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Abstract—The difficulty of a game is intrinsically connected
with the experience of immersion in it and with its success. One
of the main reasons for a player to drop a game is that the game
is either too easy or too hard for him/her. In practice, players
become either bored or frustrated if playing a game that is not
balanced for them. An approach to prevent this kind of behavior
is to dynamically adjust the difficulty of a game so that the game
adapts to the player’s experience by evaluating the difficulty of a
game and changing its environment to become easier or harder
for the player. In this paper, we propose a real-time solution using
a Genetic Algorithm which helps to provide the exact amount
of challenge that a player needs to not be bored or frustrated
thus balancing the difficulty of a game. We review several other
papers that approached this problem, which characteristics an
algorithm has to have to approach the problem, and how to
balance this in a generic way. The main idea of this paper is
to create an approach that can be modified and coupled to any
kind of game by using a Genetic Algorithm.

Index Terms—dynamic difficult adjustment, genetic algorithm,
artificial intelligence, digital games, dynamic difficulty balance

I. INTRODUCTION

The difficulty of a game and its ability to provide fun are
intrinsically connected; the only objective of a game is to
engage the player to rise to challenges and achieve objectives.
A game is a dynamic system in which many elements work
together to create a complex system, and in which such
elements can be formal or emotional. Moreover, limits and
well-defined rules aim at entertaining players [1].

The nature of fun experiences in games has been studied
for many years in many different areas. There are a number
of works related to the topic in psychology focusing on the
engagement in play games. One of these works is Csikszent-
mihalyi’s Theory of Flow, which describes a state of mind in
which an individual is so completely engaged in a task that
he or she loses his or her sense of self. In order to achieve
this state, the task being performed by the player must not be
either so hard that it is frustrating or so easy that it is boring
[2].

For a game to be fun, it cannot be either too hard or too
easy, it has to be balanced using the player’s experience as a
parameter and the player’s skills must be determinant of his or
her success [3]; the psychological factor of a player directly
influences the fun he or she has when playing the game, which
generates the necessity to keep the player interested in it [4].

One approach to achieve this is to link the difficulty of the
game to the player’s skills through dynamic game balancing
[5].

In this paper, we approach this problem by developing
a model and creating a generic Genetic Algorithm (GA)
followed by the definition of metrics to evaluate whether a
game needs to be adjusted or not. Later, a game developed to
be used as subject for this work is described, and, finally, the
genetic algorithm is customized and integrated into the game.

The game developed for this study consists of players taking
turns to compete for resources and buildings on a board with
each turn having two stages. Before each turn, the GA will
generate a set of configurations to be used in that stage of
the game, and at the end of a turn, it will evaluate that set
of configurations. The best configurations will have bigger
suitability and higher chance to continue to be used throughout
the game. All these steps will be performed using GA concepts
that will be customized for the game developed for this work.

To sum up, the core contributions of this paper are related
to the Dynamic Difficulty Adjustment (DDA) approach to any
game by using a Genetic Algorithm, a challenge rate that can
be adjusted to any game and input into the GA, and a real
time DDA that successfully improves the challenge rate during
the game. To approach these elements, the present paper is
organized in the following way: in “Related Works”, we will
review related work in DDA approaches; secondly, we will
introduce the Genetic Algorithm and a proposal for use; then,
we will present the metrics defined to evaluate the need of the
game for adjustment; after that, we will present the game used
as subject for this work and how the algorithm is connected
to the game. Finally, we discuss the results and conclusions
of this study and analyze further work that can stem from this
study.

II. RELATED WORK

The increase of investment in the game industry has led to a
growing concern to make games more realistic and challeng-
ing, and to prioritize the quest for an immersive experience.
One of the ways to reach this objective is by making the game
more challenging for the user, which motivates him or her to
keep playing it. Because of that, many studies are conducted
to identify and balance the difficulty of a game such as studies
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to identify the player’s characteristics and motivations to play
games [6].

Many studies were and are conducted in Artificial Intelli-
gence to increase engagement and immersion in digital games:
the main objectives are to identify how well-balanced a game
is, what to change if it is not well-balanced, and how much to
change it. There are studies involving metrics, challenge rates
and even physiological responses [7].

For example, the game “Left 4 Dead” uses an Artificial
Intelligence algorithm called “Director” in order to control the
difficulty balancing of the game. Depending on the player’s
level of skill and the game’s level of difficulty, the Artificial
Intelligence algorithm balances the game by changing the
number of enemies, the items the player will find on the map
and other elements [9].

In order to achieve Dynamic Difficulty Adjustment, a
method must meet three requirements: i) the game must
automatically identify the skills of the player and adapt to
them; ii) the game must maintain its difficulty in pair with the
player’s abilities; iii) this process must not be noticed by the
player [10]

To calculate the difficulty of a game, and thus balance it,
it is important to study the motivations that each player has.
This information allows to prepare the game to challenge each
particular player. Several studies have been carried out in this
area among which the work of Bartle [8] stands out: it states
that players can be divided into four groups based on their
behavior and their motivations. They are:

• Achievers - players who are always searching for
achievements, which can be represented by money, prizes,
items, among others.

• Explorers - players who are always trying to learn more
about the universe of the game.

• Socializers - players who like to play together with other
players.

• Killers - players who like to cause distress to other
players.

Various definitions about how to balance the difficulty of
a game have been described and reported in many papers
and books. Adams [3] stated in his book that for a game
to be fun it needed to be balanced; it cannot be, from the
player’s standpoint, either too easy or too hard; he also defines
that a well-balanced game has these characteristics: I) it has
significant choices; II) a player’s luck is not more important
than his or her ability; and III) a player must perceive the
game as being fair.

A game’s difficulty can be adapted to a player’s profile
through the adjustment of the game’s characteristics such as
weapon power, healing capacity, storytelling, and even its
scenario. Therefore, it is necessary to perform a study to
understand the impact that each characteristic has on the game
in order to make it possible to balance it [11].

Many studies were conducted to solve the Dynamic Diffi-
culty Adjustment problem, each with a different strategy that
differs in many aspects but have two points in common::
Prediction and Intervention, The algorithm must predict

when the game is too easy/hard for the player and intervene
to adjust the difficulty [13].

Some works used the environment of the game to predict
the difficulty of the game and intervene to adjust it. Hunicke
[14], Christyowidiasmoro [27], Shin-Hung Chang, Nai-Yan
Yang and Silva [29], and also Van Lankveld et al. [30]
used this strategy of detecting the difficulty by monitoring
characteristics of the game’s environment such as: player’s
Health Points, Attack Power, Resources, Level, among others.
After predicting if the game’s difficulty needed adjustment,
the algorithm intervened by changing aspects of the game
environment such as number of player’s enemies appearing
on the map, item’s chance to drop by defeating an enemy,
experience gained by completing the quest, among other
characteristics. The result was algorithms that were able to
improve the player’s immersion and experience by adjusting
the difficulty without their perceiving that something had been
changed.

In Baldwin’s paper [15], a framework is created to classify
many techniques used in DDA for multiplayer games, because
the approach to multiplayer style must be different from the
approach to single player style. The framework designed is
able to classify seven characteristics that describe where and
how a DDA algorithm must act. They are: Determination, Au-
tomation, Recipient, Skill Dependency, User Action, Duration
and Visibility. It is also remarked that the difficulty balancing
in a game has three dependencies: Activation Trigger, Rules
Affected and the Effect Scope.

Another approach to adjust difficulty is by using Artificial
Intelligence to calculate the weight that the characteristics of
the game have and adjust them automatically while the algo-
rithm is learning the connection between them. In “Dynamic
Game Difficulty Balancing in Real Time Using Evolutionary
Fuzzy Cognitive Maps” [16], the authors used evolutionary
maps to predict and intervene in the game’s difficulty . In
“Real-time challenge balance in an RTS game using rtNEAT”
[17] and “Real-Time Game Adaptation for Optimizing Player
Satisfaction” [18], neural networks were used to achieve the
adjustment, while the “Monte carlo tree search based algo-
rithms for dynamic difficulty adjustment” describes a Monte
Carlo algorithm that also achieves balance [19]. “Challenge-
Sensitive Action Selection: an Application to Game Balancing”
[20] uses reinforcement learning as a technique to balance
games. All of these techniques are able to dynamic adjust
the difficult of games by analyzing and manipulating the
characteristics of the game such as obstacles, items, speed
and others. The result of these approaches is the finding of
the weight of the influence that a characteristic has and how
much to change it to adjust the game difficulty in real time.

A more complex approach to calculate a player’s skill is
studied in “TrueSkillTM: A Bayesian Skill Rating System”, in
which a new Bayesian model is described to calculate how to
balance multiplayer games [21].

Another way to define metrics to the difficulty of a game
is by using physiological responses. In “Dynamic Game Bal-
ancing by Recognizing Affect” and in “EEG-triggered dynamic
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difficulty adjustment for multiplayer games”, the authors were
able to adjust the difficulty of a game when analyzing the
physiological responses linked to the player’s emotions [22],
[23]. Physiological responses that can be analyzed are: level of
skin conductance, number of responses from skin conductance,
heart rate, breath rate, eyebrow movements, cheek movements
and the force used to click the mouse [24], [25].

Finally, another way to predict the game difficulty is by
using the player’s own opinion. In Medeiros’s paper, difficulty
was dynamically adjusted by using explicit feedback from the
players to feed a machine learning algorithm and determine
what characteristics of their game must be changed in order to
improve the balancing. In their Runner game, it was possible
to modify these characteristics: firing drones, spiky drones,
number of drones, darkness, wind and number of tracks. By
changing such characteristics, they were able to achieve the
level of difficulty necessary to not bore or frustrate their
players [26]

All of these studies show the importance of measuring the
difficulty of a game and of adjusting it. In order to follow the
Flow Theory [2], many of these studies use the characteristics
of the game to determine the level of difficulty and to increase
or decrease the same. Table I indicates the strategy used by
each study described. In table I, the numbers in the column
“Work” refer to:

1) Dynamic Difficulty Adjustment for Maximized Engage-
ment in Digital Games

2) Measuring level of difficulty in game using challenging
rate (CR) on 2D Real time Strategy Line Defense game

3) DCA: Dynamic Challenging Level Adapter for Real-
time Strategy Games

4) Difficulty Scaling through Incongruity
5) A framework of Dynamic Difficulty Adjustment in com-

petitive multiplayer video games
6) Real-time challenge balance in an RTS game using

rtNEAT
7) Dynamic Game Difficulty Balancing in Real Time Using

Evolutionary Fuzzy Cognitive Maps
8) Real-Time Game Adaptation for Optimizing Player Sat-

isfaction
9) Monte carlo tree search based algorithms for dynamic

difficulty adjustment
10) Challenge-Sensitive Action Selection: an Application to

Game Balancing
11) TrueSkillTM: A Bayesian Skill Rating System
12) Dynamic Game Balancing by Recognizing Affect
13) EEG-triggered dynamic difficulty adjustment for multi-

player games
14) Procedural Level Balancing in Runner Games

III. GENETIC ALGORITHM

Genetic Algorithms (GAs) are search and optimization
algorithms based on the Theory of Evolution. These algorithms
are based on natural selection and survival of the fittest as
inexorable for the evolution of a population. Such algorithms
codify one possible solution in data structures based on

TABLE I
CLASSIFICATION OF STUDIES

Work Strategy
1 Game Environment
2 Game Environment
3 Game Environment
4 Game Environment
5 Framework
6 Artificial Intelligence
7 Artificial Intelligence
8 Artificial Intelligence
9 Artificial Intelligence
10 Artificial Intelligence
11 Bayesian algorithm
12 Physiological Response
13 Physiological Response
14 Explicit Feedback

chromosome composition and apply evolutionary techniques
such as mutation and crossover in order to reach an optimal
solution to a problem [6].

A GA works by generating populations of individuals that
adapt by using genetic operators and, after it, they select the
best individuals and remove the rest. Through this, a GA
preserves the best genes to evolve to the next generation of
the population until finding an optimal solution to the problem
which is being treated [31]. A GA is not like traditional search
methods, it differs in the sense it: i) works with parameter
coding; ii) uses populations; iii) uses evaluation function; iv)
and uses probabilistic concepts instead of deterministic ones
[32].

The main elements of a Genetic Algorithm are [32]:
• Gene - represents one characteristic that has to change so

that optimal solution can be found.
• Individual or Chromosome - a data structure that codifies

a possible solution to the problem. It can be represented
as an array of any kind of elements (Genes) in which
each element represents a characteristic of the problem.
The coding must be as simple as possible; it cannot have
any representation that is not a possible solution to the
problem. If the problem has conditions and limitations,
they must be represented in the coding.

• Population - a set of chromosomes that will suffer muta-
tion and crossover and will undergo selection in order to
find the optimal solution to the problem.

• Evaluation Function or Fitness Function - a function used
to determine the quality of a chromosome, how close
or not it is to the solution wished. It is used to discard
individuals or choose them to survive in the selection
step.

• Selection - a step of the algorithm that behaves as natural
selection, in which the best chromosomes will reproduce
and pass their genetic load on to the next phase or will
be discarded. It must privilege the individuals with higher
fitness and it must retain some the individuals with lower
fitness, because even the least adapted individuals can
have important genetic characteristics.

• Crossover - a genetic operator that will recombine chro-
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mosomes in order to create new individuals while main-
taining and mixing their genetic characteristics.

• Mutation - a genetic operator that will change a random
element of a chromosome to a random value by “flipping
a coin”. By doing this, it will explore new characteristics
with a random chance.

The genetic operators have a chance to happen which cannot
be either too high or too low, because if they happen very
frequently, the algorithm can become a random algorithm; but
also, these operators set the speed at which the algorithm will
achieve optimal solution [32].

The objective of a Genetic Algorithm is to find an optimal
solution to a problem, and to do it by putting together several
steps that make up the algorithm, as described in 1 and detailed
as [34]:

• Step 1: Generate Population - It will generate an initial
random population of individuals, or it will generate a
population from the chromosomes that survive selection.

• Step 2: Evaluate Population - It will evaluate every
chromosome of the population, adding a fitness value to
each of them.

• Step 3: Stop Condition - It will assess if any of the evalu-
ated chromosomes achieve the desired stop condition. For
example, if any of them has a fitness value lower than
some threshold number. If so, the algorithm can stop and
that chromosome is the optimal solution to the problem.

• Step 4: Selection - It will select the “best” chromosomes
of the population.

• Step 5: Crossover - It will apply crossover if necessary.
• Step 6: Mutation - It will apply mutation if necessary.

Fig. 1. Genetic Algorithm scheme. Source: Elaborated by authors.

IV. METRICS

In order to evaluate if a game needs to have its difficulty
adjusted, it is necessary to define a way to calculate its

difficulty and a way to adjust it by tuning the characteristics or
the environment of the game to the player, and by increasing
or decreasing the difficulty through an approach unnoticed
by the player. Some works used the elements of the game
itself to attribute a weight to each element and used the
player’s experience as output. By using neural networks of
cognitive maps, and by knowing the weight of each element,
the algorithm can manipulate elements to adjust the difficulty
in a dynamic way [16], [17].

Other works opted to establish what the weight of each
element would be and how it could be adjusted using an
equation to determine the difficulty experienced by the user.
By calculating this difficulty, it was able to change the game’s
environment to adjust difficulty in real time [14], [27], [29].

On the other hand, some papers tried to use player feedback
to calculate if the game is too hard or too easy. This feedback
can be collected using the players’ physiological responses or
even using forms. With this information, their algorithm was
able to adjust the game using its own methods [24], [26].

All of these works tried to achieve the flow described in
the theory created by Csikszentmihalyi [2], by detecting the
difficulty and applying changes to the player’s experience that
are supposed to increase or decrease difficulty in real time.

This work opted to create a metric in a hybrid way: the
difficulty of the game is calculated using an equation that
obtains the difference between the score of the first player
and the score of the last player of the game, as described in
(1).

max(P )−min(P ) = F (1)

Where:

P = {Pi|score} (2)

The weight of each characteristic of any game can be
calculated by the Genetic Algorithm, which using any fitness
function is capable to input weights across generations of a
population. If a codified characteristic is important, it will
be transmitted to the next generation; if not, it will not be
transmitted. This is one of the reasons why the use of a Genetic
Algorithm was chosen for Dynamic Difficulty Adjustment
[32].

Besides that, for each game round, one set of characteristics
will be evaluated using the fitness function by changing the
game environment to reflect each one of those sets. At the end
of the round, the fitness value will be evaluated and attached
to the set [32].

The hypothesis is that by manipulating the chromosomes
that codify characteristics of the game, these characteristics
that maintain the player in the flow state will be more and
more chosen throughout the game rounds until the game ends,
and through this, the objective of this work will be achieved.
Moreover, as the chromosomes are capable of codifying any
kind of characteristic, they can be used for any kind of game,
and as the fitness function can be anything related to the
problem, it can also be used for any kind of game. In this
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work we decided to use the equation described in (1) for the
subject game described in the next section.

V. EMPIRE GAME

The Empire Game was developed to be used as subject in
this study. A Game Design Document (GDD) [33] was also
developed for the game describing all the characteristics of
the game, including the story, characters, powers and others.
Empire is a board game that can be played on iPad and it was
developed using the programming language Swift. It has single
player and multiplayer options that allow many individuals to
interact using the same iPad or allow a single player to play
against Artificial Intelligence (AI) agents. The objective of the
game is to score more than everyone. The highest scoring
player wins the game.

The game takes place in space, and each player or AI agent
will choose one of ten characters with a passive or active power
and own history. Each player will have a citadel-spaceship that
will be used to conquer a recently discovered planet that will
serve the character’s purpose, which is to finish the game with
the highest score and thus conquer the planet.

Players will compete against each other for resource fields
using their spaceships. Types of resources can be Fuel, Iron,
Uranium, Plasmidium and Nevidium. Each field has limited
places to be mined by players and each field has a limited
chance of success of being mined. In order to occupy a field,
the player sends one or more spaceships to the resource fields,
and each spaceship has a chance to return with one or more
resources.

The resources mined will be used to buy buildings which
will compose the citadel-spaceship and so increase the player’s
score; there are also extra points for building all the five types
available or for building only one type of building. In order
to construct a building, the player will send a spaceship to
occupy the building site in the same way as they do to mine
resources, but the chance to return with a building is 100%.

Finally, a player can build spaceships by consuming re-
sources to increase their presence in buildings and resource
fields.

Fig. 2 shows the distribution of the field as quantity of ships,
resources and buildings that the player owns.

The game ends when there are no more buildings to be
built by the players or if a player manages to construct seven
buildings.

In Fig. 3, a finite-state machine is described showing how
the player will interact in the game. Before the game starts,
all players must choose their characters; after this, the game
will start in a loop that can be divided into two stages:

• Preparation: When the player will put his or her spaceship
on the game board.

• Acting: When the player will retrieve his or her ship,
build new ships, or use his or her power.

The loop will go on until the game ends and one player is
declared the winner.

Fig. 2. Board screen. Source: Elaborated by authors.

Fig. 3. Empire FSM. Source: Elaborated by authors.

VI. INTEGRATION

In order for this approach to work, it is necessary to integrate
the developed Genetic Algorithm with the subject game used
for this study.

To achieve this, the first change that the GA suffered was
that each player will have one population for themselves,
because each player has to have their own difficulty adjusted.
Secondly, in order to be constantly adjusting the game, the
genetic algorithm no longer needs a Stop Condition, so it was
replaced by a verification of whether each chromosome of the
population has been evaluated. The result is a change of the
steps of the algorithm showed in Fig. 4.

After this, the genetic algorithm was developed using Swift,
, because it is an object-oriented programming language that
can be used to develop for Ipad, a platform chosen because it
is the most used in the market nowadays [35], so the algorithm
was developed based on this paradigm which is applicable to
generalizing and specializing the Genetic Algorithm needed in
order to develop DDA for any kind of games. The result was
a set of classes described in Class Diagram 5 in which:

• Practice - is responsible for controlling all the tests
described in this paper. Maintaining instances of the
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Fig. 4. Adapted genetic algorithm. Source: Elaborated by authors.

Empire Game and Genetic Algorithm, a new game can
be simulated with AI and a new game can be started with
actual players.

• GeneticAlgorithm - is responsible for the main flow
described in Fig. 1.

• Population - is responsible for maintaining all indi-
viduals of a population, for evaluating the population, for
applying mutation and crossover, for selecting the best
elements of the population, and for generating an initial
population.

• Chromosome - is responsible for maintaining all indi-
viduals that codify a possible answer to the problem. It
can generate random chromosomes, an initial chromo-
some, and it can apply mutation to any gene.

• Gene - is responsible for codifying one characteristic of
the game.

Furthermore, three classes were extended in order to special-
ize the Genetic Algorithm for the Empire Game by overwriting
and creating new methods for the mother classes.

The EmpireChromosome is responsible for overwritten
the methods generateRandomChromosome and
generateInitialChromosome and for making
them able to create EmpireChromosome instead of
Chromosome, also the mutate method is overwritten in
order to be able to apply mutation in a way that the Empire
Game needs.

The EmpirePopulation is responsible for overwrit-
ten the methods generateInitialPopulation and
evaluatePopulation; the former will now generate
a population of EmpireChromosome and not simple
Chromosome and the latter will be responsible for returning
whether all population has been evaluated or not.

The EmpireGeneticAlgorithm is responsible for
adding the EmpireGame instance to the genetic algorithm

and also for overwritten the getPopulation method adding
the capability to return an EmpirePopulation instead of
a Population.

These classes can be extended and overwritten to suit
any kind of game. For example, if this algorithm is used
to balance a Pacman game, it is possible to create a
PacmanChromosome by using the number of ghosts as one
gene, the number of fruits as another gene and so on. As for
the Fitness Function, it can be defined as how many points
the player scores at each game.

Finally, the Gene must be defined to codify the char-
acteristics of the Empire Game, so it was decided that
Chromosome will have five genes that represent the proba-
bility that a resource can be mined in the game with minimum
and maximum probability as Table II describes.

TABLE II
GENE CHARACTERISTICS

Resource Min value Max value
Fuel 45% 100%
Iron 35% 80%

Uranium 25% 70%
Plasmidium 15% 60%
Nevidium 13% 50%

As the scheme represented in Fig. 1 indicates, the game
will generate an initial population for each player, and this
population has a number n of chromosomes that represent a
set of configurations. These configurations are the probability
of mining each resource. If the probability is too low, it
means that it is becoming harder for the player to mine that
resource, which will make the game difficulty increase, and if
the probability is too high, it means that it is becoming easier
for the player to mine that resource, which requires that the
game difficulty decrease.

At the beginning of each game round, a new chromosome
is chosen from the population. This chromosome will be used
as the configuration for that round. At the end of the round,
the fitness function described in section IV will be calcu-
lated to evaluate this chromosome. When all chromosomes
of a population have been calculated, the Genetic Algorithm
takes control and applies selection, crossover and
mutation; if the fitness is good the chromosome will survive
and will be used again; if not, it will change, guaranteeing that
the Dynamic Difficulty Adjustment is being pursued.

Finally, the algorithm will never stop, because the dynamic
difficulty adjustment will happen all the time players are active
in the game. If the players’ skills increase, the game makes
it harder for them and vice versa. Besides, the Training class
has the capability to store the Genetic Algorithm’s instances
to reuse the chromosomes already calculated, making the
algorithm achieve the flow state faster with each game.

VII. RESULTS

The results of this paper were obtained through numerous
tests with many different configurations for the Genetic Al-
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Fig. 5. Class diagram of Empire Game. Source: Elaborated by authors.

gorithm in order to reach the best configuration, the one that
achieved the highest degree of difficulty balance.

In order to find the best configuration for the Dynamic Dif-
ficulty Adjustment in Digital Games Using Genetic Algorithm,
intensive tests were carried out with a range of configurations
in a set of tests. The configurations used can be observed in
III

TABLE III
CONFIGURATIONS

Name Values
Size of Population [10, 50, 100, 150, 200, 500]

Mutation Rate [5, 10, 15, 20, 50, 90]
Crossover Rate(%) [10, 30, 50]

Tests were also carried out to assess the game’s level of
balance without using the balancing technique in order to
compare it with the results of the algorithm.

The metrics used to measure the results of this work were:
• i) Continuous Fitness: analyzing whether it was possible

to reduce the difference between the players’ scores
during the rounds;

• ii) Final Fitness: analyzing whether it was possible to
reduce the difference between the score of the players
across games;

• iii) Comparison between the game without the algorithm
and with the algorithm.

For each set of parameters (108 sets), 500 tests were carried
out, with the algorithm being restarted for each one of them,
totaling 54,000 tests using a combination of the parameters
described in the Table III for the Genetic Algorithm; and 500
tests for the game without the algorithm.

From these tests it was possible to measure the competi-
tiveness of the game by considering the difference in scores
at the end of the rounds. This can be seen in Table III,
which compares the results using and not using the balancing
technique.

TABLE IV
SCORE AVERAGE

With algorithm Without algorithm
Per round 64.01 71.03

Per end of game 119.3 126.31

It was also possible to measure competitiveness through
the different configurations tested. The best results for the
configurations are described in Table V.

TABLE V
SCORE AVERAGE

Config Pop. Size Mutation Rate Crossover Rate Average
1 200 20 50 115.9
2 200 50 10 116.7
3 500 20 10 117
4 500 50 10 117
5 10 50 50 117

In addition, the Empire Game, when played only with AI
agents, has an average of 19 rounds using balancing, and an
average of 23 rounds without balancing.

Moreover, it was possible to measure how the algorithm
behaves throughout the rounds. Table VI shows data from five
random matches:

VIII. CONCLUSIONS AND FURTHER WORK

In this paper we introduced the Dynamic Difficulty Ad-
justment problem and why it is an important problem. We
presented the Flow Theory that describes an approach to
improve a player’s immersion in the game and many authors
that based their works on this theory.

Furthermore, we reviewed some important contributions
to this area from the academy, which has many different
ways to approach the Dynamic Difficulty Adjustment; the most
common of them being the use of the game’s environment
itself by analyzing its characteristics and modifying them
to achieve the needed adjustment, an approach that is very
specialized for each game.

Our method proposes that the Dynamic Difficulty Adjust-
ment problem can be solved in a very general way, and because
of this, it can be specialized for any game. This solution was
reached through the development of a very generic Genetic
Algorithm that can be specialized for any kind of game. In
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TABLE VI
MATCH PROGRESSION BY SCORE

Round Game 1 Game 2 Game 3 Game 4 Game 5
1 26 14 18 20 16
2 29 18 26 9 26
3 61 16 46 12 34
4 31 28 72 21 47
5 29 64 56 18 34
6 53 60 59 34 53
7 38 28 47 18 56
8 63 56 57 42 53
9 85 30 85 25 56

10 72 76 78 32 53
11 70 74 66 26 74
12 75 39 49 72 74
13 52 58 52 105 109
14 85 62 71 74 79
15 127 86 81 91 11
16 141 77 73 99 97
17 129 65 65 88 107
18 125 80 70 91 END
19 130 88 END 126 END
20 121 69 END 119 END

order to test this, we developed a game specially designed
for this paper, and extracted from it a fitness function that can
measure the game difficulty for any player of the game. Using
this function, the algorithm can modify the game and adjust
difficulty.

The results indicate that the Genetic Algorithm developed
for this study achieved its objective by maintaining an average
score difference between the first and the last place of 119.3
points during the rounds, and of 64.01 at the end of the
games, which in turn showed a slight improvement of 5.8%
and 10.93% compared to the game without the balancing
technique. In addition, analyzing round by round of all games,
it was noticed that whenever the score difference (fitness)
increases, the algorithm tries to correct the game settings
to reduce it. The best configuration used for the GA was
configuration 1 according to Table V. As shown in section
VI, the algorithm can be coupled and specialized for other
games. Finally, the Empire Game developed for this work
proved possible to be played from beginning to end using AI
agents as shown in the simulations performed.

The contributions of this work are: a review of the Dynamic
Difficulty Adjustment area, a new open-source game and -
the main contribution - is a method using Genetic Algorithm
to balance any kind of games, which combines several ap-
proaches described in Related Work, and which innovates by
using a Genetic Algorithm technique.

As for further research, it is necessary to explore other
approaches where different sorts of matching with the GA
are performed such as by using neural networks to calculate
genes. Another experiment for the future is to couple this
algorithm with other types of games using different genes
and evaluation functions. Lastly, it appears to be promising to
increase the number of affected characteristics in the Empire
Game to detect if it is possible to reduce even more the score
average.
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