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Abstract—This research presents a Parallel Evolutionary Algo-
rithm (PEA) that generates enemies with diverse characteristics,
such as the enemy’s health, weapons, and movement. Our PEA
aims to create enemies matching their difficulty degrees with
the difficulty goal given as input parameter. We designed our
algorithm in this way to be future used in an online adaptive
generation system. We experimented with a set of generated
enemies with an Action-Adventure game prototype as a testbed.
The results show that players evaluated our approach positively,
successfully creating enemies considered easy, medium, or hard
to face, as defined by their original fitness’ target value. Besides,
the players found the game fun to play for all difficulty levels
played, and the perceived challenge rose as the PEA fitness was
higher. In terms of performance results, our PEA converged into
the input solution in less than a second for most cases, denoting
its future use in online adaptive applications.

Index Terms—enemy generation, procedural content genera-
tion, video games, parallel evolutionary algorithm

I. INTRODUCTION

Procedural Content Generation (PCG) are algorithmic meth-
ods that can create different types of content for computer
applications. PCG is well-known for its use in video games,
both new and old, like in the dungeons from the 1980’s Rogue
and the weapons from the 2019’s Borderlands 3. Content
generation methods can bring a plethora of advantages for the
game industry, such as reducing development time and costs
up to 40%, and creating products with higher replayability
than their non-procedural counterparts [1, ch. 4.1, p. 152-153].
These advantages, together with content generation challenges,
have brought many researchers to develop algorithms to create
different types of content, such as levels, narratives, and game-
play [2]. Many games reportedly use some PCG: searching
the tag “Procedural Generation” for the “Games” type in the
Steam game store, one of the largest PC-gaming stores, shows
that, as of the writing of this paper, more than 1.700 games1

have this tag from its more than 30,000 games total2.

We acknowledge the financial support of the National Council for Scientific
and Technological Development (CNPq).

1More than 1.700 games on Steam present content generation as game fea-
tures (https://store.steampowered.com/search/?tags=5125&category1=998).

2Steam game store provides more than 30,000 games (https://
www.pcgamer.com/steam-now-has-30000-games/).

One of the significant components in game design is the
enemies the player must face. Such a feature arguably makes
the gameplay’s core for most genres. Research on intelligent
agents for games is relatively abundant. The development of
algorithms to control enemies in Real-Time Strategy (RTS)
games is very common, with the Starcaft game series being the
most common test environment [3]. We also have seen it reach
the mainstream media as the AlphaStar Artificial Intelligence
(AI) beat Dota 2’s professional sports players [4], and also
Starcraft II’s [5]. However, they focus on controlling already
existing creatures in a game via AI techniques.

There are relatively few algorithms reported in the literature
that creates different enemies’ mechanics and visual prop-
erties. The procedural generation of enemies with different
statuses, behaviors, weapons, among other features, has not
been found in recent literature during our review. Some recent
works focus on the placement of enemies through game levels,
but only previously-existing ones [6]–[9]. The work most
similar to ours is the method introduced by Khalifa et al. [10].
They developed an evolutionary generative process for bullet
hell level generation. Their method consists of projectiles with
different movement patterns and speeds, as well as bosses.

Our research aims to respond to the following research
question: Can we procedurally generate interesting enemies
for digital games, that are able to meet a specific difficulty
threshold and present some diversity?

We hypothesize that an evolutionary algorithm may be
able to do so, given the positive results these algorithms
have in previews works of PCG, as presented in Section II.
Therefore, we present a system able to answer this question in
Section III. The approach we present in this paper targets the
generation of enemies by evolving their attributes (e.g., health)
and behaviors (e.g., movement type). To do so, we evolve
enemies through a Parallel Evolutionary Algorithm (PEA) to
provide a set of enemies with different characteristics. We opt
for such an approach because we designed it to be, in the
future, part of an online adaptive generation system. Therefore,
we experimented with our approach for both performance and
players’ gameplay feedback. Our results show that the enemies
we generated matched the players’ expectations. Besides, our
approach is faster enough to be used in online generation
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systems.
The main contributions of this paper are stated as follows.

We propose a method to help fill the gap of enemy generation,
shown in Section II as an area of research with, as far as our
review could find, few recent contributions, and most lack the
ability to create diverse enemies that fit a specified difficulty.
This method introduces a parallel evolutionary algorithm to
generate diverse and unique enemies in terms of attributes
and behavior. Since we designed our approach to be part of
an adaptive system, our fitness function goal is to minimize
the distance of difficulty of the enemies with the aimed input
difficulty. Therefore, our solution can also be used for human
designers to increase their creativity and productivity during
the enemy creation. So, we believe the main novelties of our
work are the representation of enemies to be used in search-
based algorithms to adapt them to different difficulties and the
application of a parallel evolutionary algorithm as a solution
for enemy procedural generation problems.

This paper is structured as follows. Section II present the
recent literature related to this research. In Section III, we
answer the research question we stated in this section by
detailing the generative process of our approach, as well as
the game prototype developed as a testbed. Section IV presents
the work’s results in terms of performance and quality. Finally,
Section V presents the conclusions and future works.

II. RELATED WORK

Since the procedural generation of enemies is a pretty
recent research area, few works in literature attempted to
tackle such a problem. Therefore, in this section, we describe
works that somewhat generated enemies during some stage of
their generative processes. We also describe some games that
somewhat generated NPCs. Table I summarizes our findings
and how our work compares to what we found in scientific
papers and some commercial games.

Baldwin et al. [6] introduced the Evolutionary Dungeon
Designer (EDD), a tool to support game designers in their
level creation process. EDD focuses on the generation of 2D
dungeon levels, and its evolution is based on game design
patterns and performed by a Feasible-Infeasible Two Popula-
tion Genetic Algorithm (FI2Pop GA). Besides, EDD provides
control of frequency, shape, and type over the generated design
patterns and the placement of enemies, treasures, doors, and
walls. They control enemy placement by setting the number of
enemies of a level and the fitness function. However, this ver-
sion of the tool dealt only with micro-patterns (i.e., grid cells).
Later, Baldwin et al. [7] extended the EDD by introducing the
evolution of meso-patterns, which are equivalent to rooms:
guard chamber, a room with only enemies; ambush, a room
with enemies and an entrance; treasure chamber, a room with
only a treasure; and guarded treasure, a room with enemies
and a treasure. This extension allowed them to perform a
more precise enemy placement. Their results were positive
considering the diversity of solutions and convergence, but
there was no experimental setup with players within a game.

Like the previous works, Sharif et al. [8] shows different
strategies based on design patterns for sprite placement in
levels. To perform the positioning, they take a sprite from
a pool of existing sprites. Some of these sprites are harmful
sprites, such as enemies or traps. Nevertheless, their work only
performs placement of existing sprites, and they do not create
new ones in their generative process.

Liapis [9] developed a two-step automatic evolutionary
process for dungeon levels, where both steps evolve the
dungeon sketches and levels through FI2Pop GA. The first
step generates dungeon sketches to place strategically eight
different types of segments (wall, empty, simple, exit, sparse
reward, high reward, sparse challenge, and high challenge).
These challenges are treated as enemies. In the second step,
each segment of a dungeon level evolves independently to
create a cavern environment, following connections between
the segments and their types. In this stage, the method places
enemies in segments and, if the segment has rewards, the
enemies are placed strategically around them. The placement
strategy is interesting because it forces players to fight the
enemies to get the reward.

Khalifa et al. [10] introduced a description language, called
Talakat, to define Bullet Hell games’ levels. Bullet Hell games
consist primarily of bullets (which we consider enemies) with
different damage values, speed, and movement patterns. A
Talakat script constitutes a single bullet hell level divided into
a spawner section and a boss section. The spawner section
defines spawn points to spawn bullets or create new spawners.
Each spawner has a set of parameters to determine the bullet
it spawns, the speed, angle, and size the bullet receives,
the angle and speed at which the spawner rotates, among
other features. The boss section defines the boss’s health,
position, and behavior, i.e., they generate enemies beyond
placing them in levels. The sections consist of numbers and
behaviors determining some controllable bullets’ properties.
Talakat scripts evolve through Constrained MAP-Elites (CME)
– i.e., MAP-Elites with FI2Pop – to generate different levels.
They simulate AI agents playing the levels to validate and
define the levels’ fitness. The results showed that the approach
is capable of generating challenging levels with a wide variety.

Nevertheless, enemies are more than the place they are
and their behavior. Enemies have stats like health, damage,
weapons, combat styles, among others. We did not found any
paper that proposes the generation of enemies with these kinds
of parameters. However, the game industry has developed
games that perform such enemy generation.

The procedural generation of Non-Playable Characters
(NPCs) with many properties is present in Spore [11] and
No Man’s Sky [12] games. Both present a similar algorithm:
a creature is created by randomly assigning different body
parts. Although not having any input to create them based
on the player’s performance, they have some constraints on
not putting together body parts that cannot match another
already selected one. However, this constraint is mostly as
not to break the procedural animations of the NPCs. The game
series Creatures [13], although older, extends this concept, not
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TABLE I
ENEMY GENERATION LITERATURE SUMMARIZING AND COMPARISON WITH THIS WORK. ‘P’ DEFINES THE PARTIALLY GENERATED ENEMY FEATURES.

Work Placement Amount Status Visuals Adaptive

Baldwin et al. [6] X X - - -
Baldwin et al. [7] X X - - -
Sharif et al. [8] X X - - -
Liapis [9] X - - - -
Khalifa et al. [10] X X P P -

Spore [11] - - P P -
No Man’s Sky [12] - - P P -
Creatures [13] - - X P X
Diablo 3 [14] - - P - -
Middle Earth: Shadow of Mordor [15] - - P - -
Left 4 Dead 2 [16] X X - - X
State of Decay 2 [17] X X - - X
This work X X X P -

only physically evolving NPCs but also making them learn
about the environment and the player’s actions via a neural
network that receives simulated senses using semi-symbolic
approximation techniques as input [18].

Besides the generation of NPCs, Diablo 3 [14] and Shadow
of Mordor [15] change some predefined characteristics in their
enemies to make the challenge more diverse and unique. The
enemies in Left 4 Dead 2 [16] and State of Decay 2 [17] are
somewhat also adapted to the player. However, this adaptation
is not made by changing their characteristics or features, like
Diablo 3 [14] and Shadow of Mordor [15]. Instead, they decide
where to place them and if new enemies should be spawned
(if the player is doing well) or if the game should spawn fewer
enemies (if the player is not performing very well) 3 4.

Besides the enemy generation in terms of placement,
amount, status, and visuals – as highlighted in Table I –,
our approach represents enemies with numerical and nominal
values in a similar way to the values in Talakat scripts [10].

III. METHODOLOGY

In this section, we answer the research question we stated in
Section I by describing our enemy generation algorithm. First,
we describe our enemy representation, then report the genera-
tive process that our PEA carries on. Finally, we describe the
game prototype of the testbed for our experiments.

A. Enemy Representation

We extracted the most common variables from enemies in
different games to build our enemy’s genotype, focusing on
the Action-Adventure genre since it is our testbed genre. After
careful consideration, we came up with the variables: health,
damage, attack speed, movement speed, active time, rest time,
movement type, weapon type, and projectile speed. Table II
details each variable: it contains the variable type, possible

3The AI Systems of Left 4 Dead (https://steamcdn-a.akamaihd.net/apps/
valve/2009/ai_systems_of_l4d_mike_booth.pdf).

4Procedurally generating enemies, places, and loot in State of Decay
2 (https://www.gamedeveloper.com/design/procedurally-generating-enemies-
places-and-loot-in-i-state-of-decay-2-i-).

range, and a brief description of their impact on gameplay.
The range for each variable was set empirically after testing
our prototype with different players and selecting the ranges
that enabled the enemies to range from easy (but not boring)
to hard (but not humanly impossible) configurations.

We defined nominal variables for movements and weapons
(Table II) because they represent more complex behaviors and
objects, respectively. Table III presents the possible movement
behaviors the enemies may have. Table IV presents the pos-
sible weapons and their behaviors. Both tables present weight
that are used in the difficulty degree calculation. We defined
these weights empirically through a test with a small number
of players. Although our PEA is relatively simple in terms
of genotypical variety, for a commercial game, there can be
dozens or even hundreds of possible weapons and behaviors
and other enemy-controlling parameters that can be added to
the PEA with low effort. In this paper, we considered only the
movements and weapons present in our game prototype.

B. Enemy Generation Process

The creation of the initial population is carried out by
the random filling of each parameter of the enemies (con-
sidering the allowed ranges of integers, floats, and the sets
of movements and weapons for the nominal values). With
the reproduction operators we describe in the following para-
graphs, the resulting population then generates an entirely new
population that replaces the first one. This process repeats
until the algorithm reaches g generations. When the algorithm
finishes, we return the N best individuals’ data, where N is
the number of enemies to be returned (it is also an input of
our algorithm). Therefore, we use the ability of the PEA to
evolve whole populations of solutions to have a collection of
adequate individuals in a single execution.

The crossover and mutation operators are responsible for
the reproduction of enemies. We apply the average crossover
[19] operator with a 99% chance of occurring. The operator
consists of calculating the average value between two parents
for each numerical parameter, e.g., between the attack speed
of parents. For the nominal parameters, the crossover operator
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TABLE II
LIST OF PARAMETERS OF THE ENEMY’S GENOTYPE.

Parameter Type Range Details

Health Integer 1-5 Total health.
Damage Integer 1-4 Damage done.
Attack Speed Float 0.75-4.0 Projectile’s shot frequency (1/Attack Speed).
Movement Speed Float 0.8-3.2 Multiplies movement direction’s vector.
Active Time Float 1.5-10.0 Time (in sec.) that the enemy moves before resting.
Rest Time Float 0.3-1.5 Time (in sec.) the enemy rests before moving.
Projectile Speed Float 1.0-4.0 Multiplied by the projectile’s trajectory vector.
Movement Type Nominal - Calculates direction vector of movement at each frame.
Weapon Type Nominal - Enemy’s weapon. Each may have different properties.

TABLE III
LIST OF MOVEMENT TYPES THAT ENEMIES CAN HAVE. ALL THE MOVEMENTS ARE 2-DIMENSIONAL MOVEMENTS. DV ABBREVIATES DIRECTION

VECTOR AND RDV ABBREVIATES RANDOM DIRECTION VECTOR.

Movement Weight Details

None 0 Stay still.
Random 1.04 Selects a RDV to move towards in the actual active cycle.
Random1D 1 Selects an axis from a RDV to move towards in the current cycle.
Flee 1.1 DV opposes the player’s direction.
Flee1D 1.08 Selects an axis from the player’s location opposing vector in the current cycle.
Follow 1.15 DV points towards the player’s direction.
Follow1D 1.12 Selects an axis of the vector towards the player’s location in the current cycle.

TABLE IV
LIST OF WEAPONS AVAILABLE FOR ENEMIES. ‘*’ HIGHLIGHTS THE WEIGHTS OF THE WEAPONS THAT SHOT PROJECTILES, THESE WEIGHTS ARE

MULTIPLIED BY THE PROJECTILE SPEED AND ATTACK SPEED.

Weapon Weight Details

None 1 Damage on contact.
Sword 1.5 Holds a sword in front of itself. Increases reach.
Shield 1.6 Protects the enemy from frontal attacks.
Bullet 0.3* Shoots a bullet towards the player. Damages on contact.
Bomb 0.3* Shoots a bomb towards the player. Explodes in 2 seconds.

selects at random, with equal probability, the parents’ corre-
sponding value. For instance, if one parent has the Random
movement and the other the Flee movement, the child has
a 50% chance to inherit each. When the crossover does not
happen, the first parent is sent to the intermediate population.

Our approach presents a multi-gene mutation [20], which
means that our mutation operator can change all the enemy’s
genes (i.e., the enemy’s parameters). Each gene has, individ-
ually, a 10% chance of mutating. For each gene, we calculate
the chance of mutating the parameter. If the calculated chance
is to mutate the parameter, a new value is randomly chosen,
respecting the allowed ranges. The mutation is very important
for the numerical values, as it helps avoid a local convergence
to a middle-ground value. Regarding the nominal parameters,
the value is randomly selected from the list of nominal values.

The selection of parents is made through a 2-individual
tournament, in which the winner is the fittest enemy. Besides,
all the random operations follow a uniform distribution.

Since our approach is designed for future application in
an online adaptive generation system, we opted for a simple
fitness function for better performance instead of a simulation-
based one. Therefore, our fitness function minimizes the
distance of difficulty of the enemies with the aimed input

difficulty. The difficulty function sums all the parameters,
weighting the nominal ones according to the empirical found
values. This function is sums of the equations 1, 2 and 3 –
that are weapon factor, projectile factor, and movement factor,
respectively – and others parameters presented in Equation 4.

fw = damage× weapon, (1)

where, damage is the damage the enemy does to the player,
and weapon is the weight of the weapon it currently holds.

fp = projectile× (attack_speed+ projectile_speed), (2)

where, projectile is 1 if the enemy can throw any kind of
projectile and 0 otherwise, projectile_speed is the projectile’s
speed shot by the enemy’s weapon, and attack_speed is the
rate at which the enemy throws the said projectile.

fm = movement_speed×movement, (3)

where, movement_speed is the movement speed, and
movement is the weight of the enemy’s movement behavior.

f = health+ active+ 1/rest+ fw + fp + fm, (4)
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where, health is the enemy’s health, active is the time the
enemy moves without stop before resting, and rest is the time
the enemy rests between cycles of active movement. Besides,
the rest time has value inversely proportional to the difficulty,
as the lower it is, the more difficult the enemy tends to be. We
highlight that although we use a simple fitness function, we
decided to use an EA. Thus, at the end of a single evolution,
we would have a whole population of good solutions with
some degree of variety. Also, the representation of enemies,
which is one of our main novelties, may be expanded to
more complex enemies that may require harder-to-solve fitness
functions without many changes in our methodology.

Regarding parallelism, the evolutionary process is car-
ried out by the Unity3D’s Data-Oriented Technology Stack
(DOTS)5. The DOTS present a data-oriented design that uses
the Entity Component System (ECS), which optimizes object
referencing and boosts processing for large amounts of data,
and the Burst Compiler, which maximizes registers’ use and
other features. Both ECS and Burst Compiler are optimized
for parallel job operations in Unity3D6. Therefore, this stack
is suitable for evolving in parallel a large population of
individuals in a reduced time frame. For each generation of
our population, we handle the evolutionary operators for each
new individual as different parallel jobs.

Furthermore, DOTS also allowed us to have huge popu-
lations for our PEA. Thus, we have greater diversity in our
solution candidates by having such a massive population,
which, except when computational time is hindered, usually
leads to faster convergence [21]. Therefore, besides the speed
brought by the parallelism, DOTS enabled us to converge to
good solutions quickly, taking us a step closer to an online
enemy creation algorithm.

So far, we have described only the generation of enemies’
statuses and visuals, which are defined by the enemies’
weapons and difficulties. Next section, we present the game
prototype and detail the process of enemy placement.

C. Game Prototype

We adapted the game prototype developed by Pereira et al.
[22] according to the needs of our research. The prototype is
an Action-Adventure game that mimics the main mechanics
from The Binding of Isaac’s combat [23] and the dungeon
exploration of The Legend of Zelda [24]. Although our focus
is to experiment with the combat mechanics, we also added
dungeon exploration to enhance the players’ immersion and re-
tain their attention through different playthroughs. This feature
is important as we want to collect data both from successful
attempts and ones that the player died, as the number of failed
attempts may reflect the difficulty. Furthermore, the game
contains rewards and other kinds of items, which the player
may collect throughout the levels.

5Data-Oriented Technology Stack (DOTS): https://unity.com/dots.
6Get Started with the Unity* Entity Component System (ECS), C# Job

System, and Burst Compiler: https://software.intel.com/en-us/articles/get-
started-with-the-unity-entity-component-system-ecs-c-sharp-job-system-
and-burst-compiler.

Fig. 1. Game prototype screenshot.

Fig. 2. Enemies’ spawn points represented as yellow circles.

The protagonist of the game is a yellow robot. The player
must control it to explore the levels’ rooms, collect items (e.g.,
keys and treasures), open doors and find the levels’ goals
(a green triangle). Besides overcoming locked doors puzzle
challenges, the player must defeat enemies (gray robots) by
shooting green projectiles. Enemies fill all rooms, but the
starting and final rooms, and the player must defeat them to
proceed to other rooms. After the player wins or loses a level,
a score screen is shown to give feedback about: the victory
or failure, the highest combo reached, the amount of treasure
collected, and the number of visited rooms. The players can
only progress in the game if they win the levels. Fig. 1 presents
a screenshot from our game prototype. As we observe in the
figure, all doors are locked, the health points are full (the hearts
at the top-right), and, in the mini-map, the neighboring rooms
of each room and highlights the visited rooms (at the bottom-
right). Below we list the main game features that are or will
be present in our prototype.

When the player enters a room, the game spawns enemies
from the pool of enemies generated by the PEA. We selected
the enemies randomly to spawn in the rooms to provide a
variety of enemies. The enemies are added in rooms until
the sum of all their fitness is greater than three times for the
difficulty level the player chose. This control enables some
rooms to have 3 to 4 enemies, as their fitness values might be
slightly below the target fitness. Then, each enemy would be
assigned to a different spawn point in the room.

Regarding the enemy placement, we decided to divide the
room into a grid with 25 cells (five rows and five columns)
to define the spawn points. We then removed the cells close
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to doors, giving players enough space to move and avoid
hits when entering a new room. The resulting possible spawn
points are presented as the yellow circles in Fig. 2.

IV. RESULTS

This section reports the computational results of PEA’s
performance and diversity achieved by our method, and the
players’ feedback and gameplay performance.

A. PEA’s Performance

Our first set of experiments test the convergence time and
quality of solutions given by the PEA. We executed the
PEA for nine different sets of input parameters, 200 times
each, and measured the generation time. All tests were run
in a relatively common PC setup: AMD FX-8320 Eight-
Core 3.50GHz Processor, 16 GB DDR3 RAM, 223GB SSD
memory, NVIDIA GeForce GTX 1060 3GB graphics card.
Table V shows the results of this experiment, considering
three different fitness objectives: Easy, with desired fitness 14;
Medium, with fitness 17.5; and Hard, with fitness 22.5.

The table contains the average execution time, average and
standard deviation for the whole population’s fitness, and the
average and standard deviation of the fitness considering only
the 20 best individuals (the N value chosen for our game
prototype, as mentioned previously) across the 200 executions
for each input. We can observe that the algorithm is fast,
even with large populations. Taking less than 0.2s to evolve
a population of 10,000 individuals over 10 generations, and
1.7s for 100 generations. Therefore, we may be able to later
apply our approach for online enemy generation.

The algorithm can evolve the 20 best individuals very close
to the difficulty goal input. The worst-case scenario average is
0.28 units away from the target, with a standard deviation
of 0.17. This difference gets a little higher for the whole
population: for the hard difficulty, the average was more
than 2.5 units below the desired fitness and had a standard
deviation of 2.277. Therefore, we can not guarantee that the
whole population harbors good solutions for this difficulty.
Furthermore, this result is somewhat expected since we evolve
10,000 individuals. However, we can ensure that at least the
20 best individuals, which already guarantees each PEA’s
execution, can conceive a good variety of feasible individuals.
This result is very useful to entertain players and increase the
uniqueness of each playthrough.

Trying to settle for good results in the lowest time possible,
we decided to create our population of enemies using 10,000
individuals and evolve the population for 30 generations
for each difficulty setting for the experiments with players.
Table V highlights in bold such test cases.

B. PEA’s Diversity

As we select a group of the best solutions from a single
population, concerns about the diversity of said solutions can
arise. So, we evaluated the diversity by plotting a parallel
coordinates visualization of each numeric parameter from the
ten best solutions of a single execution for each difficulty

TABLE V
DATA COLLECTED FROM AVERAGING 200 EXECUTIONS OF THE PEA WITH

DIFFERENT INPUT PARAMETERS. THE INPUT IS ABBREVIATED WITH
D-P-G, D IS THE DIFFICULTY, P IS THE POPULATION SIZE, AND G IS THE

NUMBER OF GENERATIONS. REGARDING DIFFICULTY, E, M AND H
REPRESENTS EASY = 14, MEDIUM = 17.5, AND HARD = 22.5

DIFFICULTIES, RESPECTIVELY. FINALLY, AVG Best AND STD Best ARE
COLLECTED FROM THE AVERAGE FITNESS OF THE 20 BEST INDIVIDUALS.

Input Time AVG Best AVG STD Best STD

M-102-10 0.168s 17.4 16.59 0.170 1.870
M-103-10 0.174s 17.60 16.57 0.017 1.872
M-104-10 0.175s 17.50 16.54 0.002 1.883
M-103-30 0.508s 17.50 16.79 0.011 1.914
M-104-30 0.512s 17.50 16.81 0.001 1.922
M-105-30 0.660s 17.50 16.81 0.000 1.922
M-104-102 1.706s 17.50 16.81 0.001 1.929
E-104-30 0.578s 14.00 14.01 0.001 1.619
H-104-30 0.512s 22.50 19.88 0.011 2.277

setting. We normalized each value to the interval 0 to 1,
using the minimum and maximum values presented for said
parameter between the ten evaluated instances. We selected
the 10 best instead of the 20 best used in the experiments
with players to make the visualization easier to read.

The results presented in Fig. 3 show that for most pa-
rameters, there was a significant diversity, especially when
increasing the difficulty. However, the health and damage
parameters did not present much variety, especially on the easy
setting because they have a larger impact on the fitness: i.e.,
when an enemy with two health points is one whole fitness
unit (and, therefore, one difficulty unit) above another with
one health point; but the other parameters are floating-point
values and can have more subtle differences.

We believe that this diversity inside a single-population EA
arose from the fact that we were able to use a very large
population because of our parallel approach. Therefore, we
had much more solutions spread in local optima across the
search-space, even after a considerable amount of generations.

C. Experiment with Players

Our experiment with players allowed them to select be-
tween three difficulty settings: easy, with difficulty degree of
14; medium, with difficulty degree of 17.5; and hard, with
difficulty degree of 22.5. We calculated these values with our
difficulty function and determined empirically in previous tests
with a smaller number of testers. For each difficulty setting,
we executed the PEA with the presented parameters. Then,
we saved the 20 best non-equal individuals (a total of 60
different enemies), aiming to provide enemy variety for the
levels. In these executions, the largest observed difference
from the target fitness for any given difficulty was 0.0845.

We uploaded our game prototype to a public server and
asked on social networks for anyone interested in playing it.
The game presented instructions about the experiment and
gameplay. We ensured to follow protocols such as stating
that the users were to remain calm, as they were not being
evaluated, only the game itself was. We also stated we would
be collecting gameplay data and asking them a questionnaire
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TABLE VI
EXPERIENCE QUESTIONNAIRE ON A 5-POINT LIKERT SCALE. Q1 THROUGH Q3 ARE ANSWERED ONLY ONCE PER PLAYER.

Question

Q1 - How would you best describe your overall experience with games (knowledge, playing time, skills, etc.)?
Q2 - How would you best describe your experience (knowledge, playtime, skill, etc.) with Action-Adventure games
(e.g.: The Legend of Zelda, The Binding of Isaac, Darksiders, Uncharted, etc.)?
Q3 - What difficulty level do you usually choose to play your games in?
Q4 - How much do you agree with the statement: “This level was fun to play”?
Q5 - How much do you agree with the statement: “The combat against the enemies was hard”?
Q6 - How much do you agree with the statement: “The combat against the enemies’ difficulty was adequate to the
selected difficulty level”?
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(a) Diversity of the top 10 easy enemies.
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(b) Diversity of the top 10 medium enemies.

Parameters

N
or

m
al

iz
ed

 V
al

ue
 (0

 to
 1

)

0,00

0,25

0,50

0,75

1,00

Health Damage Mov. 
Speed

Active 
Time

Rest Time Atk Speed Projectile 
Speed

Enemy 1

Enemy 2

Enemy 3

Enemy 4

Enemy 5

Enemy 6

Enemy 7

Enemy 8

Enemy 9

Enemy 10

Normalized parameters for the 10 best hard enemies

(c) Diversity of the top 10 hard enemies.

Fig. 3. Parallel coordinates visualization of the numeric attributes for the
top 10 best enemies for each difficulty setting, used in the experiments with
players. The charts present normalized parameters.

at the end to answer if they felt like it, but we would not collect
any personal data. All our respondents remained anonymous,
as it was an opinion survey. Table VI presents the questionnaire
we applied in our experiment. We also allowed them to quit
at any time during the experiment section.

After reading this introduction, the player selects the diffi-
culty level they would like to play (easy, medium, or hard),
and the game starts. If they died, they could restart or quit
the game, which would take them to our questionnaire screen.
They could retry any number of times. After answering our
questionnaire, the user could choose to leave the game or go
back to the difficulty select screen and start over.

In terms of data collection, no personal data was collected.
We identified the users only by their session starting time and
a random id – it was not possible to check if any user came
back in another session. We also collected implicit data such
as if the player succeeded or failed to complete the level.

D. Players’ Feedback

A total of 16 players answered our questionnaires, but not
all answered for all difficulties (Fig. 6). As we observe in
Table VI, we divide the questions into two groups. The first is
demographic data, which were answered only once per player,
with the first three questions about the players’ experience
with games and preferred difficulty. The second group is their
actual answers about our game prototype and enemies created
by the PEA. The first three questions are independent of the
chosen difficulty setting and are shown in Fig. 4, on the
left column (Fig. 4a, 4c, 4e). We observe that most players
consider themselves very experienced with video-games, and
reasonably experienced with Action-Adventure games. They
also prefer the medium difficulty setting. The hard difficulty
comes in second. Only a small sample was used to play
in the easy, very easy, or very hard settings. Therefore, we
expected most of them to play in the medium difficulty, which
is confirmed in the next section.

In Fig. 4’s right column (Fig. 4b, 4d, 4f) we observe that
players had the most fun in the easy and hard difficulties.
We believe this occurred because players who do not enjoy
very challenging games are happy with the easy level, while
those who prefer challenges were entertained with the hard
setting. It is important to note that the number of answers
for each difficulty is different, as players could play at any
difficulty, any number of times. For the medium setting, the
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Question 1 - How would you best describe your overall experience with games 
(knowledge, playing time, skills, etc.)?

(a) Answers for Q1.
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Question 4 - How much do you agree with the statement: “This level was fun to play”?

(b) Answers for Q4, for the easy difficulty.
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Question 2 - How would you best describe your experience (knowledge, playtime, skill, 
etc.) with Action-Adventure games (e.g.: The Legend of Zelda,The Binding of Isaac, 

Darksiders, Uncharted, etc.)?
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Question 4 - How much do you agree with the statement: “This level was fun to play”?

(d) Answers for Q4, for the medium difficulty.
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Question 3 - What difficulty level do you usually choose to play your games in?

(e) Answers for Q3.
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Question 4 - How much do you agree with the statement: “This level was fun to play”?

(f) Answers for Q4, for the hard difficulty.

Fig. 4. Results from the demographic questions (left column) and how fun the game was for each difficulty (right column).

answers were mostly neutral, slightly positive. In this case, we
suppose that the players did not evoke a strong feeling of joy
nor challenge for most players, or some of the casual players
tried these levels and faced more difficulty than expected (as
we can confirm with the great loss rate in the next section).
Even so, we can conclude that the overall answer was that the
levels were indeed fun to play, disregarding difficulty.

Fig. 5 shows the players perception of difficulty for each
setting on the left column (Fig. 5a, 5c, 5e). The easy difficulty
was considered not challenging for most players (as expected),
while the medium one had mixed reviews, tipping a little
more for the opinion that it was difficult. Moreover, the hard
difficulty was unanimously considered difficult. Those answers
further confirm the ability of our PEA to generate a variety of
enemies that also respect the input difficulty setting.

Lastly, even though the medium difficulty tipped a little to
the harder side in the previous answers, Fig. 5 shows that
most users agreed the difficulty was adequate to what they

expected on the right column (Fig. 5b, 5d, 5f). The same was
true for the remaining difficulties. Again, the medium one was
a little more controversial, as it was probably a little harder
than expected.

E. Players’ Performance

We collected the number of failed and succeeded attempts
for each difficulty degree. Fig. 7 shows the results regarding
the players’ performance. We observe that the medium level
had the most attempts, reiterating the preference of users to
play in such difficulty, as shown in Fig. 4. When comparing
success rates, the easy difficulty was obviously the one with
the greatest one, followed by the medium and the hard one.
These results highlight that our algorithm can successfully
create enemies with different difficulty settings, and these
settings were progressively harder, as intended.

These data also show that our target fitness for each dif-
ficulty setting could be a bit lower to allow more players to
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Question 5 - How much do you agree with the statement: “The combat against the 
enemies was hard”?

(a) Answers for Q5, for the easy difficulty.
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Question 6 - How much do you agree with the statement: “The combat against the 
enemies’ difficulty was adequate to the selected difficulty level”?

(b) Answers for Q6, for the easy difficulty.
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Question 5 - How much do you agree with the statement: “The combat against the 
enemies was hard”?

(c) Answers for Q5, for the medium difficulty.
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Question 6 - How much do you agree with the statement: “The combat against the 
enemies’ difficulty was adequate to the selected difficulty level”?

(d) Answers for Q6, for the medium difficulty.
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Question 5 - How much do you agree with the statement: “The combat against the 
enemies was hard”?

(e) Answers for Q5, for the hard difficulty.
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Question 6 - How much do you agree with the statement: “The combat against the 
enemies’ difficulty was adequate to the selected difficulty level”?

(f) Answers for Q6, for the hard difficulty.

Fig. 5. Results from the questions about the combat difficulty (left column) and difficulty adequacy (right column) for each setting.
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Fig. 6. Total number of players by difficulty setting.

complete the game. It is usually intended for easier difficulties
to allow victory in the majority of attempts. While our current
medium fitness could be substituted for the easy one, allowing
a little above half of the players to win. Then, the current
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Fig. 7. Total attempts players gave to each difficulty, how many times they
succeeded and how many times they failed.

medium difficulty could be used as the hard setting, as the
majority of players failed, and the current hard difficulty as
very hard, as only one player did win.
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V. CONCLUSION

We presented a PEA able to evolve various enemies for
an Action-Adventure game that closely matched the input
difficulty degree. The convergence was fast enough that it
could even fit loading times for many games, allowing us to
create various enemies with similar difficulties in less than a
second for most input configurations. We tested the quality of
our solutions against real players through a game prototype
where they selected their desired difficulty and faced many
rooms filled with random sets of enemies created by our PEA
using that difficulty as input.

Both explicit data – provided by the users answering a
questionnaire – and implicit data – collected during their
gameplay – showed that, overall, the difficulty of the generated
enemies matched what was expected by the players and
provided a fun and challenging gameplay. The major drawback
observed was that the fitness for each difficulty could be better
adjusted to other settings, as the perceived difficulty was a little
above than we expected.

These very positive results tell us that it may be possible to
create these enemies online. Besides, coupled with a Machine
Learning algorithm or a similar approach, it may be feasible
even adapting the enemies for players, making the game more
difficult as the user gets a better game. Although our current
setting may be a little too simple for demanding a PEA to
search for the best enemies, as it is a preliminary experiment,
it is done in a way that can be easily expanded. Dozens of
new behaviors and weapons can be added with ease. These are
numbers common in commercial games and would increase
the complexity enough that the PEA would prove to be a viable
alternative to other search-based algorithms.

Since the chosen fitness is the goal difficulty, our approach
could also be used by human designers. We emphasize that
although our algorithm demands an input fitness’ weights for
the nominal enemies’ attributes, it still may be a much better
alternative than creating enemies from scratch. Firstly, our
algorithm can save much time for designers since the PEA
creates new, feasible, and balanced enemies at every execution
for the same parameters. Secondly, many of these weights
have some leeway for wild-guessing, as the algorithm will still
converge to the desired fitness, this being the most important
value to fine-tune.

Our next steps are to add even more variety to the gener-
ated enemies to create more interesting gameplay, especially
through the use of Quality-Diversity algorithms, which focus
on guaranteeing the diversity while creating good solutions.
We also want to test the limits of our PEA, and make the
algorithm generate enemies in an online fashion as part of the
game itself. After that, we plan to develop a tool to assist
designers in the enemy creation process, releasing it as an
asset for the Unity Engine.
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