
GoThrough: a Tool for Creating and Visualizing
Impossible 3D Worlds Using Portals

Luca Silva
Voxar Labs, Centro de Informática

Universidade Federal de Pernambuco
Recife, Brazil

lams3@cin.ufpe.br

Lucas Valença
Voxar Labs, Centro de Informática

Universidade Federal de Pernambuco
Recife, Brazil

lvrma@cin.ufpe.br

Arlindo Gomes
Voxar Labs, Centro de Informática

Universidade Federal de Pernambuco
Recife, Brazil

agsn@cin.ufpe.br

Lucas Figueiredo
Voxar Labs, Centro de Informática

Universidade Federal de Pernambuco
Recife, Brazil
lsf@cin.ufpe.br

Veronica Teichrieb
Voxar Labs, Centro de Informática

Universidade Federal de Pernambuco
Recife, Brazil
vt@cin.ufpe.br

Fig. 1. Some use cases of GoThrough’s portals. Top row shows the player’s view, bottom row shows the third person view of the maps.
A-E) An infinite mirror house with 4 portals that see each other. B-F) Infinite corridor (player from F is invisible in B’s first person view
in order to achieve the desired effect). C-G) Unsolvable maze with portal connections that shuffle randomly upon being crossed. D-H) A
square room 3 corners, creating a sense of confusion when the player walks around.

Abstract—Portals are commonly used in video games (e.g.,
games like Portal, Antichamber, and the classic Asteroids). In this
work we introduce GoThrough, a tool that enables users with
little to no previous knowledge to add transformative portals
to 3D scenes in the Unity game engine. We map the existing
literature in portals, both in terms of academic works and web
resources, as well as entertainment usages. Then, we introduce an
approach for portals to work robustly both in terms of geometry
and rendering, and explore common pitfalls (as well as how
to handle them). The tool is shown to work in a variety of
example scenarios, and has been evaluated quantitatively for
performance, providing real-time performance in a variety of
scenarios. User tests have also been conducted in order to analyse
GoThrough qualitatively. With a SUS score of 87.5, we concluded
that GoThrough is intuitive enough to be used by non-experts,
making the process of creating impossible 3D worlds much less
cumbersome.

Index Terms—portals, scene composition, development tools,

spatial distortions, Escher-like worlds

I. INTRODUCTION

Virtual transformative portals have been used extensively
in digital applications, specially in the video game industry.
A transformative portal is a portal that applies a 2D or 3D
transformation to an object’s rigid body, changing its location,
rotation, or both. The most well known examples focus on
using portals for game-play or interaction purposes. One of
the earliest works, Asteroids (1979), used 2D portals to make
the map continuous at the edges. A similar kind of 2D portal
concept has then been used to simulate UI interactions and the
exchange of documents between users [1].

Portals in 3D worlds have also been around for a while. For
example, Epic’s Unreal made use of impossible 3D portals to

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 291

transport users all the way back in 1998. Also in that year, the
game Thief utilized invisible portals to help propagate sound
in 3D virtual space. This concept has been further explored
in 2007 by Foale and Vamplew [2]. Even earlier than Unreal
and Thief, in 1997, the game Prey had a custom-built engine
that was portal-oriented and used to create scenarios that
would visually confuse and challenge the player. Later, Prey’s
developers stated that making an engine around portals was a
mistake, as there are too many caveats to watch out for. This
statement is one of the reasons the proposed work, GoThrough,
is implemented as a plug-in to an already consolidated engine
instead of a standalone tool.

The complications that the developers of Prey were referring
to might include illumination and physics issues. The problem
is that as illumination and physics algorithms in games became
more complicated and realistic, making portals look and feel
good became more challenging. In terms of physics, transport-
ing a player abruptly between two spaces might have many
complications if considering aspects such as movement speed,
infinitely-growing acceleration, gravity changes, and medium
density changes, for example. In terms of illumination, ray
tracing-based approaches work great for portals, as the light
ray goes through the portal creating coherent illumination.
Yet, for the current more common and accessible real-time
illumination techniques, portals can be tricky to make look
good (see Section V).

Due to the issues mentioned above, portals became less
popular in the mainstream video-game industry. Yet, more
recently, with more powerful hardware and engine modularity
improvements, games have been adding portals back as part of
puzzles or as a way to trick the user’s perception. Those have
been custom-made for each game, and added on top of robust
3D engines like Unreal or Source. Some games using such
concepts are Glitchphobia, Half-Life: Alyx, and The Stanley
Parable. In these games, portals are smoothly blended to
the environment, used to create surrealistic representations of
reality (e.g., infinite corridors, mirrored worlds, or impossible
mazes). Other cases (e.g., the Portal franchise) use portals with
visible frames to enable conscious user interaction.

Early 20th century artist Maurits Escher, who famously por-
trayed impossible worlds in his art, was a precursor for many
of these aforementioned ideas. In fact, the game Fragments of
Euclid uses portals to attempt to recreate versions of Escher’s
work. Orbons and Ruttkay [3] have also proposed a way to
render and interact with Escher-like 3D scenes.

Thus, portals in video-games are mostly used to distort
reality. When one thinks of those distortions in 3D space,
the usual idea that comes to mind is that of an obvious
portal, such as a hole in the wall in the Portal games, which
resembles the sci-fi idea of a wormhole. Yet, portals that go
unnoticed and perfectly blend to the environment are usually
the ones that offer more flexibility, testing both the user and the
content creator’s creativity. For example, a square room can be
extended to have infinite corners, or even less than 4 corners
(see Fig. 1, letter D and H), creating a sense of confusion on
the user by breaking what is expected from reality. Some of

these concepts have also been well discussed by Code Parade1.
In terms of our work’s contributions, we introduce a brief

study of the history of portals and a round-up of common
problems and solutions (including level design guidelines).
To do that, we compile game-oriented knowledge from both
academic (see Section II) and reputable online sources (e.g.,
Sebastian Lague’s Coding Adventures series2 and Ignis In-
cendio’s Multiple Recursive Portals and AI In Unity tutorial
series3). We hope that this will help close the existing literature
gap on the subject. In addition, we also propose GoThrough: a
drag-and-drop-based plug-in for Unity that acts as a 3D portal
tool, using the aforementioned modern approaches to better
handle the challenging aspects of portal implementation. To
our knowledge, this is the first such tool made available to the
academy for game content creation. In terms of evaluation,
we examine both GoThrough’s performance and its ease
of use. For performance (see Section VI-A), we evaluate
the impacts of having multiple visible portals and different
recursion depths in terms of FPS, RAM, VRAM, and scene
triangle count. In terms of ease of use (see Section VI-B),
we have performed tests with 12 different users to evaluate
GoThrough’s usability in terms of the System Usability Scale
(SUS) questionnaire [4]. We believe these evaluations provide
much needed quantitative insight on the portal subject. Finally,
in Section VI-C, we propose some mind-boggling use cases,
which can serve as inspiration for content creators.

II. RELATED WORK

The investigation of 3D portals by researchers include its
use and development in particular scenarios, ranging from
applications on industry to games and entertainment.

As an early preliminary approach, Jones [5] proposed a way
of separating a map (e.g., an apartment blueprint) into cells for
each room, to facilitate 3D rendering. This concept established
a baseline to others such as [6] and [7], who introduced a
way to use these cell divisions to render mirror-like portals.
These works have since influenced several architectural and
cell-based approaches.

Moreover, in architectural cases, portals can serve as a
window or texture [8] to perform culling in large parts of
the scene that are not in immediate usage, breaking the 3D
environment into smaller, portal-separated portions. Virtainer
[9] applies this concept for industrial container field rendering.

Lowe and Datta [10] have explored the concept of how por-
tals affect polygonal meshes, which is a very important aspect
of rendering when dealing with game objects crossing portals.
This has been further expanded in [11], which introduces a
framework to construct scenes with more complex, transforma-
tive portals. This concept differs from traditional architecture
scenarios because those cases do not apply rigid-body trans-
forms to the user’s avatar (i.e., change its location and rotation)
when the avatar crosses portals between directly connected
rooms of a blueprint (e.g., when traversing a digital house

1https://www.youtube.com/watch?v=kEB11PQ9Eo8
2https://www.youtube.com/watch?v=cWpFZbjtSQg
3https://medium.com/@limdingwen 66715

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 292

with portal-and-cell architectural rendering implemented). The
work of Peterson [12] proposed alternatives which further
increased performance for transformative purposes. Tilman
[13], on the other hand, has improved this concept by studying
how to handle more complex scenarios such as when portals
with different shapes (e.g., cones, triangles, circles) interact
with both 2D and 3D objects.

A scanline algorithm has also been proposed to render
arbitrarily-shaped portals (e.g., cracks or holes in a wall) in-
stead of the commonly-used geometrical formats (e.g., planes
and ellipses) [14]. Finally, the cells-and-portals concept has
been used to connect large maps over multiple machines [15].

Other interesting applications include offline portal render-
ing for movies [16] and 3D portals as a UI replacement [17].

III. METHOD

In this paper we present GoThrough, a tool for easily
creating portals in 3D scenes. GoThrough is a texture-based
technique and its pipeline consists of a few steps performed
every frame. The pipeline acts on two types of entities: portals
and travellers. A pair of portals can be thought of as a
wormhole through 3D space. Travellers are virtual objects that
have been enabled to travel through those portals. To ensure
more consistent results, the pipeline should be executed at the
end of the game loop. This way, all modifications applied to
portals and travellers on that frame can be correctly displayed.
While describing the pipeline, some base concepts regarding
portals must be considered.

Portals are considered to be planar surfaces with well
defined front and back sides. A portal’s normal vector always
points towards its front side and portals can only be seen
through their front side.

An entry portal e is always connected to its destination
portal d, which can be positioned anywhere in the virtual
scene. For e, its front side is considered to be where the
traveller is crossing its surface from. In d’s case, the front
side is the one the traveller will appear at. Thus, a pair of
portals (e, d) represents a mapping from the points in e to
the the points in d. This mapping can be defined through the
4 × 4 3D transformation matrix Me

d = Md · Ry(π) ·M−1
e ,

where Mn ∈ SE(3) denotes the 4 × 4 matrix containing an
object n’s 3D rigid body transform composed of rotation and
translation, M−1 denotes the inverse matrix of M , and Ry(π)
represents a π radians rotation around the Y axis.

A portal’s destination is a matter of choice. The tuple (e, d)
merely says e leads to d, and the opposite (d leading to e)
is not necessarily true. e and d may even be the same portal
if correctly configured. As some additional care is needed for
those special cases (see Section V), the one-way scenario with
two portals positioned at distinct locations is assumed in this
explanation.

Finally, it is also important to explain that what a standard
pinhole camera c sees when looking through an entry portal e
is equivalent (though cropped, considering e’s dimensions) to
what it would see if the camera c were positioned relative to
the destination portal d like it currently is to e (using Me

d). This

means the portal functions just like a window (when looking
from e to d). This concept is illustrated in Fig. 2.

Fig. 2. Camera positioning to display portal texture. A) Scenes
connected by a portal. Player Camera (looking at the entry portal
in red) and GoThrough’s Camera (looking at the destination portal
in blue) have their camera frustrums outlined. B) First person view
from both frustrums highlighted in A. C) Process of extracting the
destination portal’s texture as seen by the Entry Camera. D) Final
result as seen by the player when looking at the entry portal.

A. Establishing Transitions

In the beginning of the pipeline, it is necessary to define
the set T representing all active transitions (i.e., transitions
happening at the moment). A transition is denoted as a triplet
Tα = (α, e, d) ∈ T , composed of a traveller α, crossing an
entry portal e, with d as it’s destination.

To build T , our method assumes each traveller can not be
part of more than one transition at a time (see Section V-A). If
α crosses more than one entry portal at a time, only the one
portal closest to α’s present location is chosen to build Tα.
While there is a portion of α’s 3D mesh crossing e’s planar
surface, e is considered valid for an active transition.

B. Teleporting Travellers

In this step, for each active transition Tα, a check is
performed to see if α must be teleported. A teleport must
happen when α’s 3D pivot (mesh local origin) αpivot crosses
e’s surface. That is, αpivot was on e’s front side at the previous
frame and is now on e’s back side.

To effectively teleport α, we have to place it relative to d
as it was to e. This can be achieved by applying Me

d to α’s
local-to-world matrix Mα. By teleporting α we also substitute
Tα = (α, e, d) with Tα = (α, d, destination(d)), because α’s
pivot is now physically on d’s front side and α’s 3D mesh is
intersecting d’s surface.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 293

C. Prepare Transitions for Rendering

Having all travellers in position and all transitions properly
tracked, it is time to ensure a traveller α crossing from portal
e to d will be properly rendered on both sides. That is, if α
is half-way through e, the part of its 3D mesh already across
e should should be rendered in front of d instead.

To achieve this, α’s mesh is rendered two times: one in its
original position relative to e and another relative to d. This
step is performed through a clone α positioned using Me

d . A
clipping operation is performed to hide the part of α’s 3D
mesh that has already crossed e. This hidden mesh portion is
the visible part of α’s mesh, rendered on d’s side.

This operation is performed by a special shader assigned to
both α and α. The shader applies an alpha clipping operation
to discard fragments of both meshes. A clipping plane defined
defined in world space is used for this. For α, the plane is
equivalent to e’s front side. For α, d’s front side. The result of
this process is illustrated in Fig. 3. After those steps, travellers
are ready to be correctly rendered by cameras.

Fig. 3. Alpha clipping process. A) The traveller α with only it’s
portion in the front side of the entry portal (in red) being rendered.
B) Mesh α (α’s clone) whose only portion being rendered is the one
in front of the destination portal (in blue).

D. Rendering

This step is responsible for the actual rendering of a scene
in GoThrough. It should be executed once for every camera
that is part of the pipeline.

1) Preventing Near-Plane Clipping: When a portal e is ren-
dered by camera c, and c is too close to it, near-plane clipping
can occur, preventing the portal to be rendered correctly. To
avoid this issue, a mesh m is placed behind e. This mesh is a
3D extension of the portal’s shape (e.g., a parallelepiped for
rectangular portals), and uses the same shader as e (the walls
of m show the other side of the portal as well). All its normals
are pointing inwards and its dimensions are the same as the
portal’s height and width, with depth g equal to the length
of the diagonal of c’s near-plane. Thus, whenever near-plane
clipping occurs on e’s front side, m is rendered instead. For
an illustration, see Fig. 4.

2) Assembling the Visibility Tree: Before rendering what’s
being seen by a camera c, a visibility tree Ψ must be
assembled (as illustrated in Fig. 5). This tree accounts for
portals seen inside of other portals (or inside themselves). A
node (e, d,M) ∈ Ψ represents an entry portal e (with destiny
d) seen by c positioned at M . The root node of Ψ contains the

Fig. 4. Process to prevent near plane clipping upon crossing portals.
A) Diagram of the player’s camera looking at a portal with no
extension mesh. B) Third person view of the scene. C) First person
view of the player’s camera when looking through the entry portal
and suffering from clipping. Part of the background outside the scene
can be seen. D) Same diagram as A, but with an extension mesh. E)
Same as B, but with extension mesh rendered behind portals. F) Final
result as seen by the player, with near plane clipping avoided.

camera’s original rigid-body transform. The recursive step for
every node is performed by creating a new child node for every
entry portal e visible by c at the transform in the node triplet’s
third element. The end of the recursion occurs when there are
no visible entry portals left or when a maximum recursion
depth is reached. This process is described in Algorithm 1.

Fig. 5. Diagram representing a sample scene with a camera c and
two pairs of mutually connected portals (e1, d1) and (e2, d2) and the
corresponding visibility tree of max depth 2.

3) Scene Rendering: Once the visibility tree Ψ is assem-
bled, the scene can be rendered. Portals are rendered using a
special shader that draws a simple texture. How those textures
are rendered and how the shader samples them is what makes
results look believable.

A texture for a portal e seen by camera c at a certain pose
Mc is rendered by GoThrough’s camera cview placed using
Me
d · Mc, where d is e’s destination. This rendered texture

represents what a camera would see through the portal, but it

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 294

Algorithm 1: Build Visibility Tree
Input: P, the set of active portals

c, the camera to be rendered
δmax, the maximum recursion depth

Output: Ψ, the visibility tree of c

/* creating tree nodes recursively */

1 Function AddChildren(Ψ, (e, d,Min), δ):
2 node← (e, d,Min)

/* maximum tree depth */

3 if δ ≥ δmax then
4 return
5 end

/* iterate every active portal */

6 for p ∈ P do
/* e can’t directly see d */

7 if p = d then
8 continue
9 end

/* viewpoint to render entry portal */

10 viewPose←Me
d ·Min

/* check visibility and insert node */

11 if CanSee(c, viewPose, p) then
12 n← (p, destination(p), viewPose)
13 Insert(Ψ, node, n)
14 AddChildren(Ψ, n, δ + 1)
15 end
16 end
17 return
18

19 Ψ(0)← (, ,Mc) // root node

20 AddChildren(Ψ,Ψ(0), 0) // begin recursion

21 return Ψ // return tree

has to be cropped to display only what’s inside the portal frame
(as per Fig 2). To achieve this, portal shaders sample their
textures in screen-space (see Fig. 6), opposed to the traditional
object-space sampling (using the mesh’s UVs). Portal textures
should have the same aspect-ratio of c’s output, so that both
can be perfectly aligned when displayed in screen-space.

In addition to cropping the texture to fit the portal’s frame
using screen space shading, we must also only render what’s in
front of the destination portal (not what’s between the camera
and the portal’s back). To achieve this, the near plane of cview
is aligned with d using an oblique view frustum as proposed
by [18]. This process is illustrated in Fig. 7.

Finally, the proper rendering of those textures is achieved
by performing a depth-first traversal through Ψ. This way,
each node will be rendered only after all of its children have
been as well. Since a portal’s texture depends on its observer,
after a node n in Ψ is done with its rendering, it must
restore all its children’s textures to what they were before n’s
texture was rendered. This is necessary because the children’s
textures would now be rendered with relation to n, which is

Fig. 6. Illustration of how portal textures are rendered correctly using
the screen space approach. A) Third person view of a player looking
at a portal rendered with the full view from GoThrough’s camera.
B) First person view of A. C) Same as A, but with screen space
cropping of GoThrough’s camera view to display just the area inside
the destination portal. D) First person view of C. For details on
GoThrough’s camera positioning, see Fig. 2.

Fig. 7. Illustration highlighting the oblique view frustum’s usage. A)
Third person view of scene setup. B) A diagram of GoThrough’s
camera near plane without using the technique. C) The resulting
render of B as seen by the player. Objects behind the destination
portal are rendered to the entry portal. D) Same as B, but with an
oblique view frustum applied. E) Final result as seen by the player.
Objects behind the destination portal are correctly culled.

not necessarily coherent with n’s parent nodes. For instance,
taking the visibility tree in Fig. 5 as an example, assuming the
left-most children of a node are visited first, the visiting order
would be B → D → C → A. If e2’s previous textures were
not restored, since e2’s texture is last modified when rendering
D, the result produced by B would be lost and the root node
A would be rendered with an inaccurate view of e2. The entire
process can be visualized in Algorithm 2.

IV. IMPLEMENTATION DETAILS

GoThrough was implemented as a plug-in for the popular
3D engine Unity. Thus, it can be easily added to video-game
projects. In this section, our architecture and some Unity-
specific details are described.

A core resource used in our implementation is the Ren-
der Texture, Unity’s object oriented approach on off-screen

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 295

Algorithm 2: Render Scene
Input: c, the camera being rendered

Ψ, the visibility tree
δmax, the maximum recursion depth

/* render a tree node by recursively visiting

its child nodes */

1 Function RenderNode((e, d,M)):
2 node← (e, d,M)
3 γ ← new dynamic array to store old textures

/* render child nodes (recursive step) and

save their previous textures */

4 for n ∈ Children(Ψ, node) do
5 Insert(γ,RenderNode(n))
6 end

/* update for the current input viewpoint */

7 tnew ← empty texture
8 cview ← new camera clone of c at pose M
9 SetObliqueV iewFrustum(cview, d)

10 SetRenderTarget(cview, tnew)

11 if Depth(Ψ, node) = δmax then
/* base of recursion (e.g., a blank

texture or a pre-determined image) */

12 RenderDefault(tnew)
13 else

/* render new texture coherent with

current input viewpoint */

14 Render(cview)
15 end

/* set child textures back to original, so

they can be reused by other tree nodes */

16 for (p, tpold, t
p
new) ∈ γ do

17 SetTexture(p, tpold)
18 Release(tpnew)
19 end

/* update node texture and store previous */

20 told = GetTexture(e)
21 SetTexture(e, tnew)
22 return (e, told, tnew)
23

24 Γ← new dynamic array to store final textures

/* render every node but root */

25 for n ∈ Children(Ψ(0)) do
26 Insert(Γ, RenderNode(n))
27 end

/* render according to root */

28 Render(c) for (p, tpold, t
p
new) ∈ Γ do

29 SetTexture(p,)
30 Release(tpnew)
31 end

32 return

rendering. Render Textures are objects that represent a GPU
framebuffer. As such, they are costly to initialize and re-
lease, demanding careful utilization. Those objects are used
to implement the portal textures described in Section III-D3.
To reduce the portals’ computational cost and better manage
system resources, a Render Texture pool was implemented to
re-utilize objects, avoiding unnecessary memory reallocation.

The second important Unity resource used is the Prefab
system. Prefabs are serialized, reusable game objects. Those
objects can be promptly referenced in Unity scenes through
drag-and-drop. Our implementation uses Prefabs to provide
ready-to-use portals. All one has to do to create a pair of
connected portals in a scene is to drag and drop two portal
Prefabs and link them as each other’s entry and destination
through the Unity Editor. Further modifications to these portals
(e.g., scaling and mesh modifications) can also be performed
by the user.

Our implementation performs additional culling during the
visibility tree assembly step (see Section III-D2). This culling
is performed when checking a portal’s visibility from the
viewpoint of another portal. When rendering an entry portal e,
we only need to render what can be seen through the frame of
e’s destination portal d. As described in Section III-D3, what
is seen by cview (GoThrough’s virtual camera at d’s side) is
cropped in screen-space to be displayed on e’s surface. Yet,
that cropping happens after the entire cview camera frame is
already rendered. Thus, to avoid the costly, recursive rendering
of portals that would be entirely cropped by the screen-space
rendering, an intersection test is run on the 2D bounding
boxes of d and any portal p visible by cview. If there is no
intersection, p is not rendered.

Our architecture is based on Unity Components, adding
behaviors to existing game objects. Our implementation is
written in C# and consists of the following classes:

• Portal: A Component representing a portal;
• Traveller: A Component representing a traveller;
• PortalRenderer: A Component representing a camera

object rendered through our pipeline. Objects of this class
are responsible for the actual execution of the Render step
of the method described in Section III-D;

• VisibilityTree: A class representing the visibility tree
described in Section III-D2;

• RenderTexturePool: A class representing a pool of Ren-
der Textures. Objects of this class are responsible for
managing textures used by PortalRenderers. As previ-
ously explained, by using pools, Render Textures are
created and released less frequently, allowing for better
performance.

Our Unity plugin implementation is publicly available and
free for academic usage4.

V. PORTAL PITFALLS & GUIDELINES

In this section, we provide guidelines on how to handle lim-
itations derived from the use of portals in virtual environments

4https://github.com/lams3/GoThrough

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 296

and, in particular, from the texture-based approach.

A. Multi-Portal Travelling

As described in Section III-A, our method assumes a
traveller α to be intersecting at most one portal at a given
frame. This occurs due to the necessity of keeping a clone
α to represent it on the other side of the portal (see Section
III-C). It is possible to define multiple clipping planes for a
traveller, as well as position multiple copies of it (which should
also have more clipping planes) as more transitions occur.
Those copies could also recursively account for intersections
with them. This issue can quickly scale and become costly,
therefore GoThrough opts not to consider transitions other than
the closest one. The resulting behavior can be seen in Fig. 8
letter D.

Fig. 8. Failure cases. A) Third person view of a player in a dimly-lit
scene with a flashlight pointed at a portal. The flashlight beam is not
correctly rendered across the portal. B) First person view of A. C)
Third person view of a player in a bright scene with point lights.
The player’s shadow is not properly rendered across the portal. D)
A large object outlined while it crosses multiple portals at once. The
back part of the object is not correctly rendered.

While considering this issue, the guideline for designing
virtual environments with GoThrough is to place portals with
enough space between them so that a traveller is never crossing
more than one portal at a time.

B. Lighting

While aiming for illusory effects, the design of the scene
must be done carefully regarding the positioning of portals and
lights. Given our technique does not account for light transfer
between portals, there can be discrepancy (as per Fig. 8 letters
A, B and C) in the shading near portals. Strategies to avoid
such discrepancies are:

• Remove Lighting: The game Antichamber makes heavy
use of this approach. No lighting calculations are per-
formed on the objects of the game, avoiding discrepancy.

• Perpendicular Directional Lights: If a directional lights
is perpendicular to portals, there is no direct light trans-
port occurring through the portal. This approach can be
used to avoid discrepancy while keeping some liberty in
the use of lighting.

• Point/Spot Light Control: If any point or spotlight is
used, their range should not reach to a portal. If such
lights don’t have enough range to reach a portal, they
will still be correctly rendered.

C. One-way & Mirror-like Portals

As mentioned in Sec. III, each portal e is connected to it’s
destination d. Some care is needed in special cases though.
Those cases are:

1) One-way Portals: This occurs when destiny(d) 6= e,
that is, e leads to d, but d leads elsewhere. This is supported by
our tool, but can lead to strange behaviour due to it’s definition.

If a camera c passes through e while looking at it, nothing is
noticed, a smooth transition occurs as expected. But if c passes
through e looking back, it will instantly see d’s destination
rendered in d when teleported, ruining the illusion.

Also, for a spectator looking at e when a traveller α is
crossing it, there is nothing unusual happening, since α will
be properly rendered on both sides. But if a spectator looks
at d, it will see only the portion of α that has already crossed
the portal, and since d leads elsewhere but e, α will not be
seen by the virtual camera rendering d.

Therefore, although this type of portal is supported by our
tool, they should be used with care, given that visual artifacts
may occur from it’s usage.

2) Mirror-like Portals: A portal e whose destination d is
itself, that is e = d, can be easily defined in GoThrough, but
due to the Ry(π) used to define Me

d = Me
e , it will behave as a

non-reversing mirror. To achieve the traditional mirror effect,
an flip on the z axis Sz(−1) should be used instead. However,
GoThrough does not implement this feature.

VI. EXPERIMENTS AND RESULTS

A. Performance

In order to evaluate GoThrough’s performance, we have
conducted tests using a laptop running Windows 10 with a
quad-core CPU @ 2.5 GHz, 8 GB of RAM, and an NVIDIA
GTX 950M GPU with 2 GB of VRAM. All tests were
conducted in the 3D scene from Fig. 1 (letter F), and output
frames were rendered at resolution 1920 × 1080. The scene
overall had 1052 triangles, most of these being from the
player’s capsule, which for this experiment was not invisible
as shown in Fig. 1 (letter B).

The runtime per frame of GoThrough is mostly taken up by
rendering, which occurs by traversing recursively the visibility
tree structure described in Section III-D2. The size of the
tree is determined by two main factors: how many portals are
visible in each recursion(tree width), and what is the maximum
recursion depth allowed (tree height).

We conducted two separate experiments on the scene to
assess the performance impact of each stated factor. First, we
fixed the amount of visible portals as 1 (with the destination
portal behind the player, not directly visible), and increased the
maximum allowed recursion depth from 1 to 64, in powers of
2. This caused the tree to increase only in height. This will be
further refereed to as the depth experiment.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 297

For the second experiment, we kept the maximum recursion
depth at 1 (so that portals are only rendered if they are directly
visible by the player’s camera) and gradually added portals on
top of each other (overlapping), 2 portals at a time, one in front
and one behind the player. This way, we had 1 new visible
portal per pair. The amount of visible portals was increased
from 1 to 64 as well, in powers of 2. The result was a tree
with as many nodes as in the first experiment, but with the
same width as the depth experiment’s tree’s height. This will
be further refereed to as the portals experiment.

The amount of tree nodes and rendered triangles per scene
can be seen in Table I. Note that for each node in the tree,
the triangles in the scene have to be rendered again. This fact
must be considered when developing high-poly environments
with portals.

TABLE I. Details on the amount of nodes in the visibility tree and
the amount of triangles rendered for the performance experiments.

Amount of Visible Portals or Maximum Recursion Depth
0 1 2 4 8 16 32 64

Nodes 1 2 3 5 9 17 33 65

Triangles
1.0 3.1 4.1 8.2 14.3 27.6 55.3 108.5(in thousands)

The results of both experiments in terms of RAM, VRAM,
and processing time per frame (in ms) can be seen in the
plot from Fig. 9. The execution time in the portals experiment
showed to be similar to the ones in the depth experiment
for lower numbers of portals. However, the impacts from 16
portals onward showed a significant loss of performance if
compared to the same number of recursion depth (and there-
fore, the same size of the visibility tree). This performance
gap is likely related to the fact that the graphics card had 2
gigabytes of VRAM available, which was quickly taken up
by the multiple portal textures in the portals experiment. As
the plots show, execution time increases simultaneously with
RAM utilization, which the system uses as a replacement when
VRAM runs out and is much slower. Modern graphics cards
with higher memory may not suffer similar issues, being able
to display more portals simultaneously.

The VRAM and RAM of the recursion depth experiment
remained constant (as there are no new portal textures being
instantiated due to our Render Texture pool, see Sec. IV).
Thus, the depth experiment shows linear scalability in execu-
tion time, as expected (note that the chart is log-log, which is
why the curve looks exponential).

Additionally, we measured how many Render Texture ob-
jects were allocated, to confirm the usage of VRAM by portal
textures. Results can be seen in Fig. 10. Here we show that the
amount of textures allocated in the portals experiment scales
linearly with the amount of portals (while it remains constant
in the depth experiment). With the increased number of
textures, the number of swaps between them heavily increases.
Once all VRAM was taken up by those textures and RAM
was allocated instead, those swaps became a performance
bottleneck due to the use of slower memory.

Fig. 9. Plot displaying the RAM/VRAM footprint (log scale, right
y-axis) and ms (left y-axis) taken to render a frame as the amount of
portals or recursion depth increase exponentially.

Fig. 10. Log-log plot showing how many Render Textures are
allocated (right y-axis) and how many texture swaps are performed
(left y-axis) as the amount of portals or recursion depth increase
exponentially.

B. User Experiments

To understand how users with different experiences han-
dle our tool we conducted a user experiment. Users were
interviewed individually and later asked to respond to a SUS
evaluation [4] questionnaire. Each interview consisted of three
steps:

• Portals and Tool Presentation: First, to provide basic
knowledge about portals, the concept was briefly in-
troduced and some common use-cases were presented.
GoThrough was also presented as a tool proposing to
facilitate the process of creating portals in a 3D scene.

• Guided Experiment: In this step, the user was asked
to perform a series of tasks adding portals in a specific

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 298

manner to a functional game scene.
• Free Use Experimentation: The user freely explored our

tool, to reproduce any desired behavior.
On the guided experiment the user reproduced the behaviors

illustrated in Fig. 11. The specific tasks performed during this
step of the experiment were:

1) Creating an Unity project;
2) Importing GoThrough’s package;
3) Opening the test scene where modifications would be

done;
4) Setting the player game object as a traveller;
5) Setting the player’s camera to properly render

GoThrough Portals;
6) Positioning a pair of portals on the scene;
7) Test the resulting scene.

Fig. 11. Test scene used during user tests. A) Third person view of
the map (with ceiling disabled for visibility purposes). B) Player’s
first person view with portals disabled. C) Same as B but with portals
enabled.

The experiment was applied upon a group of 12 users
with ages from 22 to 38 years old. All participants were
students from Computer Science and Computer Engineering
in BSc, MSc and PhD levels. They informed their experience
level with Unity as one of the following groups: First-Timers
(2 users), New Users (4 users), Moderate (4 users) and
Experienced (2 users).

Performance errors related to the portals occurred with four
users that tried to put more than three portals in front of
each other using five levels of recursion, causing a massive
performance demand for their computers.

The overall score on SUS was 87.5 points (see Fig. 12),
which classifies our pipeline’s usability as A+. In particular,
experienced users of Unity gave lower scores on questions
regarding “confidence on use” and “needed help to use” (see
Fig. 13). We attribute such scores to the fact that GoThrough a
the time of testing did not contain yet a detailed documentation
and README file, which is the main source of information
these users are used to request when exploring new tools and
features on Unity.

During their free time, five users presented very innovative
uses of our portals. One positioned portals in a way that

Fig. 12. System Usability Scale (SUS) average score for each of
the 12 interviewed users. Last column (from left to right) shows
the average of all responses, with standard deviation. The first
column shows the Curved Grading Scale (CGS) [19], which can help
interpreting SUS scores.

the player only had a squared cyclical path, which visually
appeared to always be pursuing himself. The other one created
a “house of mirrors” effect, where he could see many copies
of the characters but struggles to find the way out. Two users
created “infinite corridors” using two portals, one in front
of each other. Another experimented with gravity, placing a
portal e horizontally and a portal d vertically, but this mechanic
needed to be further implemented.

C. Additional Use Cases

Finally, to demonstrate GoThrough’s capabilities, four ad-
ditional use cases were developed (as per Fig. 1). Those sce-
narios aim to provide insights mechanics achievable through
the use of our tool.

1) Three-Corner Room: This case shows how basic portal
placement can achieve impossible geometries on the player’s
perception with little effort. As per Fig. 1, the scene consists
of an L-shaped room with a pair of mutually connected portals
linking the red and green sections of the room. This creates
the illusion that the room is shaped like a (impossible) regular
polygon with three 90 deg angles. The effect can be further
extended to contain five or more 90 deg angles, all one has to
do is create more rooms and connect them through portals.

2) House of Mirrors: In this case an interesting effect is
achieved through portal recursion. Fig. 1, shows the scene
layout, consisting of four portals positioned as the sides of
a rhombus. Each portal is connected to itself. Thanks to
recursion, the player is rendered many times inside those
portals, provoking a sensation similar to the one of the ”house
of mirrors” common in amusement parks.

3) Infinite Corridor: This case also makes use of recursion.
This time, a pair of mutually connected portals is placed in
opposing sides of a corridor (see Fig. 1). To achieve the desired
effect, an extra modification is done, in which GoThrough’s
camera is configured to don’t render the player’s mesh. Also,
by using a higher recursion depth (this can be easily done
since only one portal is directly visible at a time, see Section
VI-A for more), the scene is rendered many times, creating
the illusion of an infinite space.

4) Unsolvable Maze: With this case, we explore a possible
mechanic where the player is put on a infinite, unsolvable

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 299

Fig. 13. System Usability Scale (SUS) answer percentage per question from the 12 users interviewed after using GoThrough.

maze. To achieve this the level is subdivided into cells (see
Fig. 1), with each cell containing a few portals. Also, a script
was created to modify the destinations of the cells’ portals
once the player is teleported. In this script, the cell the player
was teleported from and the cell the player was teleported
into are not modified, but all other cells are. This creates the
feeling of an ever-changing maze, in which the path a player
made from cell A to cell B may not exist anymore once it’s
completed.

VII. CONCLUSION

In this work we have introduced GoThrough, a plug-in that
enables the creation of impossible 3D worlds in the popular
game engine Unity. We have detailed intrinsic aspects of portal
concepts, related pitfalls and implementation details. Addition-
ally, we quantitatively evaluated how system performance is
affected by portal aspects, as a way to provide guidelines for
content creators that intend to use such concepts in their work

Finally, we have also addressed the issue of portals being
cumbersome to implement related to the numerous caveats
to watch out for when attempting to create a pleasant user
experience. GoThrough was also evaluated by users, which
rated it with 87.5 points out of 100 on the SUS Score. Besides
accomplishing a designed task, users showed to be capable
of making creative uses of GoThrough, conceiving diverse
scenarios with different mechanics (see Fig. 1).

As future work, we intend to perform more usability tests
on a wider, more diverse user base. We would also like
to test GoThrough for VR, to expand virtual environments
while keeping the player in a small physical area. Finally,
performance can be improved by using some existing culling
techniques or even using stencil buffers to render portals
directly to the desired target, as this can greatly reduce memory
footprint compared to our current texture-based approach.

REFERENCES

[1] S. Voelker, M. Weiss, C. Wacharamanotham, and J. Borchers, “Dynamic
portals: a lightweight metaphor for fast object transfer on interactive
surfaces,” in Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces, 2011, pp. 158–161.

[2] C. Foale and P. Vamplew, “Portal-based sound propagation for first-
person computer games,” in Proceedings of the 4th Australasian con-
ference on Interactive entertainment, 2007, pp. 1–8.

[3] E. Orbons, Z. Ruttkay et al., “Interactive 3d simulation of escher-like
impossible worlds,” Journal of Vacuum Science and Technology, 2008.

[4] J. Brooke, “Sus: a “quick and dirty’usability,” Usability evaluation in
industry, p. 189, 1996.

[5] C. B. Jones, “A new approach to the ‘hidden line’problem,” The
Computer Journal, vol. 14, no. 3, pp. 232–237, 1971.

[6] J. M. Airey, J. H. Rohlf, and F. P. Brooks Jr, “Towards image realism
with interactive update rates in complex virtual building environments,”
ACM SIGGRAPH computer graphics, vol. 24, no. 2, pp. 41–50, 1990.

[7] D. Luebke and C. Georges, “Portals and mirrors: Simple, fast evaluation
of potentially visible sets,” in Proceedings of the 1995 symposium on
Interactive 3D graphics, 1995, pp. 105–ff.

[8] D. G. Aliaga and A. A. Lastra, “Architectural walkthroughs using
portal textures,” in Proceedings. Visualization’97 (Cat. No. 97CB36155).
IEEE, 1997, pp. 355–362.

[9] M. Escrivá, M. Martı́, J. M. Sánchez, E. Camahort, J. Lluch, and R. Vivó,
“Virtainer: graphical simulation of a container storage yard with dynamic
portal rendering,” in Ninth International Conference on Information
Visualisation (IV’05). IEEE, 2005, pp. 773–778.

[10] N. Lowe and A. Datta, “A fragment culling technique for rendering ar-
bitrary portals,” in International Conference on Computational Science.
Springer, 2003, pp. 915–924.

[11] ——, “A technique for rendering complex portals,” IEEE Transactions
on Visualization and Computer Graphics, vol. 11, no. 1, pp. 81–90,
2005.

[12] A. Petersson, “Fast complex transformative portals,” 2013.
[13] M. Tillman, “Complex transformative portal interaction,” 2015.
[14] Y. Yang and H. Kang, “An improved scan-line algorithm for rendering

arbitrary portals,” in Recent Developments in Intelligent Computing,
Communication and Devices. Springer, 2019, pp. 1073–1080.

[15] I. Kotziampasis, N. Sidwell, and A. Chalmers, “Portals: Aiding naviga-
tion in virtual museums.” in VAST, 2003, pp. 149–154.

[16] P. Coleman, D. Peachey, T. Nettleship, R. Villemin, and T. Jones, “Into
the voyd: teleportation of light transport in incredibles 2,” in Proceedings
of the 8th Annual Digital Production Symposium, 2018, pp. 1–4.

[17] S. Hickey, L. Arhippainen, J. H. Vatjus-Anttila, and M. Pakanen,
“User experience study of concurrent virtual environments with 2d tab
and 3d portal uis,” in 2013 International Conference on Engineering,
Technology and Innovation (ICE) & IEEE International Technology
Management Conference. IEEE, 2013, pp. 1–12.

[18] E. Lengyel, “Oblique view frustum depth projection and clipping.” J.
Game Dev., vol. 1, no. 2, pp. 1–16, 2005.

[19] J. Sauro and J. R. Lewis, Quantifying the user experience: Practical
statistics for user research. Morgan Kaufmann, 2016.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 300

