
Procedural texture generation based on
Genetic Programming

Vinı́cius M. D’Assunção
Departamento de Computação

Centro Federal de Educação Tecnológica de Minas Gerais
Belo Horizonte, Brazil

viniciusvmda@gmail.com

Flávio R. S. Coutinho
Departamento de Computação

Centro Federal de Educação Tecnológica de Minas Gerais
Belo Horizonte, Brazil

fegemo@cefetmg.br

Abstract—The texture is one of the elements that give a realistic
aspect to an object in a game or animation. Textures can be
drawn by designers and also can be defined mathematically as
a function. This method is also known as procedural texture
generation. In this context, we present a procedural generator
based on Genetic Programming that provides a set of operations
capable of generating an image with similar characteristics given
a sample image but not necessarily with the same features.
This approach allowed us to create a tree formed by a set of
image manipulation operations. Besides, we created a framework
for procedural texture generation since we implemented several
image manipulation operators.

Index Terms—procedural texture, Genetic Programming

I. INTRODUCTION

The realistic appearance of objects in a digital image created
on the computer is the result of lighting, shading, and also the
texture applied on it. The texture consists of modifying the
appearance of an object’s surface, using an image, function,
or other data source [1].

Images repeated along the surface of an object can be used
as textures. Besides, textures can be described mathematically
by a function so that they are automatically generated, instead
of created by coloring their texture elements (texels). This
technique is known as procedural texture generation [2].

Procedural textures are an interesting alternative to image
textures because they have a more compact representation,
occupying a much smaller storage space, and also because
it is easier to generate small variations [3]. However, instead
of being created by someone with knowledge of art, they are
generated as a combination of transformations, which is not
typically part of the artists’ domain. Therefore, some works
have proposed to generate these textures in an automated way
from an example image texture. Among the most common
approaches are those based on Genetic Programming [4], [5]
and those based on Convolutional Neural Networks [6], [7].

The creation of textures from another image can be applied
in computer games. For generating different textures for an
object, it would only be necessary to change the parameters
of the operation so that small changes are made in the
output image. With that, it would be possible to create many
objects with a different look, but following the same pattern.
Considering a platform game with several levels, it would be
possible, for example, to create single textures for different

levels using only one image as an example, changing only the
parameters. It would provide more visual variety to the game.

In this study, we present a procedural texture generator
based on Genetic Programming that receives an image as input
and produces an image with similar characteristics but not
necessarily identical, and the transformation tree that generated
the output. Also, we present a framework for the procedural
texture generation with a series of image manipulation opera-
tions.

II. THEORETICAL FOUNDATION

Textures give a more realistic look to a surface where in-
stead of using a single color on the entire surface, it is possible
to map a 2D image on the 2D or 3D surface. In addition to
textures based on an image scanned or manufactured by an
artist, there are also procedural textures, which are textures
generated from an algorithm or a mathematical model [8].

Procedural textures have some advantages over image tex-
tures. Procedural representation does not have a fixed resolu-
tion and is more compact. Among its disadvantages, program-
ming can be complex and the result can be an unexpected
texture since its results are the consequence of the application
of several computational transformations. In addition, generat-
ing a procedural texture can be slower than accessing a texture
already stored on the disk [8].

There are several techniques for the procedural generation
of textures. Among them, we can highlight: Pseudo-random
Number Generators; Image filtering; Space Algorithms; Mod-
eling and Simulation of Complex Systems; and Artificial
Intelligence [9].

Briefly, the Genetic Programming algorithm maintains a
population of programs, and each one is assigned a fitness
value that indicates how well it is capable of solving the
problem. Then, selection methods choose the programs who
are best fit. Then, genetic operators are applied to modify them
to converge to a solution, generating the next generation of
individuals. The program with the best fitness value among
the population is chosen as the solution at the end of the
execution [10].

III. RELATED WORKS

Gentropy [4] uses Genetic Programming to find a program
capable of generating a procedural image similar to a pro-

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 411

vided sample image. In this implementation, each individual
represents an expression that returns a vector representing a
pixel of the image, that is, a vector of three positions that
correspond to the intensity of the colors red, green, and blue.
The operators used to return a pixel vector or a scalar that can
be used as a parameter for another operator. The evolution
process is guided by feature tests that evaluate color, shape,
and smoothness.

Despite not using images that could be useful for games as
input, such as tree barks, ground, and coatings, the generated
images were quite close to the input, with aptitudes between
60% and 78%. The average execution time was a negative
point due to the hardware limitations at the time (2002). The
algorithm took around 52 hours to evolve the set of operations
for generating the image.

Our study differs from Gentropy [4] by representing individ-
uals as expressions that return a full image, instead of a pixel.
With that, it is possible to use image processing techniques in
the image transformation process, applying filters that reduce
image noise, for example.

IV. ARCHITECTURE

Briefly, the procedural texture generation algorithm receives
a sample image as input. Then the population is initialized with
trees formed from the set of image operators, parameter oper-
ators, and terminals. For each tree, the program calculates the
fitness value, which indicates how well the generated image
relates to the input image. Then, the algorithm uses selection
methods for choosing programs with the best fitness values.
Afterwards, genetic operators are applied to modify them
to converge to a solution, generating the next generation of
individuals. At the end of the algorithm execution, it chooses
the tree with the best fitness value among the population as a
solution.

We used the Python programming language and the DEAP1

library in our implementation. This library provides resources
and implementations of Evolutionary Computing techniques.
In addition, we used some functions from the OpenCV2 library
to build the image manipulation operators.

A. Terminals

Terminals are used as parameters of the operators. The set
of terminals can contain both constants and variables. We
defined a set formed only by constants, containing the first nine
elements in the Fibonacci sequence starting from the number
1 and having no repeated elements. In addition, there is the
WHITE matrix, which consists of a completely white image.
We chose the Fibonacci sequence based on experimentation.

B. Operators

The set of operators contains image operators and parameter
operators. Image operators receive images or floating points as
arguments, process them on the received image or in a blank

1DEAP: https://deap.readthedocs.io/en/master/.
2OpenCV: https://opencv.org/.

image, and return the resulting image. The image operators
we used are:
noise: corresponds to Perlin noise [11], which generates

noise in a coherent structure.
stripes: generates stripes on the image.
checkerboard: creates a checkerboard texture in black and

white over the image.
rgb: adds color to the image.
sumImg: gives the weighted sum of two images.
bilateral: applies a filter that removes noise from the image

while preserving the edges.
erode: corresponds to a morphological operator that is able

to reduce the boundaries of the objects.
dilate: increases the boundaries of objects.

The parameter operators perform operations with the termi-
nals, so that it is possible to generate different parameters for
the image operators. We used the following set of operators:
sum, sub, mult, div, mod, log, sen, cos, avg, min, and
max.

C. Genetic Programming Algorithm

The program initializes the population with a fixed set of
individuals. Then, for each generation, one of the genetic
operators is applied until it generates a fixed set of children.
Then the children’s fitness is calculated and the selection is
made over the population and the children generated until it
produces a new set of individuals with a fixed size.

The initial population of programs is generated using the
ramped-half-and-half method [12] that consists of using the
methods full and grow for random population generation.
The grow method creates 50% of individuals in the population
by choosing the nodes of the tree at random where the size
of the tree varies within the defined minimum and maximum
range. The full method creates the other 50% of the popula-
tion by generating random trees of a defined size. The fitness
function is a combination of two fitness values, one based on
the generated image shape, and the other based on the color.

The fitness value based on the shape is given by the
getOrbMatch(img) function, which uses the Canny oper-
ator [13] for generating an image that highlights the edges.
Then, the ORB [14] function identifies the key points of the
generated image. Having the key points of both the sample
image and the image being evaluated, the Brute-Force Matcher
[15] method compares the distances between the key points of
the two images. Finally, the sum of these distances is divided
by the maximum value of the distance (product between the
height and width of the images) multiplied by the number of
key points. Thus, the higher the fitness value, the closer will
the generated image be to the target image in terms of shape.
Fig. 1 shows the fitness calculation steps in which the Canny
detector and the ORB function were applied.

The function getColourHistogramMatching(img) gives
the color-based fitness value. It returns the difference between
the histograms of the target image and the generated image.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 412

Fig. 1. From left to right: the sample image; the Canny operator output; the
key points detected by the ORB function in green.

Such difference is in the range of [0, 1] where the higher the
similarity value, the closer will the generated image be from
the target image in terms of color.

Equation 1 represents the fitness evaluation function f(i, g),
where imgi is the image generated by the individual i in the
generation g.

f(i, g) = 0.9 · getOrbMatch(imgi)

+0.1 · getColourHistogramMatching(imgi)
(1)

We weighted the image shape component to privilege it
over the color component, so it considers images similar even
if the color differs or the output colors are not in the same
proportion. For example, considering the first image of Fig. 1
as an input, if a checkerboard texture was generated with the
block colors alternated, both would be similar when comparing
them in terms of shape, whereas if we use a fitness function
based on the distance between the colors of the pixels, the two
images would not be considered similar since all the blocks
would have a different color.

The genetic operators are reproduction, crossing, and mu-
tation. The algorithm applies them to individuals after the
selection. The reproduction method selects an individual and
copies it to the new population. The crossing method selects
a node randomly in the tree of two individuals and switches
their subtree, that is, the node and all its children. The chosen
mutation method is the uniform, which randomly selects a
node in the individual’s tree and exchanges the subtree for
a randomly generated subtree of minimum and maximum de-
fined size. The end condition of the algorithm is the maximum
number of generations.

The algorithm output is an expression composed of the ter-
minals, described in Section IV-A and the operators described
in Section IV-B. This expression returns a three-dimensional
array in the format width× height×RGB vector.

V. RESULTS

The machine used to run the tests has an Intel Core i5-
5200U CPU @ 2.20GHz CPU with 2 cores and 8 GB RAM.
The operating system used was 64-bit Linux Mint 19.2.

We performed the tests using 6 sample images and the
program ran twice for each sample. The initial population was
150 individuals and the algorithm ran for 15 generations.

A. Qualitative

Fig. 2 shows all the input images and their respective
outputs for each test, and Fig. 3 shows one of the trees

generated in the tests. Visually analyzing the outputs, we can
observe that the textures of checkerboard, granite, and grass
were similar to their respective input images, but with some
differences. The generated checkerboard textures even have
more artistic elements than the original image. On the other
hand, the texture generated from bricks, sky, and water were
very different from the input images, as the algorithm does
not have any operator capable of generating rectangles in an
alternating pattern like those present in the brick texture. In
addition, the detected edges of the brick texture may cause
many false positives to be generated since the generated image
has borders in close regions and they do not respect the shape
of a rectangle.

The sky and water textures are very light and do not have
well-defined edges. This hindered the shape evaluation since
it is based on this property. The water texture has very few
visible edges after applying the Canny filter. On the other hand,
the applied filter maximized the details of the sky texture. This
created many key points, which ended up generating a lot of
false positives.

Fig. 2. The first column refers to the input image, the second shows the
Canny operator output, the third column highlights in green the key points
detected by the ORB function, and last two columns show the output image
for the two algorithm executions. The rows represent the following test cases:
checkerboard; bricks; granite; grass; water; and sky.

B. Quantitative

We present important evaluation metric for the algorithm
in Fig. 4: the likelihood of evolution leap [16]. This met-
ric informs the progress between successive generations, in
which the number of generations is averaged in which the
best individual has greater fitness than the best individuals
from previous generations. The test scenarios are in a range
between approximately 53% and 67%, which indicates that the
population is constantly evolving. The test scenario that has

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 413

bilateral

rgb sub

dilate log 34

noise log

21 sub 1 13

21 2

div 21

34 21

Fig. 3. Generated tree for the first granite output texture in Fig. 2. Generated
expression: bilateral(rgb(dilate(noise(21, sub(21, 2)), log(1, 13))),
sub(log(div(34, 21), 21), 34)).

the worst progress rate is the water texture, precisely because
it has a few key points after applying the Canny function, as
shown in Fig. 2. Thus, there are not many operations to be
done that can make this image look like the original image.

Checkerboard Bricks Granite Grass Water Sky
Sample image

0

2

4

6

8

10

12

14

Lik
el

ih
oo

d
of

 e
vo

lu
tio

n
le

ap

Likelihood of evolution leap x Sample image

Fig. 4. Likelihood of evolution leap per sample image graph.

VI. CONCLUSION

The objective of the present work was to create a program
that receives an input image and generates a set of operations
capable of generating an image with similar characteristics,
but not necessarily equal to it.

Given the challenge of evaluating whether an image is
similar to another, part of this analysis had to be done visually
and some generated images were very similar to the input
images, adding even more artistic elements and therefore, can
be used in the process of creating textures for games. The artist
could use a texture from his image library to generate similar
textures, and he could also edit the parameters and operators
of the generated expression to attend his demand.

The present work also created a framework for procedural
texture generation, since all the operators created can be reused
to implement other approaches. In addition, we used another
strategy for procedural image generation based on genetic
programming in which the expression output resulting from
the algorithm is capable of generating an image, instead of
generating only a vector representing a pixel (as in [4]). This

enabled the use of image processing operators such as the
bilateral filter and the erosion and dilation operators, which
made it possible to generate more realistic images.

However, the algorithm has limitations about the complexity
of the input image, not being able to generate forms that are
not covered by its set of operators. The algorithm is also unable
to generate textures from images that do not have well-defined
edges or that have low contrast. In addition, it has a high
computational cost for manipulating matrices in most of its
operators and for having to compile the expressions whenever
an individual is evaluated.

As future work, we suggest implementing parallel program-
ming to decrease the algorithm execution time, the use of some
evolutionary model or algorithm to find out what would be the
best input parameters, the removal of the operator that adds
color to the texture, working with grayscale and adding the
color only after generating the texture, and the use of another
fitness function when the algorithm detects that an image does
not have well-defined edges since the method used based on
the shape cannot interpret that kind of image. A comparative
study could also be done to find out which fitness function
has the best results.

REFERENCES

[1] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-time rendering.
Crc Press, 2019.

[2] D. Hearn, M. P. Baker, and W. R. Carithers, Computer graphics with
OpenGL. Upper Saddle River, NJ: Pearson Prentice Hall,, 2014.

[3] D. Ginsburg, B. Purnomo, D. Shreiner, and A. Munshi, OpenGL ES 3.0
programming guide. Addison-Wesley Professional, 2014.

[4] A. L. Wiens and B. J. Ross, “Gentropy: evolving 2d textures,” Computers
& Graphics, vol. 26, no. 1, pp. 75–88, 2002.

[5] A. Hewgill and B. J. Ross, “Procedural 3d texture synthesis using genetic
programming,” Computers & Graphics, vol. 28, no. 4, pp. 569–584,
2004.

[6] L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convo-
lutional neural networks,” in Advances in neural information processing
systems, 2015, pp. 262–270.

[7] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky, “Texture
networks: Feed-forward synthesis of textures and stylized images.” in
ICML, vol. 1, no. 2, 2016, p. 4.

[8] D. S. Ebert and F. K. Musgrave, Texturing & modeling: a procedural
approach. Morgan Kaufmann, 2003.

[9] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Transactions on Multi-
media Computing, Communications, and Applications (TOMM), vol. 9,
no. 1, p. 1, 2013.

[10] A. Pozo, A. d. F. Cavalheiro, C. Ishida, E. Spinosa, and E. M. Rodrigues,
“Computação evolutiva,” Universidade Federal do Paraná, 61p.(Grupo
de Pesquisas em Computação Evolutiva, Departamento de Informática-
Universidade Federal do Paraná), 2005.

[11] K. Perlin, “An image synthesizer,” ACM Siggraph Computer Graphics,
vol. 19, no. 3, pp. 287–296, 1985.

[12] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. MIT press, 1992, vol. 1.

[13] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on pattern analysis and machine intelligence, no. 6, pp. 679–698,
1986.

[14] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in 2011 International conference on computer
vision. Ieee, 2011, pp. 2564–2571.

[15] A. Jakubović and J. Velagić, “Image feature matching and object
detection using brute-force matchers,” in 2018 International Symposium
ELMAR. IEEE, 2018, pp. 83–86.

[16] K. Sugihara, “Measures for performance evaluation of genetic al-
gorithms,” in Proc. 3rd. joint Conference on Information Sciences.
Citeseer, 1997, pp. 172–175.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 414

