separation problem on both algo-
rithms

Fig. 3: Real scenarios from StarCraft. Green and black are obstacles. Paths are in red (A* on top, Map Marker on the bottom).

tests, we spawn nine enemy combatants (in contrast to our
18) in specific points (represented by red circles in Fig. 4)
and measured how well each pathfinder performed in friendly
casualties. The chosen spawn points are unfavorable either for
armies with broken cohesion or, in Lonely Tree’s case, for
armies that take too long to regain cohesion.

Once the tester selected the test type by typing a command,
the agent group would receive their orders to attack-move
through a series of waypoints. Each unit would have its own
set of waypoints that corresponds to the path found for the
agent back either by A* or by the best configuration of Map
Marker.

Each test ended when all allied Zergling finished their final
order by reaching the target point or dying; at that point,
a script would inform us of how many Zerglings survived
the encounter and how long did it take to reach the target
destination (in seconds).

B. Results

The results are summarized in Table II, which shows the
average time spent by the group to reach the destination (both
with and without combat), as well as the number of units that
died in combat. The results are presented separately for A*
and Map Marker.

The average times are shown in Fig. 5, with the standard
deviation shown as a vertical error bar. The difference in
time between the algorithms in the Lonely Tree scenario is
small and not statistically significant (which is expected since

both algorithms split the group around the obstacle). In the
other two scenarios, however, the difference is statistically
significant at the 95% level (using Wilcoxon Rank Sum Test
with Bonferroni correction).

In simulations without combat, groups guided by Map
Marker in the Chinese Wall and Boulder scenarios took about
13% longer, on average, to complete the path. This represents
a large effect size, as measured by Wilcoxon effect size
(r > 0.5).

The opposite holds for simulations involving combat. In
these cases, Map Marker took 8.2% and 12.7% less time
(Chinese Wall and Builder, respectively). The difference is
statistically significant at the 95% level, and the effect size
is large.

Fig. 6 shows the average number of casualties, i.e., player
units that died after combat. Although the average is lower
for Map Marker in all scenarios, the difference is statistically
significant only in the Boulder scenario, with large effect size,
in which the number of casualties was reduced by 47.8%.

In summary, in the event of a combat, groups led by the
Map Marker algorithm tend to present less casualties and to
reach the destination earlier than groups led by A*.

C. Discussion

During testing, we observed that the waypoints method used
to replicate the paths found in Map Marker did not integrate
perfectly into the engine; on multiple occasions, the agents
went back to a point they had already passed by, either after
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(a) Lonely Tree (b) Chinese Wall (c) Boulder

Fig. 4: Scenarios used to evaluate the Map Marker algorithm in StarCraft II.

TABLE II: Results of the simulations performed in StarCraft II with a group of 18 units, averaged over 10 simulations for
each configuration. Times are given in seconds.

Avg. Time (without combat) Avg. Time (with combat) Avg. Casualties
Scenario A* Map Marker A* Map Marker A* Map Marker

Lonely Tree 5.0 5.3 12.2 12.1 2.1 1.6
Chinese Wall 6.0 6.8 14.9 13.0 3.9 2.9

Boulder 6.0 6.8 15.8 14.5 4.6 2.4
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Fig. 5: Time (in seconds) groups needed to reach their desti-
nation, averaged over 10 simulations for each configuration.

being dragged by other units in the group or after killing
enemy combatants.

This problem is caused by the fact that our pathfinder
runs offline and, thus, it does not recompute paths during
the simulation. This is in contrast with StarCraft II’s native
pathfinder, which seems to recalculate paths when combat is
over.

In preliminary evaluations, we measured the time it took
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Fig. 6: Number of units that died in combat while following
their paths, averaged over 10 simulations for each configura-
tion.

for units to reach their destination using StarCraft II’s native
pathfinder. Since this pathfinder is not subject to the problems
caused by the use of waypoints to represent static paths, direct
comparison with Map Marker would not be fair. Thus, we
decided to switch to precomputed paths, using A*. We verified
that these paths are very similar to those found by StarCraft II.

When moving around large obstacles, such as the Boulder,
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the difference between pure A* and Map Marker is evident.
In Map Marker, some units inevitably choose longer paths in
order to keep cohesion, and this results in increased time for
the whole group to reach the target position.

On the other hand, if the player expects their group to be
attacked while following the path, the paths chosen by Map
Marker allow units to reach the destination earlier, given the
group survives the attack. This can be explained by the fact
that using Map Marker, the whole group engages in combat,
leading to a quick victory and also fewer casualties.

A solution to have both speed and cohesion resilience would
be to implement a dual behavior solution: use Map Marker
only while attack-moving and A* in common movement.
That way, the agent group keeps cohesion when the player
is expecting an engagement with enemy troops, but still has
the best average path lengths to move in situations where
speed is more important than cohesion, such as moving in
reinforcements or retreating. Map Marker can easily integrate
this change of behavior concept as its output when set to a
marker value of 1.0 is A* paths. A function could easily switch
marker values depending on the type of order the player is
issuing.

A counterargument to this dualistic approach is that it could
become an obscure game mechanic that the players will not
understand or be able to replicate during competitive gameplay
which itself could lead to frustrating situations. We argue,
however, that this mechanic allows players to gain control over
their troops without having to resort to micromanagement such
as controlling individual agents or subgroups.

VI. RELATED WORK

The idea of customizing the distance calculation in A* for
use in RTS games is not new. In many cases, the goal is not to
find the shortest paths, but to find reasonably short paths while
avoiding common problems found during gameplay. To the
best of our knowledge, however, no pathfinder in the literature
focuses on individual path length performance while avoiding
the separation problem.

Critch and Churcill [14] proposed a pathfinder that avoids
areas visible by enemies units, so that player units can move
closer to enemy buildings without being intercepted in the
way. To this end, they build influence maps around enemies
and use them in the cost calculation of A*. The new pathfinder
is evaluated in StarCraft.

Geramifard et al. [15] noticed that sometimes separated
groups controlled by the player take paths that intersect at
some point, effectively slowing them down. To mitigate this
problem, they proposed a pathfinder that assigns a higher cost
to intersection points, and then run A* considering these costs.

Hagelbäck [16] evaluated two approaches for positioning
units in a group when attacking: flocking and potential fields.
They ran simulations in StarCraft and found potential fields
to be much more computationally expensive.

VII. CONCLUSION

This work presents Map Marker, a multi-agent pathfinder
algorithm that aims to increase agent cohesiveness to avoid

group splits in situations that would leave the group vulnera-
ble. The algorithm guaranteed cohesion in the tests imposed
by our work, significantly reducing casualties in combat. The
time needed to reach the destination decreased when units
engaged in combat and increased otherwise.

Our results indicate that the new algorithm without addi-
tional components is not a direct upgrade to the A* algorithm
in RTS games; however, a developer that is more interested
in cohesive group movement or is willing to add game logic
that switches movement behaviors on different contexts can
use the new Map Marker algorithm to reach their goals as we
presented.

In future experiments it would be interesting to change the
test map structure to incorporate navigation meshes. Also,
further research is needed to understand how to leverage
other algorithms used in RTS movement, such as flocking and
potential fields, to mitigate the separation problem.
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