
Sitting Amongst Students to Learn
Game Development with Microgamr

Flávio R. S. Coutinho
Departamento de Computação

CEFET-MG
Belo Horizonte, Brasil

fegemo@cefetmg.br

Glı́via A. R. Barbosa
Departamento de Computação

CEFET-MG
Belo Horizonte, Brasil

glivia@cefetmg.br

Ismael S. Silva
Departamento de Computação

CEFET-MG
Belo Horizonte, Brasil

ismaelsantana@cefetmg.br

André R. da Cruz
Diretoria de Elétrica

IFSP
São Paulo, Brasil
dacruz@cefetmg.br

Abstract—This paper describes Microgamr: a learning object
we created with the intent of aiding students to learn game
development techniques collaboratively. The core concept is to
turn the whole class, including the teacher, into a development
team that will create a game whose challenge is to fulfill rapid
challenges – called microgames – in succession. We applied
Microgamr in two classrooms of a Digital Game Development
discipline of a Computer Engineering graduation course, and it
yielded two games. We could observe that the application of
Microgamr allowed students to work together in an actively
collaborative team and organically learn contents outside the
scope of the class with a closer relationship with colleagues and
teacher. It also exposed students to an environment similar to
those found in game development soft-houses, in which medium
to large teams work together in the same game.

Index Terms—game development education, learning object,
microgames

I. INTRODUCTION

Game development involves expertise in multiple areas
ranging from graphics, game design, music composition, and
programming, usually requiring broad and multidisciplinary
teams and a lot of time investment to be completed [1]. The
inherent complexity of a game development project permeates
difficulties in defining its scope, estimating deadlines and the
eventual lack of resources, and it might lead to the project
interruption, especially when the creators are smaller, less
experienced or independent companies or teams [2]. It is a
popular saying among independent game developers that to
complete the final 10% of the project it usually takes 90%
more of the planned schedule [2], which reinforces the need
of careful planning.

Learning about game development presents similar chal-
lenges. There are graduate courses specific for the area and
they contemplate formation in the whole spectrum of the
involved areas [3], which enables the composition of multidis-
ciplinary teams inside the same classroom. On the other hand,
it is not uncommon for Computer Science-related graduate
courses to offer isolated “game development” disciplines. As
the students’ profile in such courses is mostly programming-
based, the assemble of multidisciplinary teams rarely happens,
which reflects on the overall quality of the developed games,
especially concerning art.

Still on the academic aspects of game development, the
literature shows an extensive exploration of the use of games
as learning tools for a multitude of areas [4], and also the
use of game development as tools for learning Computer-
related subjects [5], [6]. Curiously enough, not much work
has been found regarding teaching game development. With
the significant gap that exists between the experience of new
graduates and the high (and usually unmet) expectation of
the industry for them [3], [7], we stress on the necessity for
improving the quality of the formation of students in the field.

In that context, this work aims at investigating the research
question of “how can we effectively teach/learn intricacies of
game development, including some tacit knowledge, closer to
how a game studio works, in a classroom?” We conducted
an applied research and proposed a learning object, with two
applications as a preliminary evaluation that enabled us to
generate insights into our research question.

In this sense, we present a learning object for a digital
game development discipline situated in a Computer-related
graduate course, which aims to enable the exercise of the
whole creation process of a game, from its inception to its
digital distribution, in a format that tries to resemble a soft-
house. The learning object we propose is called Microgamr
(pronounced as “microgamer”) and it contemplates assembling
the whole class, all students and teacher, to develop one
single game. Such format provides several benefits over the
alternative of splitting the class into small groups:

(I) it enables the creation of a game that is larger, more
complex and more polished than one which would be
developed by a small group of students with the same
schedule;

(II) it improves the chances of having higher graphics/sound
quality, as there is more diversity of students’ profiles
in a larger team;

(III) the participation of the teacher acting as the project
manager ensures the delivery of the final product, while
also allowing very close interaction with the students.
Also with the role of a tech leader, the teacher has better
opportunities to both aid in the students learning process
as well as better inputs for evaluating them;

(IV) it exposes the students to an environment more similar
to the one in the industry, reducing the gap between the

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Education Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 708



expectation of the students and the game companies;
(V) it provides a clear goal shared by all students and

the teacher, improving the overall engagement, as the
responsibility of fulfillment (delivering the game) is
equally split among all participants;

To enable the concomitant work of the students in the same
code base, it is necessary to use a version control system
(VCS) and a hosting service to keep the project files available
at all times, everywhere. We propose the use of a free VCS
called Git [8] and the remote repository hosting service called
GitHub [9]. Even though such kind of tool being of great
importance in Software Engineering in general [10], [11] and
being extremely popular in the development environments of
companies and organizations, the Computer-related graduation
courses in Brazil seldom include such topic in their curricu-
lums. That can be partially explained by the absence of the
subject in Brazilian Computer Society’s reference curriculum
for Computing courses [12].

We have applied Microgamr in two classes of a discipline
called “Digital Games Development” in a Computer Engi-
neering graduation course as a preliminary evaluation and the
results showed high engagement of the students with the games
developed, as well as their appreciation of the experience
gathered by participating in the whole process of making a
complete game.

The remainder of this work is organized such that Section
II presents the notion of a learning object and briefly explains
the concepts behind the tool and service used to allow concur-
rent work on the project; Section III introduces Microgamr,
which is the learning object we proposed – its inspiration,
details, phases and the technicalities of the project; Section
IV describes our two experiences using it in the classroom
and an evaluation of how it performed from the perspective of
the students and the teacher; Section V describes Microgamr
formaly as a learning object – how to find, adapt and use it; and
Section VI highlights our conclusions and presents possible
future works.

II. THEORETICAL FOUNDATION

The main output of this work is a learning object called
Microgamr. Hence, this section presents the notion of a
learning object as an instructional tool to be (re)used in
proper educational contexts. Later, this section presents some
essential concepts around the software tools and services that
are required to use Microgamr in a classroom environment.

A. Learning Objects

The notion of learning object in the literature can be
traced back to 1967 [13], when Ralph Gerard digressed
about the possibility of reusing “small instructional blocks”
as learning tools which could be used as pieces to assemble
more complex or longer educational courses. At such an
early era of Computing and Networks, he envisioned the
use of computers as a medium for cheap reproduction and
distribution of such content, which could improve access to
education while reducing expenditures with public schooling.

Later, David Wiley defined learning object as “small (rela-
tive to the size of an entire course) instructional components
that can be reused many times in different learning contexts
[14]” (page 4), but more generally as “any digital resource
that can be reused to support learning.” (page 6). They
are characterized by their potential to be reusable, generic,
adaptable and scalable to large numbers of audiences.

In 2002, IEEE standardized the metadata required to de-
scribe a learning object [15]. It comprises the learning object’s
(a) educational objective, (b) prerequisites for the learner to
be able to use it, (c) the taxonomic topic, (d) the interaction
model between the learner, instructor and object and the
(e) technology requirements for executing it. The purpose of
standardizing such information is to enable learning objects to
be found, identified and reused [15].

B. Git and GitHub

Git is a version control system (VCS) [10], [11] created
in 2005 by Linus Torvalds [8] with the initial purpose of
managing the development of Linux’s kernel source code.
Leveraged by its great flexibility and performance, it quickly
became the most used VCS world-wide [16]. Fig. 1 shows the
evolution of the number of searches made by Internet users
in the Google search engine for the most popular VCS’s from
January 2004 until 2019.

Fig. 1. Search popularity of the most popular VCS’s on Google

The main goals of VCS tools contemplate (a) recording
the changes made to the source code, (b) enabling multiple
users to change the project files at the same time, (c) enabling
and facilitating conflict resolution when multiple users simul-
taneously edit the same region of a file, and (d) enabling the
navigation between different versions of the source code that
have been recorded over time.

The directory which contains a software’s source code is
denominated a Git repository. The (a) record of the changes
made to the repository files can be done through the creation
of commits, which are the documentation of what has been
changed, when and by whom. That enables changes to be
tracked by creating points in history (d) to which the repository
can return posteriorly, if necessary. When more than one user

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Education Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 709



changes the same file, Git attempts to (c) combine all the
changes that are not in conflict with each other, i.e., those
made at distinct lines of code. When that is not possible, the
author of one of the commits must resolve the conflict with a
merge operation (in Git terminology).

For the repository to be shared and used by more than one
user (b), it requires a server to keep a copy of it (in the
terminology, a remote repository) and it is desirable that it is
made publicly available over the Internet at all times. Betting
on the adoption of Git by open-source code developers, the
company GitHub Inc [9] created, in 2007, a Git repository
hosting service which is free of charge for projects that
have public read permission (i.e., its code can be seen and
downloaded by anyone).

In proposing and applying Microgamr twice so far, we
used GitHub to host the remote repository of the games we
developed so that the source code was available to all students
and the teacher to work together on the project at all times
and wherever necessary.

Besides the repository hosting service, GitHub also provides
a Web interface that enables the visualization and management
of the repository under various aspects. With it, it is possible
for users without write permission in a repository to create a
fork to themselves, which is a copy of the “original” repository
where they have full permission to make the changes they
wish, and, then, send them back to the original repository
through an operation called pull request.

The owner of the original repository (in our case, the
teacher) can then see exactly what has been changed by the
student who opened the pull request and either accept it and
integrate the changes to the original repository or evaluate and
request changes to be made to the code before it is accepted.

Such workflow enables the teacher to evaluate the source
code changes sent by students and to approve or request
changes from them, keeping the code consistent, with high
quality and usually error-free. The rejection (request for
changes) of a pull request is also an opportunity for the teacher
to show better ways of implementation, enforce coding best
practices and to pinpoint code bad smells, giving students
precious feedback and a chance to improve their knowledge
and skills before being graded. Next, we present Microgamr.

III. MICROGAMR

The game to be developed by the whole class has to be
easily split into tasks so they can be developed simultane-
ously by various students, who are possibly inexperienced in
game development and VCS tools. Besides, it should have
an adequate complexity level, but should also be flexible to
comply with different levels of expertise and interest from the
students.

We first describe the inspiration from which the Microgamr
concept stems, then we present the game proposal that met
our requirements as a learning object.

A. Inspiration: WarioWare
Every title in the WarioWare series puts the player in

a challenge against a succession of microgames, which are

games with only a single mechanic, usually unique among
the other microgames, with simple controls and very short
duration, of only a few seconds. Before each microgame, the
player receives with a very brief instruction of what he/she
should do – eg., “Run!”, “Escape!”, “Don’t let it fall!”, and
it is part of the challenge for the player to understand what
he/she has to do and act promptly.

Fig. 2 depicts an example which shows the instruction
“Finish Off” and the player needs to maneuver the Nintendo
Wii controller as if it was a glass of water being taken to
his/her mouth. If the player performs the movement too slowly,
time runs out, but if he/she goes too quickly, the water spills
on the character’s face, and the player loses a life. The winning
condition is triggered if the player manages to make the
character drink all of the water in the available time (about
5 seconds) without spilling it on his/her face.

Fig. 2. A microgame from WarioWare: Smooth Moves [17]

As the winning condition of a microgame is satisfied, the
game quickly changes to the next in the sequence, without
the possibility to pause, and the next one is not necessarily
related to the previous neither from the mechanics point of
view nor its thematics. Indeed, there is no standardization
of the microgames, which are deliberately distinct from one
another both in their art style and in the challenging situation
in which it puts the player.

Also inspired by WarioWare, the Australian company Metro
Trains Melbourne, responsible for the suburban railway net-
work in Melbourne, developed the series of games Dumb Ways
to Die [18] comprised of 3 titles (2013, 2014 and 2017)
for Android and iOS devices. They have the same format
of WarioWare’s microgames, but they have the intention of
alerting people of the dangers related to the lack of attention
around railways and trains.

Those and other examples show that the WarioWare series
inaugurated a genre (or a sub-genre of action/puzzle [1],
depending on the taxonomy adopted) that is becoming more
popular over time. Inspired by such game mechanics, we

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Education Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 710



propose the creation of one such game as practical work to
learn game development, as presented next.

B. The Game Proposal

The game proposed for development by the class consisted
of one with the same mechanics of those from the WarioWare
series, based on sequences of microgames. There were two
main reasons that drove our decision: (i) with a careful soft-
ware architecture design, each microgame could be developed
independently from each other, allowing students to work
freely on their part, reducing the probability of merge conflicts
to zero during this phase – which is desirable since resolving
conflicts might not be easy for programmers that have little or
no experience with VCS tools; and (ii) the deliberate lack of
artistic consistency present in the WarioWare series among
their microgames could be appropriated by us, alleviating
the need to have a consistent art direction altogether, as that
would be an arduous duty considering that the students are
undergraduates in Computer-related degrees and might not
have nice design skills.

Fig. 3. Phases and iterations for the development of Microgamr

The project schedule was split into two phases with four
iterations and managed in a SCRUM-ish scheme, with each
iteration being 7-10 days long and having two status meetings
per week (Fig. 3). In the first two iterations, which we called
phase I, each pair of students developed two microgames, with
the restriction that one of them should be a “super-premium
microgame”, as it should fulfill one (or more) of the following
criteria:

(I) use a physics engine in an interesting way
(II) use a tilemap as part of the scenario

(III) be in 3D instead of 2D
(IV) have some kind of intermediate level of artificial intel-

ligence
(V) have two phases in the same game (like a “bonus” or

“boss” second phase)
(VI) use audio in a meaningful way as part of the microgame

mechanic (as in a rhythmic game)
(VII) use run time skeletal animations instead of sprite based

animations in 2D
The reasoning behind that restriction is to encourage stu-

dents towards building more complex microgames and, as a
side effect, having more substantial diversity in their mechan-
ics and art styles.

During this phase, the students had the freedom and re-
sponsibility to propose the microgames since its conception,
going through its game design, implementation and testing,
with the interference of the teacher happening only when their

proposition either had a scope too big or too small for the
available time (2 iterations).

Also, every microgame should have a configurable difficulty
level ranging from 0 (very easy) to 1 (really hard), varying the
level of challenge imposed to the player. Such requirement en-
ables the progression of difficulty of the microgame sequence,
which is typically randomly selected from a pool, as well as
to allow difficulty adjustments by the player.

The game should target multi-operating systems of desktop
environments, but also Android and iOS devices – hence, the
microgames mechanics should be designed in such a way to
be playable/enjoyable through mouse and also touch screens.
The variety of target platforms also imposes an extra challenge
of making the game graphics and input adaptable to different
screen resolutions.

In the third and fourth iterations – phase II, the same groups
had to pick different tasks related to polishing the game and
turning it from a prototype quality level to a finalized game
ready for distribution. Such tasks were defined in a meeting in
which the whole classroom suggested and prioritized features
that should or could be implemented to improve the quality of
the whole game. Some examples of tasks were the composition
of the main soundtrack, a better menu screen, a splash screen,
sound effects between microgames, an online rank, a campaign
mode, visual effects for screen transitions and several others.
During this iteration, there were also tasks about polishing
existing microgames as well as developing new ones, but the
possibility of the latter was only unlocked when all of the
higher priority tasks had been concluded. Lastly, in the same
iteration, there were tasks regarding the game adaptation and
distribution on the smartphone app stores.

As the tasks of the third and fourth iterations typically
require changes in several files throughout the whole source
code base, it is common to happen merge conflicts – when
different people change the same lines of code in a file. At
this point, the students have acquired some maturity with the
VCSs concepts and commands and tackling the resolution of
conflicts is an additional challenge and responsibility of this
phase, as well as an opportunity for improving their experience
in developing larger software and the daily activities of a
professional software/game developer.

Even though the mechanics, restrictions and project sched-
ule had been established, the game also needed a thematic axis
to drive the students’ creativity in proposing the microgames,
as well as to improve the chances of captivating players.
Hence, the Microgamr proposal strongly suggests such a
thematics to be proposed, which can be done either by the
teacher alone or together with the students. In the first two
applications of Microgamr, the teacher himself defined the
game themes, and his decision aspired to incite engagement
in the students through empathy with the chosen subjects.
Section IV presents both themes and details each of the two
applications of Microgamr so far.

The following subsection presents some technicalities of
Microgamr and describes with more depth how we conducted
the project management.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Education Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 711



C. Development and Project Management

Initially, the teacher created a seminal project with the
source code containing the fundamental routines for the
creation of a game with the microgames mechanics. The
seminal code comprises a very raw, unpolished game, but
with beginning, middle and end: a “splash screen” with a
temporary logo, a “main menu screen” without any buttons
– the player clicks or touches anywhere on the screen and is
taken to the “playing a sequence of games-screen”. There are
two very simple microgames provided as samples: one with
a winning condition called WIN_WHEN_TIME_RUNS_OUT
(i.e., the user must “survive” until the timer ends) and another
with the condition LOSE_WHEN_TIME_RUNS_OUT (i.e., the
user must do something before the timer runs out).

We chose Java as the development language for its robust
implementation of the object orientation paradigm, its popu-
larity both in the industry and in the academy, the presence
of disciplines that either enforce or suggest its use in the
Computer Engineering graduation course and the availability
of game frameworks targeting the Java platform.

From the game development tooling perspective, we like to
think of them as an abstraction spectrum, in which in one end,
we could use lower-level tools like OpenGL or DirectX and
in the opposite end we could use very high-level tools such
as YoYo Games’ GameMaker [19]. We considered neither end
of the spectrum interesting, as the former would require too
much effort to put anything on the screen while the latter
would significantly decrease the flexibility and control over
the game being developed [1]. Above the graphics API level
in the spectrum, there are “game frameworks”, which are
still low-level tools, but which provide higher productivity
by decreasing the time and complexity of the lower-level
programming tasks. Above it, but still below the “game
makers” end of the spectrum, there are game engines. We
chose to use a tool in the “framework” level, as it allows the
coding to be more productive while not being as complex and
hardware-demanding as an “engine” is.

In the Java ecosystem, we chose a framework called
LibGDX [20] which is a popular choice among Java program-
mers for being well designed, open-source and multiplatform
– it targets desktop environments (multiple operating systems),
web browsers, Android and iOS devices. It provides one level
of abstraction on top of the OpenGL ES 2.0 specification, as
well as several useful routines typically necessary to develop
games, such as vector and matrices operations, sprite batching,
tilemap loading, physics engine, support for HUD building,
pre-loading of assets, loading of multiple image, sound and
3D model file formats, among others.

As previously mentioned, we crafted the seminal code
with an architecture that uses object-oriented programming
concepts to allow more natural extension and modification of
the source code. The remainder of this subsection presents
such devices.

In terms of chronological schedule, each pair of iterations
occurred contiguously (14 days) with a gap of 1 week between

the next pair. Hereon, we describe the relevant technicalities
for each iteration.

1) Iteration 1: creating microgames: To create a
microgame, a student should create an extension of
the MicroGame abstract class and implement the
MicroGameFactory interface, following the hierarchy
depicted in Fig. 4. In the MicroGame subclass, the student
should implement its abstract methods and eventually call
super.challengeSolved() when the user wins the
challenge or super.challengeFailed() when the user
fails it.

Fig. 4. Class diagram regarding microgame creation

public class MyAmazingMicroGame extends
MicroGame {
// ...

@Override
public void onStart() {

// instantiate the game entities
// like the player, enemies, background,

sounds
}

@Override
public void onHandlePlayingInput() {

// handles the player input
}

@Override
public void onUpdate(float dt) {

// updates the microgame logic
}

@Override
public void onDrawGame() {

// draws the entities
}

// ... other methods
}

Additionally, every MicroGame instance must have a
corresponding factory class (Fig. 5). That is necessary as the
instantiation of a microgame is controlled by an entity called

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Education Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 712



GameSequencer, which needs to know how to instanti-
ate each MicroGame. An elegant solution to allow code
reuse and to isolate classes responsibilities was to imple-
ment the GoF AbstractFactory design pattern [21] for each
MicroGame, which is in charge of knowing how to instantiate
each microgame (Fig. 4). To do so, one must implement the
interface MicroGameFactory in the following way:

public class MyAmazingMicroGameFactory
implements MicroGameFactory {
@Override
public Microgame

createMicrogame(BaseScreen screen,
GameStateObserver observer, float

difficulty) {
// returns a new instance of
// MyAmazingMicroGame, e.g.:
// return new MyAmazingMicroGame(...);

}

@Override
public Map<String, Class>

getAssetsToPreload() {
// returns a set of assets to be

preloaded
// before this microgame starts

}
}

Fig. 5. Class diagram regarding microgame factory creation

Finally, when transitioning to the GameScreen, which
is responsible for managing the sequence of microgames
and the winning/losing conditions, students must state which
MicroGameFactorys to use in its pool of available mi-
crogames. To achieve that, the programmer must add the newly
created factories to the array of available ones in the proper
method of the MenuScreen class:

// ...
public void startPlaying() {

// ...
GameSequencer sequencer = new

GameSequencer(5, new
HashSet<MicroGameFactory>(

Arrays.asList(
new SampleGame1Factory(),
new SampleGame2Factory()),
// write this new line
new MyAmazingMicrogameFactory()

), 0, 1);
}

Then, students can implement the logic behind each mi-
crogame in its corresponding child class of MicroGame
– using the onUpdate method to update positions/check
winning/lose conditions, the onDraw method to render the
game entities and so on.

2) Iteration 2: fixing/polishing microgames: By the end of
the first iteration, students have received preliminary feedback
of their microgames, and in the second iteration, they pro-
ceed on fixing the identified issues and polishing the games,
according to the teacher’s suggestions.

After the deadline of this iteration, the teacher grades the
pairs of students considering what they have delivered and in
case they did not receive a perfect score, they can work on
the remaining items to increase it, but with a 25% penalty in
the grading of such items.

Also, during the 1-week interlude between iteration 2 and 3,
the whole classroom proposes new features to be implemented,
and we generate a new backlog of activities to be developed
in the next two iterations.

3) Iteration 3: general features and more polishing: A
good portion of the proposed features involves the creation or
improvement of game screens. The seminal code is organized
in such a way that allows handling the logic of each screen
in its class, which inherits from BaseScreen. All screens
extend such abstract parent class, as it provides facilities for,
e.g., navigating to another screen while unloading its assets
and preloading the ones required by the next.

By extending BaseScreen, the child class must imple-
ment a few abstract methods:

public abstract class BaseScreen extends
ScreenAdapter {
// ...

// called when the screen is about to be
shown

// for the first time
public abstract void appear();

// called only once and after all of the
// required assets have been loaded
protected abstract void assetsLoaded();

// called only once when this screen
// is disposed
public abstract void cleanUp();

// called every update frame to allow
// the detection of player input
public abstract void handleInput();

// called every frame and responsible
// for updating the screen state and logic
public abstract void update(float dt);

// called every time the screen must
// be redrawn
public abstract void draw();

}

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Education Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 713



Fig. 6. Title screen of “Brush my Teeth plx” and some of the student developed microgames

Other tasks usually proposed for development include the
composition of a musical theme, of short music clips to
be played between microgames, and the creation of sound
effects for when players either succeed or lose in a challenge
and when he/she successfully finishes a whole sequence or
loses all lives before that. Such tasks require skills that are
not typically developed in the curriculum of a Computer-
related graduation course. However, as the whole classroom
is involved in developing the same game, there is a higher
chance of one or more of the students having the necessary
skills, experience or at least interest in picking up such tasks.

Other tasks revolve around graphics arts, as the creation of a
team logo, a splash screen video, a menu screen which is more
fluid and more labored. As with the case of the music/sound-
related tasks, it has not been difficult to find students interested
in the graphics-heavier duties.

Another group of tasks is mostly related to programming,
such as the creation of a credits screen, a visual effect for
screen transitions, a local and a networked rank, a smarter
algorithm for picking up the next game in the sequence, the
campaign mode, among others.

If the number of tasks is insufficient for the number of
student pairs, there are also two “wildcard” tasks they can
develop: polishing an existing microgame and creating a new
one from scratch.

Each of those tasks has a different maximum score asso-
ciated with it. The teacher assigns the score of each task
using criteria that comprise the complexity and amount of time
necessary to fulfill it. Therefore, when students choose which
to pick up, they already know how much they might score if
they complete the tasks accurately.

4) Iteration 4: platform-porting and bug-fixing: In the
fourth week of work, most of the pairs have already achieved
scores of 100% or more or are still wrapping up what they
had started on the previous iteration. It is common for some
tasks to have dependencies on others and, in such cases, some
tasks might only become available on the fourth iteration – for
example, the task of making a networked rank depends on the
local rank to have been completed in the previous iteration.

Also left to this iteration are the tasks regarding porting and
publishing the game to the smartphone operating systems and
their corresponding app stores. Moreover, developers can fix
bugs they identified in this iteration.

The next section describes the use of Microgamr in a
Computer Engineering course given by one of the authors.

IV. APPLICATIONS: BRUSH MY TEETH PLZ AND MEOW AU

Microgamr has been applied twice with students of a
Computer Engineering graduation course in CEFET-MG, in a
one semester-long elective class called “Digital Games Devel-
opment”. The class syllabus comprises topics on game design,
game development tooling, artificial intelligence, computer
graphics, networks, and physics.

Besides the work on Microgamr, students also had a final
project and weekly programming assignments to be done
in the computer lab. Such assignments aimed at exercising
the concepts presented in the theory class and also to make
students acquainted with the framework used in Microgamr
(LibGDX).

The two applications of Microgamr happened in the second
semesters of 2016 and 2017. Both classes had 20 students.
Such course comprises 60 hours, with 30h in an expository
classroom and 30h in a computer lab. Every week has a theory
and a practical class.

In 2016 the Microgamr instantiation produced a game called
Brush my teeth plz and in 2017 the game Meow Au. The
next subsections describe both.

A. Brush my teeth plz

The first game created – Brush my teeth plz – targeted the
audience of young children who get nervous around going to
the dentist. A small excerpt from the statement is:

“A typical child is born pre-programmed to be scared of
at least three things in the world: (a) the Boogie Monster,
(b) Dentists and (of course) (c) Clowns. Some of those fears
are detrimental to the child’s formation, as is the case of the
(b) Boogie Monster who, in reality, has never been seen in
the material world, and the fear of (b) Dentists, which are
there only to help. The other fear (c) stems from colorfully
dangerous and terrible creatures, and the children do well in
keeping it even as grownups. Even game development teachers
keep their distance from such creatures. In this work, we want
to help children enter very calmly in the dentist room. Then, we
are going to create a simple, uncommitted, and roguish game,
for children (and grownups) to play in the waiting room.”

Students and the teacher developed a total of 21 microgames
for the game during the four iterations, with the most part
being created in the first two iterations. Fig. 6 shows the title
screen and a few microgames.

During the polishing phase, students created a theme song,
logo, general sound effects, developed new screens, improved
the existing ones, an infinite mode, and an online ranking,

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Education Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 714



Fig. 7. Title screen of “Meow Au” and some of the student developed microgames

among other tasks. A pair of students generated an Android
build and published the game at Google Play [22].

The project management was conducted virtually through
GitHub issues1 on the corresponding repository and students
delivered code through pull requests.

During the iterations, the teacher acted as a technical
leader to the students as he had more experience with the
technologies involved and with game development in general.
There were two meetings per week, which allowed the teacher
to clarify whatever doubts students had very quickly.

After the development finished, the specification was im-
proved to include the need for super-premium microgames, as
we noticed some games were too similar and we wanted to in-
stigate students to work on more advanced game development
techniques. Also, we slightly improved the seminal code with
learnings the team had while developing Brush my teeth plz.

B. Meow Au

Meow Au appealed to players who are fond of animals,
especially pets. The work statement reads:

“Many centuries ago, humankind domesticated some ani-
mals, and they live together in harmony and tenderness. Dogs
and cats are spread over the world and can be found in almost
every home – but little is known about the secret life of such
peculiar beings.

[...] We always assume they sleep or stay quiet while we are
not at home. However, that is not true. What are their goals
– world domination? promoting human evolution? leveraging
the scientific knowledge? preventing human extinction by
destroying potentially dangerous asteroids?”

In the microgame development phase, and later during
polishing, students created 23 microgames, of which 13 were
super-premium. Among the seven super-premium microgames
categories, (I) physics engine, (IV) artificial intelligence, (V)
2 phases, and (VI) meaningful audio were implemented by
at least one microgame. The others – (II) tilemap, (III) 3D,
and (VII) skeletal animations – were all related to computer
graphics and were not included. A likely explanation is that
Microgamr was implemented before such concepts had been
presented in the class, and students chose not to adventure
themselves in (then) unknown territory. Fig. 7 shows the game
title screen and a few microgames.

In the polishing phase, the tasks developed by the students
involved creating a logo, icons, theme song, sound effects to be
played between microgames and at their end, local and online

1A GitHub feature to describe a task to be developed or a bug to be fixed.

rankings, a credits screen, an infinite and a campaign mode,
an Android build, among others. It was also published [23]
at Google Play, but this time by the teacher, as no group of
students picked up such task.

After Meow Au’s development, we evaluated the work from
the perspective of students and the teacher, described next.

C. Evaluation of Microgamr
We evaluated the use of Microgamr in the classroom by

assessing (a) the effort expended by the students and the
teacher, (b) the technical knowledge in game development
and collaborative programming acquired by students, (c) the
experience of developing a single game for the whole class.

We extracted such information from data collected from the
repositories and from a questionnaire in which students were
invited to provide feedback on the work on Meow Au. The
questions addressed the students’ opinion on working on the
game, and a total of 10 students participated.

In Brush my teeth plz, 250 commits were made to the
repository in 53 pull requests. In turn, Meow Au generated
1,104 commits in 78 pull requests, which are numbers much
higher than in Brush my teeth plz. Indeed, the interaction
between students with the teacher and the code were a lot
higher in the second application of Microgamr. Fig. 8 shows
the lines of code inserted by the six most active contributors
to the code, in which the teacher (user 1) had most of the
insertions, as he was responsible for the seminal code and
merging the students’ pull requests. The hills in the area charts
indicate the concentration of work during the two phases of
the project for the students and in the interval between phases
for the teacher.

The questionnaire asked students how they perceived the
effort expended in the Digital Game Development class as
compared with other classes they had. They considered it
(50%) heavier or (40%) a lot heavier than other disciplines,
but only partly because of Microgamr. Essential stress points
they faced were learning LibGDX during the first phase
and dealing with merge conflicts in the second. This is an
interesting observation which validates the intended division
of work between the two phases: students could focus on the
game development technology at first, then on the intricacies
of working collaboratively in a big project. A student also
indicated the difficulty in creating or finding free assets to use.

Students’ dedication in creating Meow Au was noticeable
during its creation, but also in their answers and their commit
behavior. Indeed, 80% of them wanted to have contributed
more to the game. Reasons for not being able to participate

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Education Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 715



Fig. 8. Code insertions in “Meow Au” repository for the top six contributors

more in the game creation include mostly their involvement
with tasks from other courses they were taking. Such engage-
ment is also depicted in the punchcard of commits shown in
Fig. 9, which reveals that some work was checked in the
repository at almost all times of the day, even late at night
and at dawns, and it was also spread over all weekdays.

Fig. 9. Punchcard of commits in Meow Au

The experience of using Git to develop the game collab-
oratively deemed a nice evolution in the students’ technical
knowledge of the tool, as shown in Fig. 10. Some students
already mastered it, but those who did not stated they learned
how to use it. They also stated, as we predicted, that the first
phase was easier than the second in terms of working collab-
oratively, which is evidenced by the excerpt from a student:
“[...] conflicts (in the first phase) were less frequent and easier
to resolve when working in pairs. In the second phase, we
needed to use and understand some git resources/commands
which were still unknown.”

Fig. 10. Evolution of knowledge in Git of students

During the code reviewing activities from either phase,
the teacher was able to evaluate the quality of the students’
code. Those were great opportunities for suggesting good
programming practices and the use of different object-oriented
design patterns, which was not part of the course syllabus,
but very useful and fortunate for programmers in professional
environments nonetheless.

Lastly, regarding their experience of developing Meow Au,
students mostly agreed that everyone creating the same game
increased their sense of responsibility to deliver their tasks, as
well as their motivation to work, as shown by Fig. 11.

Fig. 11. Students’ experience developing the same game

Resuming our research question of “how can we effectively
teach/learn intricacies of game development, including some
tacit knowledge, closer to how a game studio works, in a
classroom?”, we can state that the experiences with Mi-
crogamr provided: a) deeper approaches for teaching concepts
and sharing experiences among participants, as in the case
of teaching content outside the syllabus (observed by the
teacher); b) closer relation among students and teacher with
more frequent and faster feedback (as observed by the teacher
and stated in the questionnaire); c) high student dedication
to develop the games (as seen by the number of commits
and the punchcard); d) increased motivation and responsibility
of delivering the proposed activities (as shown by the ques-
tionnnaire); and e) the student acquisition of skills of working
in groups (questionnaire and observed by the teacher).

1) Limitations: As Microgramr requires the development of
many different microgames (at least 15), it cannot be applied
in classes with few students, as each one would have too much
work. As a matter of fact, Microgamr could not be applied to
the Digital Game Development class in later years, as there
were not enough enrolled students.

Another limitation of Microgamr is that the concentration
of roles played by the teacher – project management, tech
leadership, programming, repository management, and a bit
of art direction – can become cumbersome to the point of
hindering its application in a classroom. A way to overcome
that situation is to select a few students to play some of those
roles. In the questionnaire, students reported being comfortable
with taking such responsibilities.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Education Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 716



V. AVAILABILITY AS A LEARNING OBJECT

After the creation of Meow Au, we generalized the specifi-
cation of Microgamr so it could be easily instantiated in other
classes in the future. We created a hotsite2 which hosts the
code, some documentation, and general instructions regarding
how to use Microgamr in the classroom as a learning object.

Teachers interested in using it as a learning object can follow
the “getting started guide” which contemplates the steps of:
(1) creating a copy of the Microgamr repository;
(2) defining the game theme and name;
(3) splitting the class in groups and assigning them roles;
(4) executing the first two iterations;
(5) receiving all developed microgames;
(6) reviewing the microgames, providing feedback and eval-

uating students;
(7) proposing jointly with the class what tasks will compose

phase 2 (polishing);
(8) executing the last two iterations;
(9) reviewing the implemented code, merging it to the main

repository and evaluating the students.

VI. FINAL REMARKS AND FUTURE WORK

This paper proposes Microgamr, a learning object targeted
at classes of students learning game development from a
programmer perspective. The core concept of the proposal is to
make a team from the whole classroom, including the teacher,
to develop the same game collaboratively.

We have already applied Microgamr in two different classes
of a Digital Game Development discipline from a Computer
Engineering graduation course. Both experiences were suc-
cessful as they engaged students to achieve a common goal,
and the developed games were more prominent and more
complex than if students were each developing their own
game. Students’ dedication was very high, especially in the
second game, as the teacher was able to aid and demand more.

Also, the closer relationship with the students allowed the
teacher to identify opportunities of teaching concepts outside
the scope of the course, but still very important to their
formation, such as good programming practices and the use
of design patterns.

As future works, we intend on improving the Microgamr
documentation by creating wiki pages in its repository, ap-
plying it again in future classes and, then, assigning different
roles to students to decrease the work overload around the
teacher. We also intend to propose a similar work for game
development classes with a lower number of students.

VII. ACKNOWLEDGEMENT

The authors would like to thank all students who worked
on the games and enabled the creation of this learning object:

Brush my teeth plz: Amanda Pereira, Bruno Meneghin,
Carlos Soares, Daniel Gonçalves, Gabriel Magalhães, Hen-
rique Sampaio, Higor Amorim, Juan Ferreira, Lindley Vieira,

2https://fegemo.github.io/microgamr

Lucas Carvalhais, Lucas Campos, Lucas Viana, Luis de Car-
valho, Matheus Rosa, Matheus Moreira, Nicolas Maduro, and
Vinicius Pinto.

Meow Au: Adriel Augusto, Andre Brait, Arthur Abeil-
ice, Cassiano de Brito, Emanoel Guimarães, Estevao Costa,
Gabriel Melo, Gustavo Jordão, Gustavo Marques, Joao Matos,
Luis Carlos, Luiza dos Anjos, Miguel Rodrigues, Natalia
Natsumy, Pedro Belisario, Pedro de Jesus, Rafael Barbosa,
Rogenes Reis, Sarah Rodrigues, Tulio Santos, and Vinicius
Silveira.

REFERENCES

[1] J. Novak, Game development essentials: an introduction. Cengage
Learning, 2011.

[2] D. Yu. Finishing a game. (2010). [Online]. Available: http://makegames.
tumblr.com/post/1136623767/finishing-a-game

[3] ABRAGAMES. Relatório formação de profissionais em jogos
digitais. (2013). [Online]. Available: https://drive.google.com/file/d/
0ByQwQiUajB3mczhsRGpGVlVOTU03QW1VWUpweFYyWlp4ZVUw/

[4] S. de Freitas, “Are games effective learning tools? a review of
educational games,” Journal of Educational Technology Society,
vol. 21, no. 2, pp. 74–84, 2018. [Online]. Available: http://www.jstor.
org/stable/26388380

[5] I. Ouahbi, F. Kaddari, H. Darhmaoui, A. Elachqar, and S. Lahmine,
“Learning basic programming concepts by creating games with
scratch programming environment,” Procedia - Social and Behavioral
Sciences, vol. 191, pp. 1479 – 1482, 2015, the Proceedings of
6th World Conference on educational Sciences. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877042815024842

[6] S. Combefis, G. Beresnevičius, and V. Dagienė, “Learning programming
through games and contests: overview, characterisation and discussion,”
Olympiads in Informatics, vol. 10, no. 1, pp. 39–60, 2016.

[7] GEDIGames. 1º censo da indústria brasileira de jogos digitais.
2014. [Online]. Available: http://www.abragames.org/uploads/5/6/8/0/
56805537/i censo da industria brasileira de jogos digitais.pdf

[8] L. Torvalds, J. Hamano et al., “Git,” Software Freedom Conservancy,
2005.

[9] GitHub, Inc. GitHub: Social Coding. [2007]. [Online]. Available:
https://github.com

[10] D. Spinellis, “Version control systems,” IEEE Software, vol. 22, no. 5,
pp. 108–109, Setembro 2005.

[11] S. Otte, “Version control systems,” Computer Systems and Telematics,
Institute of Computer Science, Freie Universität, Berlin, Germany, 2009.

[12] SBC, “Currı́culo de referência da sbc para cursos de graduação em
bacharelado em ciência da computação e engenharia de computação,”
2005.

[13] R. W. Gerard, “Shaping the mind: Computers in education,” N. A.
Sciences, Applied science and technological progress, pp. 207–228,
1967.

[14] D. A. Wiley et al., The instructional use of learning objects. Agency
for instructional technology Bloomington, IN, 2002, vol. 1.

[15] IEEE, “IEEE standard for learning object metadata,” IEEE Std
1484.12.1-2002, pp. 1–40, Sept 2002.

[16] RhodeCode. Version control systems popularity in 2016. [2016].
[Online]. Available: https://rhodecode.com/insights/version-control-
systems-2016

[17] Nintendo and Intelligent Systems, “WarioWare: Smooth Moves,” 2006.
[18] J. Frost and S. Baird, “Dumb Ways to Die,” 2013.
[19] M. Overmars et al., “Game Maker.”
[20] M. Zechner et al., “LibGDX,” 2013.
[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[22] Coutinho, Flávio et al., “Brush my teeth plz,” 2016. [Online]. Available:
https://play.google.com/store/apps/details?id=br.cefetmg.games

[23] ——, “Meow au,” 2017. [Online]. Available: https://play.google.com/
store/apps/details?id=br.cefetmg.games.meowau20172

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Education Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 717


