
Procedural Generation of Isometric Racetracks
Using Chain Code for Racing Games

Erik Jhones F. do Nascimento
Department of Computer Science
Federal Institute of Ceará (IFCE)

Fortaleza, Brazil
erik.jhones06@aluno.ifce.edu.br

Tassiana M. Castro
Department of Computer Science
Federal Institute of Ceará (IFCE)

Fortaleza, Brazil
marinho.tassiana05@aluno.ifce.edu.br

Ana Carolina S. Abreu
Department of Computer Science
Federal Institute of Ceará (IFCE)

Maracanaú, Brazil
ana.carolina.silva05@aluno.ifce.edu.br

Filipe A. Lira
Department of Computer Science
Federal Institute of Ceará (IFCE)

Fortaleza, Brazil
filipe.almeida.lira04@aluno.ifce.edu.br

Amauri H. Souza
Department of Computer Science
Federal Institute of Ceará (IFCE)

Fortaleza, Brazil
amauriholanda@ifce.edu.br

Abstract—In this work, we propose a procedural generation
method for railroad circuits based on the chain code algorithm.
The process creates a list with directions in a two-dimensional
space from a series of operations using the chain code and images
of predefined real tracks. This list was used in the Unity engine
to provide the positions, starting from a predefined starting
point, which will insert the elements of the circuit during its
creation. The race track format still goes through a preprocessing
method to filter the ladder effect generated by the chain code and
fine-tune details before being simulated in a game. This allows
each track to have a unique pattern and good gameplay. Tests
carried out using our generation method in a 2D (two dimensions)
isometric kart game showed that in all runs, the tracks had an
average of 98.5% difference among them and maintained the
gameplay standards.

Index Terms—racetracks, racing games, chain code, procedu-
ral generation, 2D games

I. INTRODUCTION

Racing games are a prevalent genre and almost as old as
the digital games and the early Arcades. The first examples
of racing games date back to 1974, and the evolution of
the genre in Arcades has provided unique experiences with
steering wheels and cabins where the player can sit, giving an
impression of immersion never before provided [15].

Since racing games represent a unique genre in the industry,
its development also has unique characteristics [21]. Thus, the
knowledge to develop them is a secret kept by companies
that already have the know-how to produce them. To work
with the limitation of lack of experience in this type of game,
experimentation is an essential tool that allows the developer
to create and test different backgrounds and to be able to
choose which one best suits the situation. However, the cost of
producing tracks can be prohibitive since each iteration of the
experimentation requires a new circuit and a specific effort
from the development team to elaborate the new layout, to
change the geometry of the track, to modify the terrain, and
adapt the adornments to the perimeter of the runway [8].

Current solutions for the games production, in general,
are not suitable for the production of racing games. With
tools right for other game genres, game engines are adopted
with difficulty in the production of racing games, requiring
adaptations in its use [16].

In this paper, we propose a procedural tracks generation
method for 2D (two-dimensional) isometric racing games,
with flat terrain based on chain code algorithm. Our approach
considered focuses on 4 processing steps for the production
of a list of cartesian directions in a bidirectional space, and
this list was applied to know the position of the track elements
in the game field. After these 4 steps, the race track can be
generated by the Unity engine.

Our approach was inspired by the works of [1], [8], [10].
We tested our generative approach using a 2D isometric game,
produced by the authors, based on the 1992 Mario Kart racing
game. Empirical results have shown that the chosen approach
managed to generate race tracks that differ 98.5% from each
other, having a path size suitable for the type of game, and
building truly playable tracks. We verified that our approach
can be easily modified to run on other varieties of racing
games.

II. THEORETICAL REFERENCE

In this section, we introduce the concepts for understanding
the methodology applied on the work.

A. What makes a racing game fun?

Togelius et al. (2006) [18], offer a hypothesis for the factors
that make a racing game interesting. They list 5 factors that
were used as metrics for evaluating the results. The first factor
of fun would be the feeling of speed. People like to drive fast
and the track must allow them to reach maximum speed; The
second factor would be the challenge, that is, the player would
be bored driving in an endless line, even at high speed; The
next factor would be the right adjustment of the challenge, as

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

hitting all the time during the race, for example, would not be
fun; The following factor would be the variation of challenges,
with the track varying in characteristics and not repeating the
same challenge all the time; The last factor would be drift or
slippage in curves, and it seemed to be an important element
for the authors. All the fun factors are associated with the
track and its interaction with the vehicle.

Other authors offer different perspectives on the character-
istics that a racing game must have to be considered fun.
For example, Ralph Koster (2013) [19] offers a different
perspective in his book ”Theory of Fun For Game Design”.
Speaking of video games in general, he says that playing and
learning are closely linked, and that for a game to be fun it
needs to allow the player to learn continuously. Togelius et al.
(2006) [18] states that one way to interpret this in a racing
game context would be that a good race track is one where
the player has very poor results the first time he plays, but
quickly and consistently improves on subsequent races.

B. Procedural Content Generation (PCG)

According to Shaker et al. (2014) [17], Procedural Content
Generation (PCG) consists of generating data through algo-
rithms, data that can be interpreted in a game as scenarios,
images, models, sounds, vehicles, characters, and other ele-
ments. The terms ”procedural” and ”generation” imply that
algorithms that create something are being considered and
these algorithms can be executed with or without human
intervention. Overcoming storage limits in the first computer
games was one of the main reasons for using procedural
content generation. In the early 1980s, the storage constraint
forced designers to look for other methods to generate and
save content.

Hendrikx et al. (2013) [24] identify five groups of methods
for Procedural Content Generation for Games (PCG-G) that
were group into classes such as Pseudo-Random Number
Generators (PRNG), Generative Grammars (GG), Image Fil-
tering (IF), Spatial Algorithms (SA), Modeling and Simulation
of Complex Systems (CS) and Artificial Intelligence (AI)
,with data augmentation [2], see Fig.1. They show in their
work that methods belonging to these groups can be used
in different types of content such as Textures, Sound, Veg-
etation, Buildings, Behavior, Fire, Water, Stone, and Clouds,
Indoor Maps, Outdoor Maps, Bodies of Water and Other Map
Features, Ecosystems, Road Networks, Urban Environments,
Entity Behavior, Puzzles, Storyboards, Stories, Levels, System
Design, World Design, and others.

In fact, PCG techniques can be used for a multitude of
applications in the digital gaming world. In his article, Lima et
al. (2019) [3], for example, developed a method of procedural
generation of missions for games using genetic algorithms and
automated planning. Combining planning with an evolution-
ary research strategy guided by arches history, the proposed
method can generate coherent missions based on a specific
narrative structure.

Serpa et al. (2019) [4] uses artist-generated similar images
to create a shaded and a color-segmented version of an

Fig. 1. Taxonomy of common methods for generation game content, Hendrikx
et al. (2013) [24].

outline. His technique is capable of generating sprites similar
to those generated by artists. Dam et al. (2019) [5] present a
method that allows the creation, with limited data availability,
of a wide, high-quality environment optimized for terrain
simulations using Unity 3D (three dimensions). Pereira et al.
(2019 [6] uses the procedural generation to tell stories in a
serious game called Orange Care. This research proposes the
application of such a technique to automate the construction
of characters and scripts. Finally, Connor et al. (2019) [7]
assesses the impact of content generated procedurally in games
nowadays. The study assesses the impact on game quality. It
concludes that there is not much noticeable negative impacts
on games created procedurally compared to those created by
classical methods.

The use of procedural generation is a technique widespread
in all forms of electronic games. Much of this success is
mainly due to automation and reduction of production costs.

C. Chain code

Chain code is a lossless compression technique used for
representing an object in images. The coordinates of any
continuous boundary of an object can be represented as a
string of numbers where each number represents a particular
direction in which the next point on the connected line is
present. The chain code was created in 1961 by Herbert
Freeman [22]. This method encodes the boundary of a region
into a sequence of octal digits, each representing a step of the
boundary in one of the eight basic directions in relation to
the current pixel position. Chain code is useful for reducing
storage in relation to the number of bits needed to store a list
of the coordinates of all boundary pixels (and also in relation
to the number of bits needed to store a complete binary image),
L. Yong and B. Zalik (2005) [11].

The shape of a region can be represented by quantifying
the relative position of consecutive points on its boundary.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

The chain code technique achieves this representation by
analyzing each point on the boundary in sequence (e.g.,
counterclockwise) and assigning a code digit to the transition
from each point to the next. The transition from one point to
the next can be coded with 4-connectivity, considering the 4
nearest neighbors, or 8-connectivity, where transitions to all
adjacent points are coded, L. Yong and B. Zalik (2005) [11].
Fig.2 shows how the chain code works.

Fig. 2. The chain code has several types of neighborhood connections.
However the most famous and basic ones are 4 and 8.

Efficient uses of chain code include content compression
with the works of Zalik et al. (2018) [23] and K. Dhou (2019)
[25], and feature extraction with the works of A. Azmi (2017)
[26] and P. Karezmanek (2017) [27].

D. Ramer–Douglas–Peucker Algorithm

The Ramer–Douglas–Peucker Algorithm [14], [28] is an al-
gorithm that reduces the number of points that is approximated
by a series of points. It is also known as the Douglas–Peucker
algorithm and iterative end-point fit algorithm. In simple
words, it represent a complex line with fewer points in a
visually proper way. See the Algorithm 1.

The main purpose of this algorithm is to find a similar curve
with fewer points for a given curve composed of line segments
(also called Polylines). This algorithm define ’dissimilar’ based
on the maximum distance between the original curve and the
simplied curve, i.s. the Hausdorff Distance. The simplified
curve consist of a subset of points that defined the original
curve. The Ramer–Douglas–Peucker Algorithm is most com-
monly used in geospatial visualizations, like Google Maps, but
also useful for other in-browser visualizations as well.

III. RELATED WORK

In the academic sphere, the work most related to the theme
of this article is the study of Cavalcante Junior (2017) [8].
His research aimed to use procedurally generated content,
associated with AI, to assist the designer in the production
of racing games. Its aim was to obtain an efficiency gain for
the development team and cost reduction. The proposed tool

Algorithm 1: DouglasPeucker
Input: PointList[], epsilon
Output: ResultList[]
initialization
dmax = 0
index = 0
end = lenght(PointList)
for i to (end - 1) do

d = perpendicularDistance(PointList[i],
Line(PointList[1], PointList[end]))
if d > dmax then

index = i
dmax = d

else
ResultList[] = empty
if dmax > epsilon then

recResults1[] =
DouglasPeucker(PointList[1...index], epsilon)
recResults2[] =
DouglasPeucker(PointList[index...end], epsilon)
ResultList[] = (recResults1[1...length(recResults1) -
1], recResults2[1...length(recResults2)])

else
ResultList[] = (PointList[1], PointList[end])

intended to guide the designer in the creation of racing game
content, using a concept of curves to simplify the design of
the layout, in addition to correcting game design decisions,
supporting creativity without removing the power of decision.

C. Gleidson (2018) [1] affirmed that the terrain is the most
extensive part of a game. The author claimed that some games
need to present different terrains on each level so that the
game does not become repetitive to the players. His work
presented a methodology for procedural terrain generation for
2D platform games. His approach developed was based on
the use of Markov models, specifically the hidden Markov
chains, to produce new terrain probabilistically. His results
showed that the technique presented was able to generate a
2D platform game terrain.

E. Galin et al. (2010) [10] proposed an automatic method
for generating roads based on a weighted anisotropic shortest
path algorithm. Given an input scene, the authors automatically
created a path connecting an initial and a final point. The
trajectory of the road minimizeed a cost function that takes
into account the different parameters of the scene including
the slope of the terrain, natural obstacles such as rivers,
lakes, mountains and forests. The road was generated by
excavating the terrain along the path and instantiating generic
parameterized models.

IV. WORKFLOW

Given a flat terrain, created by a procedural method, man-
ually or extracted from a set of real data, our generative
approach works by following the steps listed below.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

First, we created a database with images of racetrack circuits
and a list with the pixel positions of the circuit for each image
is extracted using the chain code. After that, we choose some
elements from the generated list in order to create the new
circuit. Next, we created a list with the directions that, from
a starting point on the game ground, the elements of the new
circuit would be added. Following, we perform a process of
fine-tuning details and removing noise from this list to improve
its appearance in the creation process. Finally, we use the list
of directions to guide the Unity engine where the elements that
make up the track must be created during the game execution.
The track elements were loaded and assembled during this
stage. Fig.3 shows a simple flow chart of the method.

Fig. 3. Flowchart presenting the five steps taken by the method to generate
the racetracks.

A. Database and list of directions

First, we acquire images from the internet containing real
and playable racing circuits from different games. We also
created other circuits manually in order to increase the diver-
sity of forms in the dataset. The images formats and sizes
were matched for Joint Photographic Experts Group (JPEG or
JPG) and sized for 300×300 pixels. The images sizes directly
affects the size of the race track created, due to the fact that
the our approach works with the perimeter size of the objects
in the images. The database contained 150 images, but it could
be expanded indefinitely. Fig.4 shows an example of the data

set tracks (See the appendix A if you want more information
about the track in the images).

Fig. 4. Some race tracks that make up the dataset for this project. Most are
tracks for Kart and Formula 1 games.

Since only the circuit outline was necessary to generate the
race tracks, we developed an approach of low computational
cost and relatively simple, based on the use of chain code
algorithm.

For this work, we considered the chain code with 8 neigh-
borhood. The reason we’ve chosen this 8-neighbor approach is
due to our images have 8-pixel connected. This allowed for a
more faithful capture of the shape of the race tracks, and thus
a more faithful recreation of new tracks. To execute the chain
code on the data set images, we’ve chosen first a point in the
area of interest as the starting point, and the point chosen was
the most upper left. Fig.5 exemplifies data set tracks and their
chain code graph.

Fig. 5. Two data set racetracks and their respective chain codes obtained
using 8 connections. The vertical axis indicates the direction value and the
horizontal axis the number of values. The red dot represents the starting point
of the algorithm.

After all the images were submitted to the chain code, a list
containing all the lists with the chains was obtained.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

B. Choosing elements from the list

One of the advantages of using the chain code was that the
corresponding figure could be redrawn using the list with its
chain code. We took advantage of this property to define how
the result of the new race track would be. The track shape
that would be generated depended a lot on this stage, since
the strings chosen would directly affect the shape of the track.

To choose which elements of the chain list would be used
to define the new circuit, we apply a stochastic criterion of
choice. More precisely, we choose 10% of the samples at
random to form a new chain list. we define this percentage
value based on tests carried out by the authors in search of
the best number of chains that could generate a totally different
track and that could be playable, following the criteria of [18].
Very low percentage values resulted in tracks that were in
the dataset itself, while higher percentage values resulted in
tracks so simple and similar that it would leave any player
unmotivated to play on it. Fig.6 exemplifies generated race
tracks and the percentage of chains chosen.

Fig. 6. Race track samples obtained using 10%, 50%, 70%, and 100% of the
data present in the data set respectively.

The test to find which value would be most suitable was
performed as follows: 100 iterations were performed for
each determined number of chains (10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90% and 100%), then the number of
iterations that were generated tracks with up to 50% difference
from the previous ones. To compare the generated tracks, we
calculate the HU invariant moment of each image. As this
approach was invariant to scale, rotation and translation, it was
the most suitable for the work. Images that had between 50%
and 100% difference were counted as potential new circuits,
while the others were disqualified. Fig. 7 shows a graph that
relates the number of images / chains chosen with the degree
of average difference for 100 iterations.

The percentage of 10% reaches an average of 98.7% of new
and visually attractive tracks.

C. Creating the list with directions

Given a set of chain lists obtained by the method described
in the previous subsection, the process of generating a single

Fig. 7. Comparative graph between the number of images used to generate
the new chain and the difference of the images generated for 100 iterations.

chain list derived from that set has followed a few steps. As
the circuits considered to generate the data set had different
shapes and sizes, the size of the chains generated by these
circuits were also different. This means that after the choice
step, it was necessary to use a method to match the size of
these chosen chains. To normalize the size of the chains, we
choose initially the chain with the smallest size (the goal was
to make all other chains have the same size as the chosen
chain). The normalization function was formally defined in
Algorithm 2.

Algorithm 2: Normalize two chain lists
Input: A, B
Output: new list
initialization
X = 0
P = |A| / |B|
p1 = P
R = int(P)
new list = [1... |A|]
while X < |B| do

new list = |B|
P = P - R
P = P + P1
R = int(P)
X= X + R

Where A and B are the biggest and smallest chain list
respectively.

With the chains standardized, the resulting new chain list
was created from a process of choosing the modes majority.
This process should iterate through all the lists at the same time
and, for each index, the value with the greatest trend must be
chosen for the new list. In this way, important characteristics of
the circuits used as base should be maintained. For example,
if most circuits had a curve in a certain area, it means that

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

the resulting circuit also needed to have a curve, however its
shape should be quite different from that of the others. This
approach also maintained control over the new circuit shape,
preventing its final form from being completely random and
unplayable. Fig.8 exemplifies the result of treating the chains
with algorithm 1. The difference in appearance between the
strings before and after they are normalized can be noted.

Fig. 8. A) Lists of chains before having their sizes normalized by algorithm
1. B) The same lists already standardized. It can be noted that the size of all
of them is the same as the one at the fourth chain.

Fig.9 shows the newly created list.

Fig. 9. A new chain list originated from a set of other lists using the most
mode technique.

D. Thinning and noise removal process

The process of creating the new list may generate imperfec-
tion in the final circuit design. This was one of the side effects
of using mode between chain lists to create the new list. This
imperfection happened when a group of values in the lists had
very different element values.

The result of this type of situation was a new list with groups
of values that were not homogeneous, but very different. This
kind of situation is known as the ”stair effect” because visually

a figure that would normally be a ”smooth” straight line looks
like a straight line with steps.

To eliminate these imperfections, we use the
Ramer–Douglas–Peucker algorithm described in [14],
[28], see the Algorithm 1. This technique smoothed the lines
affected by the stair effect. The result of the ”stair effect” on
the race tracks can be seen at the upper part of the Fig.10,
and the result of the smooth can be seen at the botton of
Fig.10.

Fig. 10. Up side) The stair effect affects the appearance of contour lines
making them look noisy. Down side) The result of eliminating the ladder
effect on the tracks is clear.

E. Track generation in the UNITY Engine

The steps listed above were done with the sole purpose of
generating a list containing directions in a two-dimensional
space to serve as a guide for the allocation of the elements
that would compose the circuit. First, we choose a starting
point on the pitch. The chosen point was in the middle of the
map. Every time a direction pointed out of the map, a routine
was executed causing the elements generated so far to recede
in a position in the opposite direction to the current one. It
ensured that the race track was within the limits of the map.
The automatic creation process occurred by iterating through
that list. For each element of the list, its value was read (which
was a direction to be followed from the current point), and
the elements of the track in the direction read were added to
the field of play. This process, in addition to creating a race
track, also ensured that the sprites (like the ones that make
up the asphalt) did not overlap. This was important because
in practice, an asphalt sprite corresponds to a certain size of
the total circuit. Therefore, a list that has a thousand elements
and a sprite of asphalt that corresponds to 1 meter of road,
will result in the end a race track with 1 km in length. The
other elements of the race track could be added following pre-
defined rules. For example, barricades on curves, which would
only be added to locations whose values of directions in the list

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

corresponded to the beginning, middle and end of a curve. This
process had the advantage of requiring little computational
cost. Fig.11 shows one of the race tracks generated by the
method defended in this article during one of the practical
tests.

Fig. 11. Our approach managed to create several different race tracks as well
as different race scenarios as well. In almost all cases, the five criteria of
”what makes a racing game fun” were respected.

V. RESULTS AND DISCUSSIONS

We implement our method with the C# language, used in
the initial development of the code and adjustments of some
parameters, and C# using Unity Engine for practical tests.
The tests were performed on an Intel Core i5-3470 2.9GHz
quadcore. A 2D kart game was developed based on the famous
racing game Mario Kart [20] to test the gameplay of the
generated tracks. In this test game, only the asphalt and the
start line were added. It was done to simplify the tests, however
more elements can be added, such as sideways and barricade
tires.

We perform tests out by alternating the amount of chain
samples, considered to form the final race track. We quantify
the average generation and loading time for the tracks in each
test. The number of samples was increased by 10% for every
10 runs of the game. We also evaluated the size of the race
tracks generated by our approach. Kart tracks were on average
1150 meters long and 8 meters wide. Table 1 shows the results
of our analyses. It can be noted that the size of the tracks,
despite a certain variation, are in all cases within the allowed
limit for go-kart race tracks.

Even though the average times were less than 13 seconds
and the average length of the tracks was suitable for this kart
game, increasing the number of chain samples to generate the
tracks would not improve the method at all. As seen in the
subsection ‘Choosing Elements from the List’ this would just
make the tracks less challenging and repetitive.

We tested our approach with an external audience. We
selected 271 volunteer participants from a gaming group called
“1 Real a Hora” on Discord, a free, voice over IP app, designed

primarily for gaming communities. Participants were quite
diverse in their preferences in game types and racing game
genres. This allowed the results to be less biased and ended
up favoring more positively because participants ”like kart
games”.

TABLE I
RESULTS OF AVERAGE BUILD TIMES AND AVERAGE SIZES FOR THE RACE

TRACKS CONSIDERING X% PERCENTAGE OF DATASET DATA.

Percentage Average time/size
of data Time Creation (s) Size Track (m)

10% 8.8±0.74 1044±33

20% 10.9±0.45 1185±62

30% 7.0±0.18 1220±95

40% 10.6±0.24 1191±74

50% 9.7±0.67 1022±66

60% 12.4±0.41 1028±92

70% 13.2±0.49 1042±30

80% 7.9±0.59 1025±85

90% 11.5±0.67 1174±69

100% 11.9±0.26 1169±29

We offered the Mario Kart game executable file, which
contained our approach, and asked participants to play at
100 race tracks consecutively. At the end of each race, we
asked them to fill out an evaluation form about it. We asked
the participants to be neutral about the game’s setting, its
genre (Kart), visual elements in general, and we asked them
to focus their attention only on 5 factors, namely the same
ones advocated by Togelius et. al. (2016) [18]. The questions
contained in the questionnaire were: 1 Did you feel the
speed during the game? 2 Did you feel the race track was
challenging? 3 Did you feel that the race tracks were getting
harder as you played? 4 Do you think this race track was
different from the previous ones? 5 Did you manage to perform
any ”drift” in corners?

With these five questions, we assess our approach to the
factors that make a racing game fun. Remembering that our
goal with this article is not to report the creation of a racing
game, but to report the creation of a method of automatic
generation of race tracks that is efficient, fast, and above all,
simple. We present the results of these tests in table 2. Each
question in the questionnaire was associated with a factor in
the table, question 1 was associated with factor 1, and so on.

We separated the responses to the questionnaires into 3
groups, those that gave positive, neutral (i.e. ”I don’t know”),
and negative responses. In fact, as can be seen in table 2, our
racetrack generator method managed to give the vast majority
of survey participants what was promised: Racetracks different
from each other, with an adequate size, and challenging
gameplay, but not impossible. Our method pleased a good part
of the participants when the subject is ”difference among race
tracks”. The factor 5, despite being very low, does not let us
down. After all, it is a detail of the game mechanics, and does
not come from our method.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

VI. CONCLUSION AND FUTURE WORKS

This paper presented a method for generating race tracks
that work in isometric 2D race games. The generation of
circuits produced different shapes at each run using a sim-
ple algorithm and was able to maintain the proper level of
playability on the track. By the practical tests, the 5 factors
of a fun racing game defended by [18] and also by [19] were
respected. The proposed solution can be easily modified to suit
different types of application. Further research can be done to
take into account obstacles in the circuits, such as tunnels,
or ramps. One way to improve the generation of leads is to
consider subsets of chains with a certain similarity. It would
give more loyalty to certain characteristics of these chains in
the final result, thus, making a track more realistic, if this is
the goal.

TABLE II
PARTICIPANTS’ RESPONSES TO THE TESTS OF OUR MODEL WITH A REAL
RACING GAME ”MARIO KART”. THEY FOCUSED THEIR ANSWERS ONLY

ON THE RACE TRACKS AND THEIR QUALITY.

response Quality Factors
type factor 1 factor 2 factor 3 factor 4 factor 5

Positive 83.0% 81.3% 75.9% 96.7% 24.5%
Neutral 13.3% 17.8% 15.0% 1.4% 3.7%

Negative 3.7% 1.1% 9.1% 1.9% 71.8%

As a future work, it is being considered to change the
method for procedural generation of race tracks advocated
in this work to suit racing games in 3D. [12] applied the
chain code to describe curves in 3D and [9] addressed
criteria of difficulty on race tracks, so an approach us-
ing this principle could achieve satisfactory results in this
project. A repository with the source code can be found in
https://github.com/ErikJhones/racetrack.

REFERENCES

[1] G. M. Costa and T. B. Borchartt, ”Procedural terrain generator for
platform games using Markov chain,” in 17th Brazilian Symp. on Comp.
G. and Digi. Ent., Foz do Iguaçu, PR, BR, Eds. Oct. 2018, pp. 671-674.

[2] E. J. F. do Nascimento, D. V. Cavalcante, A. C. S. Abreu, D. P. P.
Mesquita and A. H. de S. Júnior, ”Classificando Graus de Pterı́gio
Utilizando Aprendizado de Máquina,” in Journal of Health Informatics,
Foz do Iguaçu, PR, BR, vol. 12, Dez. 2021, pp. 248-253, issn: 2178-
2857.

[3] E. S. Lima, B. Feijó and A. L. Furtado, ”Procedural Generation of Quests
for Games Using Genetic Algorithms and Automated Planning,” in 18th
Brazilian Symp. on Computer G. and Digi. Ent., Rio de Janeiro, RJ, BR,
Eds. Oct. 2019, pp. 495-504.

[4] Y. R. Serpa and M. A. F. Rodrigues, ”Towards Machine-Learning
Assisted Asset Generation for Games: A Study on Pixel Art Sprite
Sheets,” in 18th Brazilian Symp. on Computer G. and Digi. Ent., Rio
de Janeiro, RJ, BR, Eds. Oct. 2019, pp. 533-542.

[5] P. Dam, F. Duarte and A. Raposo, ”Terrain Generation Based on Real
World Locations for Military Training and Simulation,” in 18th Brazilian
Symp. on Computer G. and Digi. Ent., Rio de Janeiro, RJ, BR, Eds. Oct.
2019, pp. 524-532.

[6] Y. H. Pereira, R. Ueda, L. B. Galhardi and J. D. Brancher, ”Using
Procedural Content Generation for Storytelling in a Serious Game Called
Orange Care,” in 18th Brazilian Symp. on Computer G. and Digi. Ent.,
Rio de Janeiro, RJ, BR, Eds. Oct. 2019, pp. 543-548.

[7] A. M. Connor, T. J. Greig, and J. Kruse, ”Evaluating the Impact of
Procedurally Generated Content on Game Immersion,” The Computer
Games Journal, vol. 6, pp. 1-17, Dec. 2017, doi:10.1007/s40869-017-
0043-6.

[8] A. V. C. Junior, ”Uma ferramenta de auxı́lio ao designer na Geração
Procedimental de Conteúdo para jogos de corrida,” M.S. thesis, Univ.
Fed. de Pernambuco, Recife, PE, BR, 2017. [Online]. Available:
https://repositorio.ufpe.br/handle/123456789/29387

[9] R. V. D. Ploeg, ”Modeling Race Track Difficulty in Racing Games,”
M.S. thesis, Dept. Inf. Comp. Sci., Univ. Utrecht, Utrecht, NLD, 2015.
[Online]. Available: encurtador.com.br/fpsLX

[10] E. Galin, A. Peytavie, N. Maréchal, and E. Guérin, ”Procedural gener-
ation of roads,” Comp. Graph. Forum, vol. 29, no. 2, pp. 429-438, Jun.
2010, doi: 10.1111/j.1467-8659.2009.01612.x.

[11] Y. K. Liu and B. Žalik, ”An efficient chain code with Huffman
coding,” Pattern Recognition, vol. 38, pp. 553-557, Apr. 2005, doi:
10.1016/j.patcog.2004.08.017.

[12] E. Bribiesca, ”A chain code for representing 3D curves,” Pattern
Recognition, vol. 33, pp. 755-765, May. 2000, doi: 10.1016/S0031-
3203(99)00093-X.

[13] P. Karczmarek, A. Kiersztyn, W. Pedrycz, and M. Dolecki, ”An appli-
cation of chain code-based local descriptor and its extension to face
recognition,” Pattern Recognition, vol. 65, pp. 26-34, Dec. 2016, doi:
10.1016/j.patcog.2016.12.008.

[14] T. Poiker and D.H. Douglas, ”Reflection Essay: Algorithms for
the Reduction of the Number of Points Required to Represent a
Digitized Line or its Caricature,” Class. in Cart.: Reflec. on In-
flue. Art. from Cartographica, vol. 10, pp. 29-36, Mar. 2011, doi:
10.1002/9780470669488.ch3.

[15] IGN Entertainment. ”the history of racing games” ign.com. http://uk-
microsites.ign.com/the-history-of-racing-games/ (accessed Jul. 1, 2021).

[16] K. Graft. “Game Tech Deep Dive: Reworking
the Unreal Engine for racing.” gamedeveloper.com.
https://www.gamedeveloper.com/design/game-tech-deep-dive-
reworking-the-unreal-engine-for-racing (accessed Jul. 1, 2021).

[17] N. Shaker, J. Togelius and M. Nelson, ”Constructive generation methods
for dungeons and levels” in Procedural Content Generation In Games,
1th Ed. Gewerbestr, CH: Springer Int. Pub., 2016, pp. 55–70.

[18] J. Togelius, R. De Nardi and S.M. Lucas, ”Making racing fun through
player modeling and track evolution,” In Proc. of the SAB’06 W. on
Adap. Appr. for Opt. P. Satis. in Comp. and Phys. G., Southern Denmark,
DK, Nov. 2006.

[19] R. Koster, ”Different Fun For Different Folks,” in Theory of Fun for
Game Design, 2th ed. Sebastopol, CA, USA: O’Reilly Media, 2013, pp.
102-111.

[20] E. A. D. Nintendo, ”Super Mario Kart Instruction Booklet.” nin-
tendo.com. https://www.nintendo.co.jp/clvs/manuals/common/pdf/CLV-
PSAAFE.pdf (accessed May. 12 2021).

[21] J. Togelius, R. De Nardi and S. M. Lucas, ”Towards automatic per-
sonalised content creation for racing games,” 2007 IEEE Symposium
on Computational Intelligence and Games, 2007, pp. 252-259, doi:
10.1109/CIG.2007.368106.

[22] H. Freeman, ”On the Encoding of Arbitrary Geometric Configurations,”
in IRE Transactions on Electronic Computers, vol. EC-10, no. 2, pp.
260-268, June 1961, doi: 10.1109/TEC.1961.5219197.

[23] B. Žalik, D. Mongus, N. Lukač and K. R. Žalik, ”Efficient chain code
compression with interpolative coding,” in Information Sciences, vol.
439-440, pp. 39-49, May. 2018, doi:10.1016/j.ins.2018.01.045.

[24] M. Hendrikx, S. Meijer, J. Van Der Velden and A. Iosup, ”Procedural
content generation for games: A survey,” in ACM Transactions on
Multimedia Computing, Communications, and Applications, vol. 9, pp.
1-22, Fev. 2013, doi: 10.1145/2422956.2422957.

[25] K. Dhou and C. Cruzen, ”An Innovative Chain Coding Technique
for Compression Based on the Concept of Biological Reproduc-
tion: An Agent-Based Modeling Approach,” in IEEE Internet of
Things Journal, vol. 6, no. 6, pp. 9308-9315, Dec. 2019, doi:
10.1109/JIOT.2019.2912984.

[26] A. N. Azmi, D. Nasien and F. S. Omar, ”Biometric signature verifica-
tion system based on freeman chain code and k-nearest neighbor,” in
Multimedia Tools and Applications, vol. 76, pp. 1-15, Jul. 2017, doi:
10.1007/s11042-016-3831-2.

[27] P. Karczmarek, A. Kiersztyn, W. Pedrycz and M. Dolecki, ”An appli-
cation of chain code-based local descriptor and its extension to face
recognition,” in Pattern Recognition, vol. 65, pp. 26-34, Dec. 2016, doi:
10.1016/j.patcog.2016.12.008.

[28] U. Ramer, ”An iterative procedure for the polygonal approximation of
plane curves,” in Computer Graphics and Image Processing, vol. 1, pp.
244–256, Jul. 1972, doi:10.1016/s0146–664x(72)80017–0.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

