
An implementation of the 7 Wonders board game
for AI-based players

Julio Pinto Coelho Ribeiro Jardim
Department of Applied Computing

Universidade Federal de Santa Maria
Santa Maria, Brazil
jcoelho@inf.ufsm.br

Rafael Vales Bettker
Department of Applied Computing

Universidade Federal de Santa Maria
Santa Maria, Brazil
rvales@inf.ufsm.br

Pedro Probst Minini
Department of Applied Computing

Universidade Federal de Santa Maria
Santa Maria, Brazil

ppminini@inf.ufsm.br

Gabriel Gomes Pereira
Department of Applied Computing

Universidade Federal de Santa Maria
Santa Maria, Brazil

ggpereira@inf.ufsm.br

Júlia Gabriela Santi Acosta
Department of Applied Computing

Universidade Federal de Santa Maria
Santa Maria, Brazil
jgacosta@inf.ufsm.br

Joaquim Vinícius Carvalho Assunção
Department of Applied Computing

Universidade Federal de Santa Maria
Santa Maria, Brazil
joaquim@inf.ufsm.br

Abstract—Although we can make theoretical models and get
patterns through data mining, proving a Nash equilibrium for a
complex game is nearly unfeasible without a robust environment
for testing. Artificial intelligence (AI) techniques rely on self-
learning and benefit from massive numbers of matches. Thus,
for any complex game, achieving a Nash equilibrium requires an
environment that allows agents to evolve through self-play. This
work describes an implementation of the board game 7 Wonders
aimed to allow the creation, improvement, and testing of AI
agents. To do so, we developed an efficient C++ implementation
capable of running hundreds of games per minute, using simple
JSON files as input and output. Thus, the input can accept any
language or AI method, as long as the output can be written on
a text file. Furthermore, all the step-by-step actions are recorded
creating a complete log of the game, which can be used to improve
the agents towards a Nash equilibrium.

Index Terms—Software Engineering, Artificial Intelligence,
Boardgames, 7Wonders

I. INTRODUCTION

There are many challenges concerning the application of
Artificial Intelligence (AI) techniques in games. Even with
the constant breakthroughs, such as checkers [1], chess [2],
go [3], poker [4], and StarCraft II [5], the state-of-the-art
does not belong to a single and powerful model, but tai-
lored and carefully implemented solutions. The intersection
between these state-of-the-art solutions is the use of neural
networks with reinforcement learning, preceded by an ini-
tially supervised learning step [5]. Although the results are
impressive, the computational efficiency was never the main
focus, since all these breakthroughs used high-end GPUs and
no constraints for training time. There are not many efforts
to make lightweight and efficient intelligent agents, even with
the mobile world constantly growing.

In addition to the required computation, board games with
stochastic and adaptive characteristics are barely targeted for
research in AI (see Section II). Board games like chess are
deterministic and a move on the board has specific conse-
quences. Other board and card games are stochastic and a

specific action can cause one of many consequences, each one
with a predictable probability. Building an intelligent agent
capable of challenging humans in such an environment is not
an ordinary task. Thus, to properly implement and test an
intelligent agent for 7 Wonders (see Section III), we needed
a computer program that could emulate the game, taking the
game inputs, processing them, and outputting the game status.

The goal of this work is to allow different implementations
of AI agents, for 7 Wonders, based on machine learning
or symbolic AI. Many theoretical models can be tested on
datasets; however, stochastic environments such as 7 Wonders
are an ongoing challenge, in which the defined rules can be
used to benchmark AI techniques.

Beyond the scope of this work, our ultimate goal is to
achieve a Nash equilibrium [4] for the game. A Nash equilib-
rium is a perfect strategy in the sense that no other strategy
can have more gain in the long run. For instance, a Nash
equilibrium for a Rock-Paper-Scissors game is just played one
of the three with a 1/3 probability. Anything that deviates
from this is vulnerable to exploitation. E.g., if a person gets
used to playing more Scissors, the opponent could exploit
this behavior by increasingly playing Rock. Which, in turn,
could be exploited by another playing Paper. In chess, for
instance, some openings allow the player to win the game very
fast, but they are extremely risky, allowing good players to
counter them, consequently getting the advantage in the game.
Although there is no proved Nash opening, there are a set of
openings well know and frequently used by professionals.

Although we can make theoretical models and get patterns
and strategies through data mining [6], proving a Nash equi-
librium for a complex game is unfeasible without a test envi-
ronment. To do so, we developed an efficient implementation
capable of running several games per minute, the bottleneck
being the decision time of the bot for deciding the next move.

Our program reads text files as input, with some being
formatted as JavaScript Object Notation (JSON). The proper

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 387



formatting is shown on Tables I and II. The game outputs
information that is human readable, also formatted as JSON,
so the player or bot developer can keep up with the current
status of the game. The implemented game generates detailed
data about a hand-by-hand match, this time as a CSV file,
which can later be used to fine-tune the AI algorithm.

In Section IV we show the architecture and how it can be
used to train and test AI agents, along with a demonstration
of how to use an AI in the game (Section V).

II. RELATED WORK

Rubin et al. [7] used an upper confidence tree (UCT) search
to develop a bot for Settlers of Catan, optimizing it to improve
its victory rate, without relaxing the rules of the game. The
UCT-based implementation was able to bargain and exchange
resources with other players.

Robilliard et al., [8] wrote about the Monte Carlo tree search
(MCTS) algorithm for creating an AI for the 7 Wonders game.
They implemented using a MCTS with susceptible levels, in
which the nodes correspond to the possibilities of plays. A
second AI was implemented deterministic, using fixed rules.
In the end, they compared the two AIs, showing that the first
had better results.

In this work, we developed an implementation of 7 Won-
ders. The software uses a simple file reading as input; allowing
the use of bots, created with different AI techniques, and from
any programming language capable of writing text files. We
also used a rule-based system to develop and test the bot,
placing three bot instances to play the game against each other,
similarly to [7] and [8]. However, unlike [7] that compared
the win rate with another work, our work has the goal to be
an environment for testing AI techniques. Thus, the first agent
developed has the only purpose of illustrating the use of agents
in the game.

III. 7 WONDERS OVERVIEW

7 Wonders is one of the most awarded boardgames, played
from 2 to 7 players, where each player receives a board
representing one of the seven wonders of the ancient world.
The game is split into three ages, which have cards that
are divided into seven types: civil, scientific, commercial and
military structures, raw materials, manufactured goods, and
guilds. Fig. 1 displays the board of one player from our game
implementation.

Civil, scientific, and guild cards generate victory points
(VPs), commercial cards provide coins or advantages in pur-
chases in the commerce, and military cards grant shields
for conflicts. Furthermore, cards related to raw materials and
manufactured goods generate the necessary resources for the
construction of the structures initially mentioned.

At the end of each age, battles occur between adjacent
players, winning the one who possesses more shields. For each
conflict won at the end of the first, second, and third ages; one,
three, and five VPs are gained, respectively. A lost battle is
penalized with the loss of one VP.

Fig. 1. A screenshot, from our implementation, that shows a player’s board,
buttons for choosing the action, cards in hand, cards played, resources, and
the victory points.

At the end of the third age, the VPs of each player are
counted and whoever has more points wins the match. Detailed
rules can be found in the game manual1.

IV. IMPLEMENTATION ARCHITECTURE

A. Game simulation

To test the bots, there was a need for an application that
can yield results of the simulation. By receiving commands
in the JSON format – which can be easily utilized by bots –,
our implementation can accurately simulate a full match. More
specific actions (e.g. choosing which resource to produce for
cards that can produce one or the other) were automated to
reduce the quantity of information passed through the JSON
file, maintaining it as simple as possible.

B. Class Descriptions

Explained below are all the classes of the game, which can
be visualized in Fig. 2.

1) Game: The main class of the program, responsible for
managing the flow of the game by connecting every other
class and their methods. Specifically, the Game class manages:

• Game start and end;
• Dealing of cards and passage of turns and ages;
• Input commands (e.g. build_structure, discard, etc.);
• Recording the game status.
2) Player: Mainly responsible for managing all the actions

that may be performed by the player and also keeping track
of their resources. Examples include:

• Battles and resource management;
• Building Wonder stages and structures;
• Applying Wonder effects.
3) Card: Contains all the information regarding 7 Wonders

cards, such as the required resources to play them, chaining
information, specific age where the card is available, name,
and so forth.

1https://rprod.com/uploads/file/7WONDERS_RULES_US_COLOR.pdf

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 388



Fig. 2. Class diagram showing the project main methods

4) Wonder: Describes all the boards available in the game.
Specifically, there is a main Wonder class from which all the
particular subclasses (e.g. Olympia_a, Babylon_b, etc.) derive
by inheritance. Each subclass contains basic information, such
as the current built stage, initial production, resources required
for the next stage, and so forth.

5) Filer: Manages the input and output of the program.
It is responsible for:

• Reading the ready.txt file to verify if each player acted
in the current turn;

• Reading each player_i.json file, which contains the
current play of the i player;

• Writing the game log.
In summary, the methods contained in Filer are the channel

of communication between the bots and the game. Filer is
directly managed by the Main class.

C. Input-Output

JSON format files are used for input and output. Files
named player_i.json are meant for players to write the
commands. They also must append a single “ready" to a file
named ready.txt, so the game will check if everyone is
ready. The game handles deleting the contents of ready.txt,
so the players must only overwrite player_i.json. The input
consists of a command file for each player, containing two
arguments:

• A command, which may be to build a structure, a stage
of wonder, discard or special actions;

• A card name.
As a result of each round, an output file called

game_status.json is generated containing the current state
of the game with updated information for each player, such
as the cards in hand, cards that can be played, cards already
played, resources, partial victory points, stages of wonder built,
etc. An error file can also be generated if the player has written
an invalid command or one which cannot be performed by any

game rules, such as lack of resources. At the end of a match,
the output is a file with the final results of the game.

Table I and Table II show the structure of the JSON file, as
well as possible game commands.

TABLE I
JSON INDEXES

Index Meaning
command Top-level JSON object.
subcommand Command to be executed.
argument Card name to be used by subcommand.
extra Card name (when playing a discarded card).

TABLE II
VALID SUBCOMMANDS

Subcommand Action
build_structure Tries to play a card if there are enough resources.
build_hand_free Tries to play a card for free (Olympia A-2).
build_wonder Tries to build the next stage of the Wonder.
discard Discards the selected card for coins.

Except for Olympia A second stage’s effect
(build_hand_free), every other Wonder special is called
automatically. Note that extra in Table I will only be used
by Halikarnassus players, as it is possible to play two cards
in the same turn right after certain stages are constructed.

V. BOT DEVELOPMENT

As the main purpose of this work is to facilitate the creation
of AI-based players; we create an input-output interface as
simplified as possible. The only knowledge required is the
operations (for game actions) and its files (only two); one file
to read, and one file to write. Thus, any programming language
capable of reading and writing text files can be used.

A simple bot can be created just by reading the avail-
able cards, selecting a random buildable card, and writing

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 389



the command in the player_i.json file. Supposing the
game_output.json file has the following text:

"players":{ 0:{
...
"cards_hand":[

"Marketplace", ...
]

}}

The bot could choose to try building Marketplace, by
writing to the corresponding player_i.json file, such as:

"command":{
"subcommand": "build_structure",
"argument": "Marketplace",
"extra":""

}

And then appending a single ready to the ready.txt file,
marking the play as finished.

VI. RULE-BASED AI

To test the software performance, as well as to create data
for training future bots, we created a basic agent-based on
previously mined rules [6] and a guide available in the Board
Game Arena website2. The bot changes weights mainly based
on the current Wonder, board, and table configuration. Table
III shows an example with simple conditions for assigning
weights to each card.

TABLE III
EXAMPLE RULES

Weight Weight
Card name Condition if True if False
Stone Pit You have less than 2 raw materials 3 1
East Trading Post You do not have raw material and 4 1

your east neighbor has
Craftmen’s Guild Neighbors have more than 3 4 1

manufactured goods
... ... ... ...
Palace 5

The action of building a card receives a weight relative
to the available rules. If there is more than one card option
with the highest weight, a random choice is made between
them. On each round, the agent observes the changes in the
game_status.json file, which has game-state information.
When a new round begins, the model checks which cards are
available to be played and gets the weight of each one from
the predefined rules.

VII. RESULTS

To evaluate the implementation, we performed two different
tests3. The first test was aimed to calculate the implementation
time, simulating an agent without spending time deciding the
action. To do so, the bot applies the first possible action: build

2https://en.boardgamearena.com/forum/viewtopic.php?f=192&t=14557
3The experiments were performed with 1000 runs on an Intel Core i5-

7200U 2.50 GHz processor with 8 GB DDR4 RAM.

the wonder stage, build a structure or discard (if there is no
playable card). This experiment retrieved an average time of
70 milliseconds per match (850 matches per minute). For the
second test, we used the AI agent described in Section VI.
This agent retrieved an average time of 180 milliseconds per
game (330 games per minute).

Also, the experiments generated log files containing the
hand-by-hand matches – cards played, resources, cards in
hand, card and action chosen by each player for each turn
– that can be used as an initial supervised step to feed AI
algorithms that require a large amount of data to be trained
efficiently.

VIII. FINAL REMARKS

We developed an efficient implementation4 of 7 Wonders
capable of running hundreds of games per minute reading
ordinary JSON files as input (Section IV-A). Although the
file-based input and output affect the performance, it makes it
easier for developers to create their own agents. Furthermore,
the implemented game generates detailed data about a hand-
by-hand match, which can be used to train and improve AI
models.

We showed the basic details of the architecture, so other
developers may improve the game and create their own AI
(Section IV-B). Furthermore, we created a basic rule-based AI
which generates data to be fed into a machine learning model.
As a work in progress, our final goal is to deliver an AI capable
of challenge top-level players. This AI will be closer to a Nash
equilibrium, based on hundreds of game statistics and winning
patterns [6], and fed with thousands of 7 Wonders matches,
extracted from this work.

REFERENCES

[1] J. Schaeffer, One Jump Ahead: Challenging Human Supremacy in Check-
ers. Springer New York, 2013.

[2] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep blue,” Artificial
intelligence, vol. 134, no. 1-2, pp. 57–83, 2002.

[3] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the
game of go with deep neural networks and tree search,” Nature, vol. 529,
pp. 484–489, 01 2016.

[4] N. Brown and T. Sandholm, “Superhuman ai for multiplayer poker,”
Science, vol. 365, no. 6456, pp. 885–890, 2019.

[5] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets,
M. Yeo, A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, J. Quan,
S. Gaffney, S. Petersen, K. Simonyan, T. Schaul, H. van Hasselt, D. Silver,
T. P. Lillicrap, K. Calderone, P. Keet, A. Brunasso, D. Lawrence,
A. Ekermo, J. Repp, and R. Tsing, “Starcraft II: A new challenge for
reinforcement learning,” CoRR, vol. abs/1708.04782, 2017.

[6] J. Assunção, G. Pereira, J. Acosta, R. Vales, and L. Rossato, “Data mining
7 wonders, the board game,” in Proceedings of SBGames 2019, pp. 583–
586, 2019.

[7] G. Rubin, B. Paz, and F. Meneguzzi, “Optimizing uct for settlers of catan,”
in Proceedings of SBGames 2017, pp. 221–227, IEEE, 2017.

[8] D. Robilliard, C. Fonlupt, and F. Teytaud, “Monte-carlo tree search for
the game of “7 wonders”,” in Workshop on Computer Games, pp. 64–77,
Springer, 2014.

4The source code is publicly available at https://github.com/dmag-ufsm/
7Wonders

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 390


