
Improving pathfinding cohesion in RTS games
Enrique Wicks Rivas

Dep. de Ciência da Computação
Universidade Federal da Bahia

Salvador, Brasil
enriquewr@hotmail.com

Rodrigo Souza
Dep. de Ciência da Computação
Universidade Federal da Bahia

Salvador, Brasil
rodrigorgs@ufba.br

Abstract—Pathfinding algorithms are essential to studies on
graph navigation. In many video games such navigation is
fundamental to control the behavior of game entities, and
this is especially evident in games following the classic Real-
Time Strategy (RTS) formula. As the genre matured, their
pathfinding algorithms became more sophisticated, but modern
implementations can still lead to unintended entity behaviors
that cause frustration, such as a group of entities breaking
military formation when given the same order to move to a
point. This article details the initial results and methodology of
an adjustment to the standard algorithm that seeks to improve
entity cohesion during movement without significantly increasing
the overall path length taken by the group or slowing the speed of
their advance. To measure its effectiveness we have constructed
three scenarios that stress the flaw in the standard algorithm
and have run the new algorithm with different parameters. As
a result, we found cases where the new algorithm provided
significantly greater cohesion than the standard method, with
minimal increase in path length.

Index Terms—pathfinder, RTS, algorithm, movement

I. INTRODUCTION

Real-Time Strategy games in their classic form are military
simulators where players both build the army infrastructure
that train soldiers and collect resources as well as control the
army’s movement and tactics [1]. When the game’s pathfinder
is well implemented, the army follows the player’s command
with precision and efficiency in a responsive manner that
is critical to competitive RTSs, and while that can appear
as a solved problem when looking at how polished modern
implementations are, there are still edge cases that disrupt
player agency. One of such cases is when commanding a
group of entities around a large obstacle and the group splits
because each entity calculated a different optimal path. While
this behavior does result in the shortest time for the whole
group to reach the destination, it also means that the army
moves in uncoordinated fashion, making it a weaker force in
numbers if an engagement with the enemy army occurs.

Our approach to fixing this behavior was to compute paths
for each individual entity in a way that each entity’s path
influence the paths of the other entities. The algorithm was
tested on three different scenarios, with different values for
its parameters. The results were compared with those of the
standard algorithm. In doing so we have noticed a significant
increase on the cohesion of the entity group without signifi-
cantly raising the average path distance.

II. BACKGROUND

We use the term pathfinder to encompass the algorithms by
which RTS games calculate the path to be navigated by the
entities on the map. While many implementations exist, each
with their own drawbacks and benefits, the usual solution is
to use the A* search algorithm [2] to find the shortest path
from the entity’s position to the destination the player wants
to reach. While using A* based pathfinders the developers can
either calculate a path for each entity or treat the whole group
as a single entity.

If the developer chooses to calculate each entity’s A* path
individually they will reach the shortest sum of paths to a given
group, but the cohesion during movement isn’t guaranteed
as entities can split formation to circumvent large obstacles;
conversely, if the developers choose to treat the group as a
single entity in the pathfinder they will achieve great cohesion,
but the sum of the paths increases as the whole group has to
move around obstacles even if they would have little effect on
group cohesion. Our research aims to carve a bridge between
the benefits of the two methods, using individual calculations
to find shorter paths, but finding a way to keep communication
between the members of the group to increase cohesion.

The inspiration for our solution is the Ant Colony algo-
rithm [3]. This algorithm employs the use of markers on the
nodes that makes them more favorable than nodes with less
markers, simulating nature’s use of pheromones to guide ant
navigation.

III. SOLUTION

Our idea is to use the marker system to make nodes
that multiple entities have chosen as part of their path more
favorable to the the other entities, even if they wouldn’t be their
optimal choice. That way each entity can search for its best
possible path but still take into consideration the path chosen
by its fellow group members. If the difference in distance isn’t
too great, the entity should default to keep the group united.

The solution we developed is very similar to the original A*
algorithm [4] [5], fused with the path marking found in the
Ant Colony algorithm. After using our altered A* algorithm
(Algorithm 1) to find an entity’s path we register a marker
on each node of the found path. These markers act as a
multiplier on the node distance used in the ranking of the
open list, making each node that is used in an entity’s path
more desirable to the next entity. The base of the algorithm

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Workshop G2: Undergraduates

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 1216



is shown on Algorithm 2; it serves to iterate over our entity
group calling the altered A* algorithm for each one, delivering
the found path to the entity and updating the markers on our
nodes.

Input : The entity’s node and the target position
Output: The path for the entity

Create an openList and a closedList;
Insert the entity’s node into openList with its
totalValue set to 0;

while NotEmpty(openList) do
currentNode ← node with lowest totalValue from
openList;

if currentNode == target position then
Return currentNode and its parents recursively

as the output path;
end

neighbours ←
GetNeighbours(currentNode);

foreach auxNode in neighbours do
realDistance ←
GetRealValue(currentNode) +
Distance(currentNode, auxNode);

heuristicDistance ← Distance(target
position, auxNode);

totalDistance ← (realDistance +
heuristicDistance) *
GetMarker(auxNode);

if Neither openList nor closedList have an
instance of auxNode with totalValue <
totalDistance then
SetParent(auxNode, currentNode);

SetRealValue(auxNode,
realDistance);

SetTotalValue(auxNode,
totalDistance);

Insert auxNode into openList;
end

end
Insert currentNode into closedList;

end
Algorithm 1: A* using marker values

The parameters that the algorithm take are the entity group
we are commanding, the target position we wish to reach
and the multiplier marker value. The ordering of the entities
in the entity group influences the result, as each time we
run the altered A* algorithm we update the marker values,
influencing the next entity. To have deterministic results we
ordered the group by how close each entity is to the target
position, measuring in a straight line. Other ordering methods
might change the results.

Input : A group of entities, a target position and a
value to update the marker (between 1 and 0)

Output: Nothing

foreach entity in the group of entities do
path ← AStarWithMarkers(entity, target

position);

SendPath(entity, path);

foreach node in path do
MultiplyMarker(node, value to update

the marker);
end

end
Algorithm 2: Base of the proposed pathfinder

Fig. 1. Lone Tree with 0.95 marker

IV. EVALUATION

To evaluate the new algorithm we have developed two
objective criteria: group cohesion and average path length.

For each node, we compute the number of nearby paths,
i.e., paths that include the node or one of its neighbors. Group
cohesion is defined as the average number of nearby paths
over all nodes that are themselves part of a path.

Average path length is computed by summing the length of
all paths and dividing it by the number of entities. The shorter
the average, the shorter it should take for the entity group to
reach the target destination.

We tested five values for our marker: 1.0, 0.99, 0.95, 0.90,
0.75. As the marker acts as a multiplier, the lower the marker
value, the more it impacts the pathfinder. The value 1.0 has
no impact at all, making it our control value, as its results are
the same as the A* algorithm.

With our metrics set, we came up with three different
scenarios that stress the flaws our algorithm is trying to fix,
which we named Lone Tree, Chinese Wall, and Boulder.
The maps have red blocks representing obstacles, blue lines
representing the path each entity took, and small pink dots
representing nodes that the algorithm visited.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Workshop G2: Undergraduates

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 1217



Fig. 2. Chinese Wall with 0.95 marker

Lone Tree. The first scenario contains a single blocking
node to simulate a very small obstacle; the entity group should
split around the obstacle and avoid clumping up needlessly.

Chinese Wall. The second scenario consists of a long
obstacle line that makes clear that splitting the group at the first

Fig. 3. Boulder with 0.95 marker

Table I: Results

Figure Map Marker Avg. Path Cohesion
* LT 1.0 13.51 6.90
* LT 0.99 13.51 8.03
1 LT 0.95 13.86 10.43
5 LT 0.90 14.88 12.73
* LT 0.75 14.88 12.73
* CW 1.0 29.51 6.07
* CW 0.99 29.55 8.04
2 CW 0.95 30.88 14.56
* CW 0.90 30.88 14.56
* CW 0.75 30.88 14.56
* B 1.0 25.16 8.50
* B 0.99 25.16 8.50
3 B 0.95 25.86 9.10
4 B 0.90 27.89 14.15
* B 0.75 27.89 14.15

∗Fig. not included.

node of the obstacle completely separates the group, heavily
decreasing its cohesion.

Boulder. The third one is the same as the second one but
with a much wider obstacle spreading the direction decision
on more nodes than one.

A. Results

The results can be viewed on Table I. The first column
shows which Figure in the article the result refers to (if it was
included), followed by the initials of the map used (Lonely
Tree, Chinese Wall, Boulder), then we have the value of the
marker used, the average path length and finally the cohesion.

The most promising result we found was the 0.95 marker
configuration, as it splits the group on small obstacles (Fig. 1),
chooses a side on the Chinese Wall (Fig. 2), but unfortunately
separates the entities on the Boulder (Fig. 3). On the Chinese
Wall the average path length increased by 4.6% while cohesion
went up by almost 140%.

Using a 0.99 marker groups the entities more but doesn’t
avoid mistakes on the Chinese Wall. Its behavior didn’t
significantly deviate from the control (marker value 1.0).

With a 0.90 marker you finally get to see grouping in the
Boulder (Fig. 4), but you stop having fluidity on the Lone
Tree as the whole group is behaving as a block going around
small obstacles (Fig. 5) with an average path length increase
of 10%.

The 0.75 marker scored the same values of the 0.90 marker
(Table I) indicating there might be diminishing results on how
low the marker can go.

B. Discussion

The 0.95 marker was the one that kept most of the average
path length, which is fundamental to competitive RTS games,
while keeping group cohesion in the Chinese Wall scenario.
Anything further (0.90 and 0.75) started to affect the path
lengths too much.

There might be a middle ground that can accept one of the
more radical markers. If the player had agency over whether
they want their group to stay more cohesive or prioritize speed,

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Workshop G2: Undergraduates

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 1218



Fig. 4. Boulder with 0.90 marker

Fig. 5. Lone Tree with 0.90 marker

the game could either use a 0.90 marker or a 1.0 marker to
run pure A* and let each entity path be independent.

Having that as an explicit option would suffocate the player
with more micromanagement; luckily there is a natural divi-
sion of movements in standard RTS games: usually a player
has the option to give an attack move command, which orders
the entity group to move towards a position but engage in
combat with any enemies it sees in their way and a pure
move command that makes entities move ignoring enemies
on their way. If we decide that attack move commands use
a 0.90 marker, the group will keep cohesion on engagements
with enemy troops. Keeping the 1.0 marker value to move
commands the player still has the best average path lengths
to move in situations where speed is more important than
cohesion, such as moving in reinforcements or retreating. That
however has the risk of becoming an obscure game mechanic
that the player won’t understand or be able to replicate during
competitive gameplay which itself could lead to frustration.

V. CONCLUSION

This work presents an algorithm that aims to increase
entity cohesiveness so they don’t separate in graph navigation
without increasing the average path length significantly. While
some promising results were found, none could cover every
issue. Still, a developer looking to increase their game’s
responsiveness to player commands can use the algorithm to
polish the edge cases that induce frustration, specially common
in competitive RTS games.

As a future experiment it would be interesting to change the
map structure so it better simulates modern navigation meshes,
perhaps even testing results inside Starcraft 2’s engine, and see
if entity movement and engagement are significantly changed.

REFERENCES

[1] Real-time strategy (rts). [Online]. Available:
https://www.techopedia.com/definition/1923/real-time-strategy-rts

[2] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[3] M. G. Sahab, V. V. Toropov, and A. H. Gandomi, “2 - a
review on traditional and modern structural optimization: Problems
and techniques,” in Metaheuristic Applications in Structures and
Infrastructures, A. H. Gandomi, X.-S. Yang, S. Talatahari, and A. H.
Alavi, Eds. Oxford: Elsevier, 2013, pp. 25 – 47. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B9780123983640000024

[4] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[5] I. Millington, AI for Games. Taylor & Francis, a CRC title, part of the
Taylor & Francis imprint, a member of the Taylor & Francis Group,
the academic division of T&F Informa, plc, 2019. [Online]. Available:
https://books.google.com.br/books?id=HMKjuwEACAAJ

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Workshop G2: Undergraduates

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 1219


