
Combining Constructive Procedural Dungeon
Generation Methods with WaveFunctionCollapse in

Top-Down 2D Games
Pedro Probst Minini

Department of Applied Computing
Universidade Federal de Santa Maria (UFSM)

Santa Maria, Brazil
ppminini@inf.ufsm.br

Joaquim V. C. Assunção
Department of Applied Computing

Universidade Federal de Santa Maria (UFSM)
Santa Maria, Brazil
joaquim@inf.ufsm.br

Abstract—Recent development of new procedural generation
algorithms may provide an expanded generation pipeline to game
programmers and designers. This work provides insight into
how to combine the innovative WaveFunctionCollapse (WFC)
with traditional and well-known constructive dungeon genera-
tion algorithms to create architecturally interesting and diverse
environments, while discussing the strengths and weaknesses of
utilizing WFC as part of the dungeon generation process and how
the algorithms may interact with each other. Finally, we briefly
show how our generation system works and outline possible next
steps for our work.

Index Terms—procedural content generation, procedural dun-
geon generation, wave function collapse

I. INTRODUCTION

It is well known that procedural content generation (PCG)
provides a greater degree of replay value in games – besides
the consequence of cutting production costs. Depending on
the game genre, PCG may be utilized densely or scarcely, and
in a variety of ways: in the generation of items, quests, envi-
ronments, characters, and further on. It has become common
for PCG to be present from AAA titles to independent (indie)
games.

However, PCG is more densely observed in the indie gaming
community, mainly because it is composed of smaller devel-
opment teams. In recent years, roguelikes and similar genres
have been responsible for popularizing and thus pushing the
boundaries of procedural generation even further. For instance,
Dwarf Fortress – a colony-builder/sandbox game – simulates
the whole history of a fictional world as a way to create unique
storytelling [1]. The roguelike Caves of Qud makes creative
use of procedural generation of environments and narrative [2]
to simulate a dying earth themed world, with its own ruins,
ancient sultans, and cults.

Due to its broad research spectrum, this work focuses
on a single aspect of PCG: procedural dungeon generation
(PDG). Specifically, we show – in a simple way – how to ex-
pand a generic implementation of the WaveFunctionCollapse1

1Originally developed by Maxim Gumin and publicly available at
https://github.com/mxgmn/WaveFunctionCollapse

(WFC) algorithm with traditional and well-known constructive
generation methods. While dungeon generation pipelines are
constructed and polished through the whole development of
a game, this work may shed some knowledge on how to
creatively combine different generation algorithms to create
interesting top-down 2D environments.

II. RELATED WORK

In Roguelike Celebration 2019, Brian Bucklew [3] described
his dungeon generation pipeline in Caves of Qud – which was
the first commercial game to adopt WFC. Unfortunately, only
a few works in academia are related to using WFC.

In one of the first published papers on WFC, Karth and
Smith [4] explained the algorithm and its strengths, while
formulating it as an answer set programming (ASP) problem.
Furthermore, they showed WFC being used to generate levels
in games and even poetry.

Scurti and Verbrugge [5] show how can WFC be modified
to create interesting randomized paths for non-playable char-
acters (NPCs) in games.

Kim et al. [6] proposes a graph-based WFC algorithms
instead of its common grid-based implementation, to facilitate
the use of PCG in graph space and 3D worlds efficiently.

Sandhu, Chen and McCoy [7] describe an implementation of
WFC integrating specific design constraints to generate levels,
through non-local constraints and dynamic weighting, thus
providing more control of the developer over the algorithm.

Finally, our work is unique in the sense that we show how
to use a standard implementation of WFC (adapted to game
tiles) in a practical way conjunctively with other algorithms
commonly used in top-down 2D games – expanding on
Bucklew’s presentation [3].

III. METHODS

There are countless PDG techniques publicly available
online. Valuable information can be acquired through game

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 395



websites, wikis2, social networks3 and development blogs4.
Although “dungeon” is a term utilized extensively, they may
not always represent a secluded, closed space: informally, PDG
methods can also comprise the generation of less claustropho-
bic environments like forests, valleys, and canyons.

In this work, the selected algorithms are summarized in
Table I. Following Togelius’ et al. PCG taxonomy [8], all
these algorithms are stochastic and generated during the run-
time of the game. They also have some degree of control
through parametrization, although this can be implementation-
dependent.

TABLE I
BRIEF COMPARISON BETWEEN CHOSEN ALGORITHMS

Algorithm Gen. Method Input Output Conectivity Complexity
Drunkard Walk Constructive Filled TDCL Depends Low
Cellular Automata Constructive Chaotic TDCL No Low
BSP Dungeon Constructive Filled TDML Yes Medium
Digger Constructive Filled TDML Yes Medium
WFC Search-based Any Input-depend. No High

A filled input corresponds to a list of tiles representing a
map (or dungeon) where all the tiles are of a single, solid type;
a chaotic input represents a mix of tile types. The output of
each algorithm can be top-down cavern-like (TDCL), top-down
mansion-like (TDML) – separated rooms typically connected
with corridors – (see [9]) or locally similar to the input (input-
dependent). “Complexity” is related to the implementation
difficulty.

Our repository with the implementation of each algorithm
as part of a game prototype is publicly available on GitHub5.

A. Drunkard Walk and Cellular Automata

The Drunkard Walk and Cellular Automata (CA) [10] algo-
rithms can be used together to create cave systems and forests.
As the Drunkard Walk algorithm generates chaotic maps, and
the Cellular Automata algorithm is specifically made to work
with chaotic inputs, they are naturally associative.

The Drunkard Walk is essentially a random walk algorithm.
It uses agents that “dig” the filled map, generating a single cave
(when the agents are started in the same position) or a cave
system (when agents are started in different positions). The life
span of each agent, and the direction followed at each step, are
randomly determined from a chosen range, and the number of
agents is increased with each iteration of the algorithm, which
depends on the number of floor tiles desired. In the algorithm
mode for the generation of a cave system instead of a single
cave, connectivity between regions is not ensured.

The Cellular Automata algorithm for generating dungeons
works based on a chaotic map (typically between 40% and
50% of floor tiles) as an input. Based on user-defined rules,

2See http://pcg.wikidot.com/ and http://www.roguebasin.com/
3There is a subreddit where various developers post their experiments with

content generation. See https://www.reddit.com/r/proceduralgeneration/
4Since 2013, Cogmind developer Josh Ge maintains a blog where he

goes in detail about his experience with different technical aspects of game
development. See https://www.gridsagegames.com/blog/

5See https://github.com/pprobst/tcc-ufsm-2020

the map is “smoothed” in n iterations; the greater the number
of iterations, the greater the smoothing suffered on the map.

The neighboring tiles to be considered can follow Moore’s
neighborhood (orthogonal and diagonal neighbors) or von
Neumann’s neighborhood (only orthogonal neighbors). The
programmer has flexibility in making his own rules. However,
the more rules are inserted, the slower the algorithm will run;
depending on the size of the generated map, it can harshly
impact performance.

B. BSP Dungeon

The Binary Space Partitioning (BSP) Dungeon algorithm is
one of the most commonly used TDML algorithms and it is
based on the subdivision of space and the subsequent addition
of rooms in the generated spaces, based on a BSP tree.

Fig. 1. Visual representation of the BSP dungeon generation algorithm. Image
adapted from RogueBasin.

After the insertion of the rooms – which can be of any form
–, the room list can be reordered by position, size, among other
attributes. The connections between the rooms are usually
made sequentially; therefore, the order of the rooms in the
list will govern how the rooms will be connected, changing
the final result.

C. Digger/Tunneler

In addition to the BSP Dungeons algorithm, Digger [11] (or
Tunneler) is another algorithm used to generate TDML maps.
In this algorithm, the generated rooms are typically derived
from a centrally located room. At each iteration, a random
edge index of the room being analyzed is chosen; and from
this index, another room is generated in the same direction as
the edge, chosen at a randomly determined distance. After that,
the two rooms are connected by a “narrow room”, defining a
corridor. The algorithm ends when the maximum number of
iterations has been reached, which potentially indicates the
impossibility of inserting rooms of the requested size.

Despite sharing a common name, the Digger algorithm tends
to be severely modified between implementations, albeit the
core idea remains the same.

D. WaveFunctionCollapse

The WaveFunctionCollapse algorithm (Fig. 3) was the only
search-based algorithm chosen for comparison, due to its
innovative aspects and increasing use in the industry. WFC
takes a small input (image or tile map) and generates a larger
output which is locally similar to the input. Originally made
to work with pixel values on images, it was adapted in this
work to accept generic tile types. Our implementation derived
from [12].

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 396



(a) Drunkard + CA cave. (b) CA forest with a centrally located
handmade structure.

(c) BSP with random tunnels. (d) BSP + CA.

(e) Digger. (f) Digger + CA.

Fig. 2. Six 80x60 outputs of the constructive algorithms. Note how details
like vegetation, structures and doors (orange ‘+’ characters) can be inserted as
a post-process step. CA can also be combined with essentially all algorithms
to produce distinct results, like the BSP-derived ruins in (d) and the “inverted
digger” in (f).

Essentially, WFC is a complex solver [4] – each cell of fixed
size on the map initially has the possibility to accept all the
tile patterns generated from the partitioned input (which are
reflected, rotated, and so forth), and from the adjacency rules
(based on similarity in the Overlapping model [12]) the set
of patterns is reduced until the cell is “collapsed”, i.e., it has
only one possible pattern. The changes are propagated from
the current cell being analyzed to the neighboring cells, which
also have their sets of possibilities reduced; as an analogy, this
step works similarly to a game of Sudoku.

The algorithm ends when all the cells on the map are
collapsed; otherwise, the algorithm arrives at a contradiction
– in this case, it can start over or backtrack, depending on
the implementation. Each collapsed cell is then translated as
output. WFC is highly dependent on the input structure. Thus,
the quality of the generated map mainly depends on the input.

It is important to note that WFC is not a panacea. While
experimenting with WFC, Bucklew [3] encountered some
drawbacks:

1) Homogeny: there is no inherent large structure (e.g. a
village of rectangular houses may not have a cathedral).

(a)

(b)

Fig. 3. (a) shows an output of the original WFC by Maxim Gumin applied to
bitmap images, taking into account the pixel values. (b) shows an output of
our implementation of WFC applied to tiles, taking into account the tile type
(wall, floor, water, etc.) and using a tile size partition of 5 (the input totals
15x15 tiles in size). The output is cropped from a larger 80x60 map.

• Solution: as a pre-processing step, select a large
region on the map and run WFC inside it to generate
internal architecture.

2) Overfitting: adding more detail often results in overfit-
ting small details, reducing the variability of the output.

• Solution: inserting the small details (doors, furni-
ture, etc.) as post-processing steps instead of adding
them on the input.

3) No connectivity: WFC has no way to ensure connectivity
between regions.

• Solution: run a connection algorithm as a post-
processing procedure.

Comparing to our work, all the problems above were more
prominent when smaller tile sizes were chosen to partition
the input. Also, if there are identifiable larger structures in
the input, a larger tile size may be needed to partition the
input, otherwise the larger structures will simply be incorrectly
represented in the output (e.g. discontinuities). The problem
with using larger tile sizes is the decrease of output variability,
but it is a way to circumvent the limitations of WFC regarding
large structures. Interestingly, with larger tile sizes, the “mix-
and-match” essence of WFC becomes clear.

Because of such problems, WFC (in the context of top-
down 2D games) may be better used as an algorithm to gen-
erate interesting internal architecture instead of large, complex
structures. This reinforces the notion that WFC is best used
when combined with other PDG algorithms, i.e., WFC may
be utilized as just another step in the generation process.

IV. GENERATION SYSTEM

To test the dungeon generation methods, we needed a simple
yet effective system. In our system, a Map structure represents
all the visual information contained in a dungeon, storing tile
and entity (player, mobs and items) information. A Map can
be created using the Map Generator structure, which in turn
can call the various generation pipelines implemented.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 397



Base Pipelines are used to generate “basic” environments
utilizing the various algorithms discussed in Section III. Spe-
cific Pipelines are functions that use the Base Pipelines to
generate more complex dungeons (Fig. 4).

Fig. 4. Example output (80x60) created by a specific pipeline. Blue region: a
small forest generated with Cellular Automata (CA). Red region: this is a case
where a larger tile size partition was used to generate exterior architecture with
WFC. Yellow region: mostly vertically connected rooms created with BSP
Dungeon. Pink region: cave created with Drunkard Walk and subsequent steps
of CA (note the distinction between shallow water and deep water, created
purely through rule manipulation).

Note that various algorithms utilized (Table I) do not as-
sure total connectivity, and by combining different generation
methods together we run a greater risk of creating inaccessible
regions. The connectivity problem can always be solved as a
post-process pass; in our case, we simply utilize the flood
fill algorithm to detect isolated regions on the map. After
collecting the different regions in a list (which may be sorted
according to one’s needs), we detect the edges of each region
and calculate the closest point between two regions, and then
a connecting tunnel is carved on the map. The result can be
easily seen on Fig. 4, as the tunnel between the yellow and
pink regions (bottom right).

Finally, in Fig. 5 we show three outputs of WFC being used
to generate internal architecture for rooms already created.

Fig. 5. Cropped WFC outputs used as internal architecture for rooms
generated with the Digger algorithm. Because WFC can technically accept
any tile, it is also possible to insert mobs (red characters) and general furniture
(magenta characters), thus creating a basic spawning system – which may be
interesting for small treasure rooms (vaults).

V. CONCLUSION

Through experimentation and simple generation pipelines,
our work showed how can different PDG methods be com-

bined to create interesting top-down 2D environments through
localized generation with WFC. While most roguelikes depend
on a single Base Pipeline for each dungeon level and prefab-
ricated (handmade) structures, we encourage developers to try
and experiment with mixed pipelines to generate more diverse
and/or organized maps.

Our next steps may include – besides the further devel-
opment of our pipelines – the exploration of other aspects
of PCG, such as procedural generation of narrative, culture,
societies and politics. Mark R. Johnson’s roguelike Ultima
Ratio Regum [13] is a prime example of exploration of such
topics, in which they all act intertwined through Qualitative
Procedural Generation (QPG). Furthermore, the algorithms
here presented can also be translated to 3D, including WFC
[14]. The use of Artificial Intelligence (AI) in PCG is also in
crescent use, as recent experiments with PCG via reinforce-
ment learning [15] and through generative playing networks
[16] show that it is a promising study area, and may also be
part of our future work.

REFERENCES

[1] B. in het Veld, B. A. Kybartas, and R. Bidarra, “Procedural generation
of populations for storytelling,” 2015.

[2] J. Grinblat and C. B. Bucklew, “Subverting historical cause & effect:
generation of mythic biographies in caves of qud,” in Proceedings of
the 12th International Conference on the Foundations of Digital Games,
pp. 1–7, 2017.

[3] C. B. Bucklew, “Dungeon generation via wave function collapse.”
https://youtu.be/fnFj3dOKcIQ, 2019. Accessed: 2019-12-09.

[4] I. Karth and A. M. Smith, “Wavefunctioncollapse is constraint solving
in the wild,” in Proceedings of the 12th International Conference on the
Foundations of Digital Games, pp. 1–10, 2017.

[5] H. Scurti and C. Verbrugge, “Generating paths with wfc,” in Fourteenth
Artificial Intelligence and Interactive Digital Entertainment Conference,
2018.

[6] H. Kim, S. Lee, H. Lee, T. Hahn, and S. Kang, “Automatic generation
of game content using a graph-based wave function collapse algorithm,”
in 2019 IEEE Conference on Games (CoG), pp. 1–4, IEEE, 2019.

[7] A. Sandhu, Z. Chen, and J. McCoy, “Enhancing wave function collapse
with design-level constraints,” in Proceedings of the 14th International
Conference on the Foundations of Digital Games - FDG '19, ACM Press,
2019.

[8] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[9] B. M. F. Viana and S. R. dos Santos, “A survey of procedural dungeon
generation,” in 2019 18th Brazilian Symposium on Computer Games
and Digital Entertainment (SBGames), IEEE, oct 2019.

[10] L. Johnson, G. N. Yannakakis, and J. Togelius, “Cellular automata for
real-time generation of infinite cave levels,” 2010.

[11] N. Shaker, A. Liapis, J. Togelius, R. Lopes, and R. Bidarra, “Construc-
tive generation methods for dungeons and levels,” in Procedural Content
Generation in Games, pp. 31–55, Springer, 2016.

[12] S. Sherratt, “Procedural generation with wave function collapse.”
https://gridbugs.org/wave-function-collapse/, 2019. Accessed: 2020-02-
10.

[13] M. R. Johnson, “Towards qualitative procedural generation.”
https://youtu.be/Mk-TmpSUb54, 2016. Accessed: 2020-06-24.

[14] O. Stålberg, “Wave function collapse in bad north.”
https://youtu.be/0bcZb-SsnrA, 2018. Accessed: 2020-06-24.

[15] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius, “Pcgrl: Proce-
dural content generation via reinforcement learning,” arXiv preprint
arXiv:2001.09212, 2020.

[16] P. Bontrager and J. Togelius, “Fully differentiable procedural con-
tent generation through generative playing networks,” arXiv preprint
arXiv:2002.05259, 2020.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Short Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 398


