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Abstract—Graphical updates are very common in modern
digital games. For instance, PC game versions usually receive
higher resolution textures after some time. This could be a
problem for autonomous agents trained to play a game using
Convolutional Neural Networks. These agents use the pixels
of the screen as inputs and changing them could harm their
performance. In this work, we evaluate agents’ sensibility to
texture changes. The agents are trained to play a First-Person
Shooter game and then are presented to different versions of
the same scenario, in which the only difference among them is
texture changes. As the testbed, we use a ViZDoom scenario with
a static monster that should be killed by the agent. Four agents
are trained using Deep Q-Networks in four different scenarios.
Then, every agent is tested in all four scenarios. We show that
although every agent can learn the behaviors to win the game
when playing the same version in which it was trained, they
cannot generalize to all other versions. Only in one case, the
agent had a good performance in a different scenario. Most of
the time, the agent moved randomly or just stood still, and shot
continuously, indicating that it could not understand the current
screen. Even when the background textures were kept the same,
the agent could not identify the enemy. Thus, to ensure proper
behavior, an agent needs to be retrained not only if the problem
changes, but also when only the visual aspects of the problem
are modified.

Keywords-autonomous agents, deep reinforcement learning,
digital games, first-person shooter games

I. INTRODUCTION

Since the start of Deep Reinforcement Learning (DRL) as
a research area creating agents to play Atari games [1], [2],
we have seen many achievements in autonomous game agents.
They cover a broad range of challenges, like solving dozens
of Atari games [2], specific harder Atari games [3], all Atari
games [4], First-Person Shooters (FPS) [5], board games [6],
[7], [8], Multi-Agent games [9], [10], and Real-Time Strategy
games [11].

The vast majority of DRL agents are based on visual input,
specifically the game screen. The agent usually consists of
a Convolutional Neural Network (CNN) which input is the

current frame, i.e. the matrix of pixel values. Being an image-
based machine learning technique, the game screen approach
can suffer from a bias problem towards the dataset images.
If not handled carefully, the model would correctly evaluate
images similar to the ones used in its development but can
have poor performance with other samples.

This is not a mere overfitting problem since the model
probably performed well in the test dataset. In this work, we
focus on the issues that arise when using external data. For
example, models that tend to classify sheep as dogs1. Or, if we
can make a deeper analysis of the model, we could see that just
deactivating a single pixel is enough to fool the neural network,
as in one-pixel attack [12]. Also, as we are aware, CNNs tend
to classify the images in accordance with their texture content
rather than in accordance with their shape content [13]. Those
examples show how vision-based models are very dependent
on the training data.

When talking about games, there is a related problem. We
expect the players to be able to play the same game on
different platforms with approximately the same skill. For
example, a chess player should be as good in real life as in
an digital version of chess. If we learn to play a game like
Tetris2 in a game console, we would also know how to play
it in a handheld version, or at least its basic rules. However,
when the player is a vision-based DRL agent, this could not
be the case.

One example is if an agent learns how to play a game and
after that the game is updated. Commonly, there are changes
to the game, like increasing the health points of an enemy or
decreasing the power of a weapon. We call “buff” when there
is an increase in the power of any character, and “nerf” when
there is a decrease. This newer version of the game with buffs

1https://aiweirdness.com/post/171451900302/do-neural-nets-dream-of-
electric-sheep

2Tetris is a property of The Tetris Company, LLC (TTC)
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and nerfs is new to the agent and it may not perform as good
as before.

Although this is by itself a concern, there is also a more
subtle change that can affect the agent as much. If the patch
has changes in textures, the agent would not recognize the
frames to be similar to the ones it was trained. As such it has
to be retrained in this newer version. This is not unusual, as
we can see in recent works [11], where the agent was trained
in a specific version of the game. To have a good performance
in a newer version, it must be retrained. This is a very costly
and time-consuming process.

In this work, we investigate the sensibility of DRL-based
agents, training using Deep Q-Networks (DQN) [1], to texture
changes and evaluate the effects in their performance. We train
it in a scenario of a Doom-based FPS environment called
VizDoom [14], create three versions of the same scenario
with different textures, and then test the agent in all four
versions (Fig. 1). We answer three questions: (i) can a DRL-
based autonomous agent generalize its behavior for scenarios
with different textures without retraining? (ii) How much
changing only the textures affect the results? (iii) Does the
training version affect the performance when testing in unseen
textures? We show that an agent capable of solving an FPS
environment has a poor performance when playing the same
scenario with different textures. The results would help us to
move towards creating agents that can learn to play the games
without relying on specific textures.

This paper is organized as follows. In Section II, we
summarize some works that evaluate the influence of changing
input image textures. Section III brings a brief description
of DRL. Section IV presents the testbed scenarios used,
neural network parameters, and describes the settings of the
experiments performed. In Section V, we show the obtained
results and discuss them. Finally, in Section VI, we present
closing remarks and suggest some future works.

II. RELATED WORKS

In this section, we present two works that indicate the
effects in performance when testing with unseen input im-
ages for classification tasks and briefly describe three works
that change the texture of the environment using DRL-based
agents. Two of them train the agents in multi-texture scenarios,
both with better performance than single-texture training. The
last work makes a series of ablation studies on the impact
of human priors in the performance, comparing the results
obtained by agents and humans in different versions of a game.

One work that demonstrated a problem with CNN-based
image classification was one-pixel attack, from Su et al. [12].
For each image, the pixel that contributed the most to the
classification was computed and “removed” (turned into white
or black). The authors showed that several images in three
different datasets are misclassified by modifying only a single
pixel. A general problem with CNN recognition, exposed by
Geirhos et al. [13], is that these networks are biased towards
texture. The authors modified the input images to maintain
the original shape but with texture from other images. The

results showed that the network tends to classify the inputs in
accordance with the image from which the texture was taken.

Training DRL with different textures is not common. Chap-
lot and Lample [15] train agents on ViZDoom environments
using random textures. After training, the agent is tested with
unseen textures on the same map. After training with several
random textures, the agents are not affected by texture changes
when tested. This strategy clearly improves the agent’s perfor-
mance, but no further analysis of the impact of the random
textures training is performed. In this paper, we also use
ViZDoom as the environment and analyze the effects of texture
changes in the performance of the agents, but training the
agents in a single texture version.

Polvara et al. [16] present another work that trains DRL-
based agents using different textures. The authors train an
agent to control a quadrotor unmanned aerial vehicle (UAV)
to find a landing marker and land correctly. To ensure that
the agent is robust to different types of asphalt, they train
it with different random textures among 71 possibilities. An
agent trained in a single texture scenario is also trained, but
the performance of the multi-texture one is significantly better.
This indicates that indeed training with a single texture is
worse in this situation, but there is no further analysis of the
impact of multi-texture training.

The closest work to our proposal is the work of Dubey et
al. [17]. In this work, the authors investigate the importance
of human priors in performance when playing games. They
create a 2D platform game and modify its textures in order to
make it more difficult in the human perspective. The authors
compared human gameplay against a curiosity-driven agent
[18] to solve the game. Although the performance of humans
decreases after changes, for the agents, however, the game is
not harder to learn, independently of the textures used. The
results indicate that autonomous agents can learn much better
than humans if we could remove prior knowledge.

Nevertheless, in our work, we are interested in analyzing
the performance of an agent compared to other agents, not
humans. This would be useful to evaluate DRL-based agents
sensibility to texture changes, ignoring human learning char-
acteristics completely. To do this, we are going to train the
agents using a traditional method called Deep Q-Networks.

III. BACKGROUND

Reinforcement Learning tasks are sequential decision prob-
lems in which an agent should take actions in an environment
while trying to maximize the sum of received rewards. The
agent analyzes the current state s in the set of states S and
decides what action a in the set of actions A to take under
a policy π : S × A → R. The policy function gives the
probability of taking action a given that the agent is in state
s. If the policy is deterministic, we can say that the policy
returns the action selected for a given state, that is a = π(s).

Therefore, the goal of the agent is to find the actions that
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Fig. 1. Schematic view of the evaluation process. (1) One agent is trained in a single version using a CNN to learn the best action for every screen input. (2)
The agent is tested in the same version it was trained. (3) Test the agent in the other scenarios. All four agents go through steps 1, 2, and 3, each one trained
in a different version. (4) Finally, we evaluate the performance of all agents in all versions, already knowing that they will perform well in the scenarios they
were trained.

maximize the expected sum of discounted rewards,

Rt = E
[ T∑

i=t

γ i−tri
]
. (1)

In this equation T ∈ N is the total amount of interactions,
ri ∈ R is the reward at iteration i, and γ ∈ [0, 1) is the
discount factor.

The discount factor γ not only ensures that (1) will converge
eventually, but also determines how fast future rewards decay
in accordance with the current reward, making immediate
rewards more important than the later ones.

In this work, we use the DQN method [1], [2]. It combines
traditional Q-Learning [19] with Deep Neural Networks as a
function approximation for the values of states and actions
experienced by the agent.

A. Q-Learning

Q-Learning [19] is a way of solving Reinforcement Learn-
ing tasks. It consists of the computation of a scalar value
for each possible action for every state, which is called Q-
value, Q(s, a). This function is defined as the expected sum
of rewards received from starting in state s and taking action
a. It can be computed using the iterative process

Q(s, a)← Q(s, a) + α [y −Q(s, a)] , (2)

where
y = r + γmax

a′
Q(s′, a′) (3)

is called the target, r is the reward received, and α is the
learning rate. This is the Bellman equation for Q-values [20].

The optimal Q-function, Q∗, gives the maximum value for
each state, as defined by:

Q∗(s, a) = max
a

Q(s, a) for each s ∈ S. (4)

In practice, we do not have the exact Q-function. Instead,
we approximate the Q-values in accordance with agent-
environment interactions. After enough amount of interactions,
Q→ Q∗.

The traditional approach to update the Q-value is to create
a table with |S| rows by |A| columns. Each entry in the table
is iteratively updated following the current values of (s, a).
This solution is simple and converges to the optimal values
[20]. However, when the number of states and/or actions is
very large, using a table becomes too expensive. A solution is
to use a function approximation.

B. Deep Q-Networks

One possible approximation is to use a neural network
[21], [22]. The neural network with weights θ, Qθ(s, a, θ),
approximates the Q-values Q(s, a). The solutions of DRL use
a Deep Neural Network, usually a CNN [1]. After training the
network, the learned weights make Qθ(s, a) ≈ Q∗(s, a).

To adapt the tabular Q-Learning to use neural networks, we
need to change (2) from an update rule to a loss function. The
loss function of a parameterized value function Qθ is given
by the mean square error:

Lt(θt) = E
[
(yt −Qθt(s, a))2

]
. (5)

Then we can compute the gradient of the above loss function
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with

∇θtLt(θt) = E
[
(yt −Qθt(s, a))∇θtQθt(s, a)

]
. (6)

With the loss function and its gradient defined, we can use
backpropagation and Stochastic Gradient Descent to train the
network.

C. Exploration vs. Exploitation

A crucial aspect of Reinforcement Learning is that the
agent should favor the actions with higher values along the
learning process, exploiting the best ones. However, it should
also explore the environment to look for potentially better
options than the ones currently considered. Although studied
for decades [23], [24], this trade-off, widely known as the
Exploration vs. Exploitation dilemma, is still an active research
field with several methods trying to handle it [20].

In this work, we use an ε-decay strategy. The agent explores
the environment with an initial probability ε0 of taking random
actions for the first episodes. Then, the value of ε decreases
linearly until it reaches a final εT , which is maintained for the
last episodes. At all times, ε should be greater than 0 to ensure
that exploration is always possible. This annealing helps the
learning process to explore more in the first interactions
when the information was not properly evaluated, and favor
exploitation when there is more information available.

D. Experience Replay

If we consider the input pairs (s, a) from the sequence in
which they were generated, there would be a strong correlation
between consecutive pairs. That would make the network to
bias the learning process towards the expected sequences. We
use a technique known as Experience Replay [25] to minimize
this problem. Instead of learning directly from the state
experienced, we store the current transition tuple (s, a, r, s) in
a data structure called replay memory. When there are enough
transitions stored, the network is updated using a minibatch
of random samples from replay memory.

With inputs taken randomly, when the size of the memory is
large enough, there is a small chance to give the network two
consecutive transitions in sequence. This process effectively
breaks the correlation between the samples. Another advantage
of using a replay memory is that the same input could
be used more than once to update the weights, increasing
data efficiency. In this work, we use the DQN method with
Experience Replay to train the agents in the experiments
described below.

IV. TEXTURE SENSIBILITY ANALYSIS

We created the following experiments to evaluate texture
sensibility in DQN agents playing FPS games, that is, if they
can perform properly when only the textures of a game are
changed, and how much this change affects their performance.
To test these cases, we compare the performance of the
agent in one ViZDoom [14] scenario (Fig. 1.2) and in other
three custom environments (Fig. 1.3), designed to emulate the
characteristics of different game versions. Then, we compare

the agents’ performance on all versions (Fig. 1.4). The agent is
composed of a Deep CNN, trained with no prior information
(Fig. 1.1).

A. Environments

The agent was trained and evaluated in four different sce-
narios, which follow the same general gameplay. The scenario
is a square room with only one enemy. It is static and remains
in the same position after spawned. An episode starts with the
agent on the opposite side of the monster. The agent always
starts in the center of his side, while the enemy starts in a
random position. Important aspects of the environment are
described in the following.

1) Scenarios: Four different scenario versions are used to
train and evaluate the agents. Each one is a variation of the
standard Basic scenario. All scenarios are shown in Fig. 2.

Basic. This is the standard basic scenario present in ViZ-
Doom. The monster, walls, ceiling, and floor have the default
sprite versions which come by default in the library.

Caco. In the first alternative scenario, we want to simulate
a different appearance of the monster. This is a very common
technique used in games. The textures of the floor, ceiling,
and walls remain the same. However, the monster texture was
changed to Doom’s original Cacodemon sprite.

Flat. To emulate an older, low-resolution version of the
game we change all the sprites. Instead of more detailed
textures, we have only flat colors for every part. The walls
have a dark brown texture, the floor is light brown, the ceiling
is gray, and the monster is a dark blue rectangle.

Animated. Finally, we want to emulate a new version of
the game, in which the environment is more sophisticated. In
it, all the floor, ceiling, and walls are animated textures with
colored patterns. The monster, however, is the default version.

2) Action Space: The agent has three possible actions:
move horizontally to the left, move horizontally to the right,
and shoot. All of these actions are binary choices, the agent
can perform an action or not, with no intermediate values.
Thus, the full action space has eight possible discrete elements,
comprising all possible combinations of the three binary
actions.

3) Reward Distribution: Following the definition of Rein-
forcement Learning, as described in Section III, we evaluate
the performance of the agent in accordance with the sum of
received rewards. All the following values are already present
in ViZDoom’s default scenario, and we use them in all other
versions. At every timestep, the agent receives a reward of −1.
This negative score makes the agent try to kill the monster as
soon as possible. For every shoot, the agent receives a reward
of −5. A single shot is enough to kill the enemy. Thus, the
agent also tries to kill the monster with a single shot. After
killing the enemy, the agent receives a score of 100.

In an optimistic scenario, the monster spawns right in front
of the agent, which shoots immediately. Since the agent did not
move or missed a shot, its total score will be 95, discounting
only the killing shot. However, if the agent moves randomly
and shoots aimlessly, its total score can be a large negative
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Fig. 2. All four scenarios used in this work. From left to right: Basic, the default scenario; Caco, which replaces the monster’s sprite with its original version;
Flat, in which the sprite textures are replaced by flat textures; and Animated, in which the static textures are replaced by animated sprites.

Fig. 3. Input samples. These are the agent’s point of view of the same frames from Fig. 2.

number. In our experiments, we observed that a mean score
of around 75 points indicates an agent with optimal behavior,
i.e., immediately follows the direction of the monster and kill
it with a single shot.

B. Neural Network settings

We based our settings in [26] since it obtained good results
for the scenario used in this work. Although mostly the same,
there are some modifications. For reproducibility reasons, all
the settings are described below.

1) Inputs and outputs: The input is a grayscale image of
size (64 × 48) pixels (Fig. 3). Usually, gray images are used
to decrease the input size. In this work, however, we use
grayscale images also to avoid a network bias towards the
colors of them. Every pixel of the image is a floating-point
value in the range [0.0, 1.0], in which 0.0 is a pure black
pixel, and 1.0 is pure white. The outputs are 8 neurons, one
for each possible action in the action space, as described
in Section IV-A2. Every output returns a float value that
represents the action-value Q of each action.

2) Architecture: The network architecture is the same as in
[26]. It consists of two convolutional (conv) layers followed by
two fully connected layers. The first conv layer has 32 filters
with a kernel of size (4× 4) with stride (2× 2). The second
conv layer has 64 filters also with kernel a of size (4×4) and
stride (2×2). In all conv layers, we use ReLU [27], [28] as the
activation function, and the weights are initialized using Glorot
uniform initialization [29]. Next, the output of the second conv
layer is flattened into an array of 8960 neurons. They are fully
connected with 512 neurons, which are fully connected with
the 8 output neurons. The model uses Adam optimizer [30],
and a mean squared error loss given by (5). The architecture
is summarized in Fig. 4.

C. Hyperparameters

We defined an ε-decay strategy, as described in Sec-
tion III-C. It starts with a purely random action selection,
ε0 = 1.0 for the first 10% epochs. Then, ε decays linearly
for half of the epochs. Finally, εT = 0.1 for the last 40%
epochs. The values of ε per epoch are shown in Fig. 5. We
use a replay memory, as described in Section III-D, to hold
the 10000 most recent samples. At every step, a minibatch of
64 samples is randomly retrieved from the memory and passed
to the network. For the update rule of (2), we use a discount
factor of 0.99 and a learning rate of 0.0001.

When an agent performs one action per frame, the differ-
ence between the consecutive frames is so subtle that almost
identical states are saved in replay memory, which makes the
learning process more difficult. To minimize this problem, the
agent skips some frames before going to the next state [31].
This happens by choosing an action and repeating it through
the next frames, and only then another action is chosen. In
this work, we use a frame repeat value of eight.

D. Training Regime

Training is the stage in which the agent actually learns. In
the experiments, we observed that 25 epochs is enough to
stabilize the results. In each epoch the agent trains for 200
episodes. An episode ends when the monster is killed, or in
timeout after 300 timesteps. After training, the agent is tested
in another 500 episodes, to keep track of the learning process,
and to check if its performance is increasing. During tests, the
network is not updated and the agent performs the action with
the highest Q-value for the current screen.

A very important adjustment to keep the fairness of the test,
among all scenarios, is that the agents should be tested in the
exact same episodes. In ViZDoom, we can achieve this by
setting the seed of every episode. We created a list of seeds
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Fig. 4. Neural network architecture.
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Fig. 5. ε-decay strategy: ε starts in 1.0 for the first 10% epochs, decays
linearly for half of the epochs, until it reaches 0.1 for the last 40% epochs.

for test episodes, which is shared in all scenarios. The tests
during learning are also made in the same scenarios.

V. RESULTS AND DISCUSSION

In this section, we present the results obtained after training
four agents in the scenarios described in Section IV-A1, and
the results of evaluating them in all the scenarios they were
not trained. We also describe and discuss the behavior of the
agents in all of the tests.

A. Learning in a single scenario

First, we have to make sure the agents can learn in a single
environment. There are three general behaviors to be learned.
The first occurs when the monster is spawned directly in front
of the agent. In this case, the agent only needs to shoot, killing
the monster immediately. When the monster spawns to the left
of the screen, the agent must move to the left and shoot when
in front of the monster. Similarly, when the monster spawns
on the right side, the agent must move to the right and shoot
when in front of the monster. As presented in Section IV-A3,
a mean score of around 75.0 indicates an optimal behavior.

All four agents were able to learn the expected behaviors
after 25 epochs of 200 episodes. The agent trained in the Basic
scenario achieved a mean score of 75.96. The agent trained in
the Caco scenario achieved a mean score of 80.01. The agent
trained in the Flat scenario achieved a mean score of 77.17.
Only for the agent trained in the Animated scenario achieved a

mean score of less than 75.0, achieving 70.33. However, even
this agent learned to identify the monster, move to the correct
side, and try to kill it as soon as possible. This lower result
is probably due to the increased difficulty of understanding
animated background textures.

B. Evaluation in other scenarios

1) Basic: First, we evaluate the agent trained in the Basic
scenario when tested in the other three.

Caco. When tested in the Caco scenario, the agent trained in
the Basic scenario achieves a mean score of 30.59. Although
this is the second-highest score in a different evaluation
environment, the behavior of the agent is not close to the
optimal. The agent seems to randomly move left and right,
shooting repeatedly, and only eventually hits the monster. The
agent clearly cannot identify the enemy, however, in contrast
to the other tests, it moves to both sides, which indicates that
it at least recognizes the other elements of the map.

Flat. This is the only case in which an agent was able
to succeed in a scenario with different textures than it was
trained. The mean score of the Basic agent tested in the Flat
scenario was 73.35. Not only the score indicates that the
agent actually played well, but its behavior also confirms.
As expected in a learned environment, the agent follows the
enemy and tries to kill it with a single shot. This result
indicates that, in some scenarios, we could reuse a trained
agent and have a good performance.

Animated. The agent does not perform well in this test, it
cannot understand the screen of the Animated environment.
In every episode the agent just moves to the left, shooting
constantly, and remains at the leftmost side. Since the enemy
can spawn on the left side of the screen, the agent kills it
sometimes. It achieves a mean score of −152.01, which agrees
with its behavior. This scenario is indeed the most different and
indicates that a generalization of performance with arbitrary
textures is very difficult.

2) Caco: Now, we analyze the behavior and score of the
agent trained in the Caco scenario.

Basic. This is one of the three cases with a mean score
higher than zero, specifically 15.29. Not only the score is one
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of the highest, but the agent’s behavior also stands out. Similar
to the opposite test, which achieved the second high score,
this agent also moves alternately from left to right, shooting
constantly. After a while, it goes towards the monster and
kills it. Again, this behavior indicates that the agent seems
to recognize the map, although it clearly cannot identify the
monster.

Flat. In this test, the behavior of the agent varies. Usually,
it goes to the left, but sometimes it just stands in the center
of the screen, shooting repeatedly in both cases. It achieves a
mean score of −103.22, showing that it can kill the monster.
However, its behavior shows that the agent recognizes neither
the enemy nor the background of the map.

Animated. A mean score of −233.39 already shows to us
that the agent cannot kill the monster. In fact, the agent just
keeps standing in the center of the screen without shooting at
all. We can then conclude that the agent had problems with the
animated background and also could not identify the enemy.
This pattern is common for the agents tested in Animated. It
shows that the change from static background to moving ones
is not dealt properly by the agents.

3) Flat: Next, we present the results of the agent trained
in the Flat scenario.

Basic. Similar to the last test case described above, the agent
remained in the center, and again without shooting. The mean
score of the agent was very low, −239.87, which happens
when the agent cannot kill the enemy in almost any episode.
This indicates that the agent could not understand the scenario.
This result goes against a possible generalization of learning
since the Flat textures were based in the Basic scenario.

Caco. Again, the agent just stood still and without shoot-
ing, and with a very low mean score, −240.92. Since the
background textures are the same as the previous test case,
this result corroborates the hypothesis that the agent could not
understand them. And similar to the previous case, the agent
also could not identify the monster.

Animated. For the third time, the agent trained in the
flat scenario just keep itself standing in the center of the
screen. However, in this test, it keeps shooting repeatedly,
which implies a slightly higher mean score of −224.08. Still,
remaining in the starting position is a strong indication that
the agent could not understand the input.

4) Animated: Finally, we evaluate the performance of the
agent trained in the Animated scenario.

Basic. Among the tree evaluations of the agent trained in
the Animated scenario, this one presents the highest score of
−67.57. A score below 0 indicates an agent unable to kill
the monster regularly, which is also true here. Usually, the
agent alternate moves to the left and the right, always shooting.
However, in some episodes it just keeps standing in the center,
shooting repeatedly. Thus, the agent could not identify the
enemy and had trouble when dealing with a very different
background.

Caco. The behavior of the agent in this test is a little odd. At
the start of the episode, it remains in the center of the screen,
shooting constantly. Then, it moves to the right, still shooting.

Finally, it gets stuck on the rightmost side of the screen. With
this behavior, the agent kills the enemy sometimes, achieving
a mean score of −117.82, but clearly unable to understand the
input screen.

Flat. In this evaluation, an agent trained with animated
textures is presented with flat ones. The difficulty of presenting
a suitable behavior also appears here. The agent moves ran-
domly from left to right, shooting repeatedly, without showing
signs of identifying the enemy. In the end, the agent achieves
a mean score of −104.91.

C. Discussion

All four agents were able to learn and perform well in their
trained scenarios. The agent trained in Animated textures was
the only one with sub-optimal performance, which indicates
that using animated textures increases the learning difficulty.
All other three agents achieve optimal behavior in their re-
spective scenarios.

When tested in different scenarios, only the agent trained
in the Basic scenario and tested in Flat textures was able to
perform as expected, moving towards the enemy and trying
to kill as soon as possible. In no other test it showed any
indication of being able to fully understand the inputs, which
include the enemy and the background textures. All scores are
condensed in Table I.

TABLE I. MEAN EVALUATION SCORE.
ROW: TRAINED SCENARIO. COLUMN: EVALUATED SCENARIO.

Basic Test Caco Test Flat Test Anim. Test
Basic Train 75.96 30.59 73.35 -152.01
Caco Train 15.29 80.01 -103.23 -233.39
Flat Train -239.87 -240.92 77.17 -224.08

Anim. Train -67.57 -117.82 -104.91 70.33

When trained in the Flat scenario, the agent just remains
standing in the center of the screen. In two of the tests, it did
not perform any action, while in one case it shot continuously.
These three tests show that the agent when trained in simple
flat color textures is not able to understand any other texture,
not even the ones in which they were based on, the Basic
scenario.

The Animated scenario is the most difficult and all agents
trained in other scenarios had trouble with it. In the case
of the agent trained in the Basic scenario, it moved to the
leftmost side of the screen and in the other two tests the agent
remained at the center. Indeed, this was the most challenging
scenario, due to the animated versions of the background, in
both training and evaluation of the agents.

Caco and Basic scenarios results showed the agent moving
to the left and to the right, which was uncommon. This
indicates that the agent could have recognized the background,
which shared the same textures but had trouble identifying
the enemy. If the agent could identify the monster, the agent
could move to kill it, which does not happen. And if it did
not understand the scenario at all, it would probably remain
in the center or move to a side of the screen, as in most of
the tests.
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VI. CONCLUSION

Although there are prior works that change the texture of
the environment using DRL-based agents, they do not perform
further analysis of its impact on the performance of the agents
when presented with unseen textures. In this work, only a
single agent was able to play another scenario version with
good performance. This indicates that even in the simplest
cases a CNN-based autonomous agent is not able to generalize
its understanding of inputs from different textures consistently.
For example, although there is a penalty for every shot in
all environments, in most evaluations the agent kept shooting
continuously. These results of DRL follow the ones obtained
in classification tasks presented in Section II which are very
sensitive to input changes. Thus, to ensure proper behavior, an
agent needs to be retrained not only if the problem changes,
but also when only the visual aspects are modified.

Now, we address the questions raised in Section I directly.
First, although all four agents are able to learn suitable
behaviors in their respective trained scenarios, in general, they
did not have a good performance in versions with different
textures. Answering the second question, we also observed
that in a single case the agent understood the inputs, but in all
other eleven tests changing the textures made the performance
much worse. Finally, the results differ by a large margin
when comparing different training scenarios, which lowers
confidence in trying to avoid retraining. These results indicate
that, to achieve a proper performance after texture changes, a
CNN-based autonomous agent trained using DQNs should be
retrained.

As future works, we want to look further into how the
agents learn from screen inputs and to evaluate if training with
different textures could be a starting point for the network
weights. We also want to look for new insights in how
the screen representation affects learning and performance
in unseen texture in known environments, and to make the
network discard the unnecessary information. For example,
comparing Basic and Animated scenarios, the network should
focus only on the monster. Since the monster has the same
pixels, the performance should be the same in both scenarios,
which does not happen.
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