
Investigating Case Learning Techniques for
Agents to Play the Card Game of Truco

Ruan C. B. Moral
Undergraduate Program in Computer Engineering

Federal University of Santa Maria – UFSM
Santa Maria – RS, Brazil
ruancmoral@gmail.com

Joaquim V. C. Assunção
Applied Computing Department

Federal University of Santa Maria – UFSM
Santa Maria – RS, Brazil

joaquim@inf.ufsm.br

Gustavo B. Paulus
Graduate Program in Computer Science

Federal University of Santa Maria – UFSM
Santa Maria – RS, Brazil

gustavobpaulus@gmail.com

Luis A. L. Silva
Graduate Program in Computer Science

Federal University of Santa Maria – UFSM
Santa Maria – RS, Brazil
luisalvaro@inf.ufsm.br

Abstract - Truco is a popular game in many regions of South
America; however, unlike worldwide games, Truco still
requires a competitive Artificial Intelligence. Due to the
limited availability of Truco data and the stochastic and
imperfect information characteristics of the game, creating
competitive models for a card game like Truco is a
challenging task. To approach this problem, this work
investigates the generation of concrete Truco problem-
solving experiences through alternative techniques of
automatic case generation and active learning, aiming to
learn with the retention of cases in case bases. From this,
these case bases guide the playing actions of the implemented
Truco bots permitting to assess the capabilities of each bot,
all implemented with Case-Based Reasoning (CBR)
techniques.

Keywords - Case learning, Case-based reasoning, Card
games, Truco game

I. INTRODUCTION

Computer games are officially a sport (publicly known
as E-Sports). These games are capable of moving
thousands of people to attend annual competitions, such as
the League of Legends World Championship in 2013 [1],
for example. In this context, the effort to design techniques
aimed at supporting the development of more fun and
competitive computer games has allowed achieving
significant advances in Artificial Intelligence (AI). As such
games evolve, players also expect game situations that are
closer to reality, with interactions between agent players
that resemble the behavior of real people [2].

For agents inserted into games to act similarly to
humans, it is relevant to investigate ways of learning what
the agent should perform in each problem situation of the
game. In this line of research, Case-Based Reasoning
(CBR) [3] is an important AI technique that reflects human
decision-making behavior in the resolution of many
complex problems. In different works in the area of
computer game development [4], a case-based agent
(described in this article by the term BOT) recalls a past
game situation (a past case) similar to a current game

situation (a current case problem to be solved). Once a
concrete problem-solving experience is retrieved from
memory, materialized as a case base in CBR, the agent
reuses the decision made in the past to solve the current
problem. For a case-based agent to perform actions in a
competitive game, that agent can initially use
demonstrations of game actions performed by human
players, where demonstrations of various kinds can be
recorded as cases in the case base [5]. In a complex game
environment, however, it is exhausting for game
developers to demonstrate every possible problem and
solution that can be required by an agent or even to
program a game script reflecting a general problem-
solving behavior. As explored in this article, it is necessary
to have techniques that enable the BOT to learn how to act
even when limited initial knowledge about the problem-
solving is available. In many senses, new cases have to be
retained in case bases to support the decision-making
process of agents in various kinds of computer games.

To explore case learning techniques for games, a CBR
system applied to the Truco’s card game was developed.
Truco [6] is a widely practiced card game in the southern
regions of South America, although some of its rules may
vary according to the region, or country, in which it is
played. In many ways, this game has characteristics that
are similar to the game of Poker and other card games.
Unlike Poker, however, research involving the game of
Truco in the literature is still limited [7, 8]. In the field of
research regarding CBR learning for competitive games
disputed between pairs of opponents, the Truco game
presents a fun and motivating environment where a set of
research challenges for AI can be addressed, such as how
to approach continuous learning, for example.

In this project, a set of 513 hands of Truco matches
played between two human players were initially collected
and stored in a case base. From these cases, a BOT
observed how human players acted in the past to then
reproduced these actions in the current games. However,
the main problem with this BOT is that 513 records of
Truco hands may be a limited number of gaming

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 301

experiences compared to other game applications similar
to Truco. As described in [9], for instance, 50,000 Poker
hands were used to guide agents in making decisions in
that game. Using the set of 513 cases of Truco games,
therefore, this work investigates alternative case retention
approaches to support intelligent agents to play the game
of Truco. Among other goals, this initial case-base made it
possible to investigate different forms of case retention: a)
the retention of new cases and b) the retention of new
cases with substitution, in addition to c) the use of random
game actions to generate new problem-solving experiences
to be retained. Such techniques were performed whenever
the agent detected that it did not know how to solve a
current problem in the game. As this BOT may also need
to perform game actions as similar as possible to actions
that human players would perform, a d) tutoring strategy
based on the active learning technique [10, 11] was also
explored in the case retention investigation presented in
this work. In this case, when experiences capable of
solving the current problem were not found in the case-
base used by the agent, and only in such situations, this
agent requested the help of a human player (the first author
of this paper), who indicated what this BOT should do. In
this way, a new and concrete problem-solving experience
was generated and inserted into the case-base, permitting
the agent to develop new Truco moves.

To assess the effectiveness of the different case
learning techniques investigated in this work, a set of
Truco matches between agents was performed. In doing
so, agents’ game decisions were based on a) the case bases
automatically generated and based on b) the initial case
base (the BASELINE case base) collected in this project.
In addition, a competition between agents playing with
case bases generated from each one of these retention
techniques was carried out to determine which agent have
used the most competent case base.

II. BACKGROUND TO THIS WORK

The development of AI techniques for games has lately
shown great effectiveness mainly with respect to
deterministic board games like Chess and GO. Such games
involve the dispute between two players, where the agents
have perfect information about the game. To have perfect
information means that at each moment of the game an
agent can observe the environment and know the
opponent’s moves. In general, these games may not be
considered as complex as Poker, for example, which is a
game with imperfect information. This is because there is
information on games of Poker that is only observed with
the development of the game, in addition to the luck
factors involved [12]. For example, each player in the
game of Poker receives shuffled cards. In addition, each
agent only has information from their cards, usually not
knowing the opponents’ cards. When Poker games are
mostly played with entertainment purposes, bluff
techniques are also often explored, where the quality of the
received cards is not enough to make various good
decisions.

A. CBR in digital games

Case-Based Reasoning (CBR) [3] is focused on the
development of intelligent agents in a wide variety of
applications, as well as being used to support the

development of agents immersed in computer games. The
basic idea of CBR is to recall a previous situation which
resembles a current one and then reuse past case-based
knowledge to find a solution to the current problem. In
CBR, a central idea is that similar problems have similar
solutions, and that these problems tend to repeat
themselves over time. The CBR cycle is commonly
described as a four-step process (4R cycle). The retrieval
step uses the characteristics of a current problem, where a
query on a case-base is performed. This allows retrieving
the past cases that most resemble the current problem. The
reuse step uses the most similar cases retrieved for a given
query. This step involves reusing the past case solutions to
solve the new problem. The revision step involves
checking the quality of the reused solution, to avoid
proposing solutions that are ineffective or even impossible
to be applied to. Finally, the retention step involves
analyzing whether the current case, solved from the reuse
and revision of the past solutions, is relevant to be
remembered to support the solution of new future
problems.

The retrieval of cases from the case-base is one of the
main steps of the CBR cycle. A description of the current
problem is created where the characteristics, considered
relevant to find a solution to this new problem, are
identified in the query formation. With this query
description, a search in the case-base is carried out to
identify which past problem-solving situations are the most
similar to the current problem to be solved. The case
retrieval strategy most commonly used in CBR systems is
based on the K-Nearest Neighbor algorithm. There are
several functions for the assessment of the case similarity
between current and past case situations. These functions
can be organized according to similarities that are local,
computing similarities between individual case attributes,
and similarities that are global, where an amalgamation
function computes similarities in the level of cases. In
CBR, a common approach is to apply different local
similarity functions to different kinds of attributes, and
then to use the Euclidean distance function to measure
similarities between query and past cases, as explored in
this work. Once such similarity is computed, the retrieved
cases are organized in a ranking order based on the global
similarity results.

At the end of the 4R CBR cycle, it is necessary to
analyze if the solved current problem should be
remembered as to support the resolution of new problems
in the CBR system. In this case, case retention in the case-
base involves a process of learning, such as learning how
to solve a new problem that does not yet exist in the case
base. The objective of retaining case-based knowledge
about how to approach new problems is to constantly
update and improve the competence of the case-base [13,
14], permitting the CBR system to approach a larger
number of problem situations.

As described in [4], research involving the exploration
of CBR techniques in games can be concentrated in
categories: “classic board games”, “adventure games”,
“team sports”, “real-time individual games,” “real-time
god / management games”, and “strategy-based games in
shifts” (discrete / turn-based strategy). In quite challenging
scenarios, CBR techniques have recently been explored to
solve problems in the category of RTS games. For

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 302

example, [15] describe case acquisition strategies to
support the development of agents aimed at RTS games. In
addition, [16] explore CBR in the automated modeling of
learning processes and adaptation of opponents in the RTS
game called GLest. In another work, [17] explore CBR to
perform a more effective army composition in the RTS
game StarCraft. In the card game of Truco, this article also
explores learning techniques like the ones cited here.

In more classic game environments, CBR is used in
[18] to model and detect a player’s skill level in the Tetris
game. The objective is to dynamically adjust the difficulty
level of the game according to the skill of the player.
Based on this adjustment, the approach involves improving
player satisfaction to maintain his/her engagement with the
game. [19] present the CHEBR system containing an agent
capable of learning how to play checkers. CHEBR uses the
“Automatic Case Elicitation” (ACE) [20] approach to
building a case base. In this learning technique, similar to
what this article explores, a query on the case base is
performed. If a past case to solve the current problem is
not found, a random attempt to solve the problem is
performed. Then, the quality of this trial is assessed. From
it, new relevant cases are determined and stored in the case
base. [9] use CBR not to play, but to present a more
challenging game for the players. COMETS is an agent
capable of watching user’s moves in the Space Invader
game. From this observation, the agent can detect plans or
patterns that may appear, allowing the identification of the
future actions of these players. The idea is to anticipate
what a player can play to generate a more challenging
game.

Designed to play Texas Hold’em, the most common
style of Poker, [21] describes the CASPER system (CASe-
based Poker playER). This system explores CBR
techniques to make decisions on the types of strategies that
must be applied during each stage of a Poker match. These
strategies consist of actions that must be performed given
the stage of the game: raise, bet, fold, take no action or
accept the bet, among others. In addition, there is also a
classification of these plays between honest or tricky ones.
Thus, the developed agent can play with different styles,
which have been divided into aggressive or passive. Like
CASPER, SARTRE [22, 23] was designed to use CBR in
the game of Poker to make betting decisions based on past
cases. Unlike CASPER, which was developed for the 10-
player Texas Hold’em style, SARTRE is geared towards
matches between two players, just as explored in this
work.

In particular to the Truco game context, [8] explore
image processing techniques to analyze the visual
messages often explored in multi-player Truco matches.
Based on alternative CBR reuse criteria described in the
literature [22-24], a two-step CBR reuse model was
proposed in [7]. There, the integrated use of CBR and
clustering techniques was explored to assess Truco cases
stored in the case bases in terms of their decision-making
game states along with the game actions advanced in the
recorded Truco scenarios. The paper also investigates the
exploration of different reuse criteria (probability lottery,
majority rule, best-outcome) in the choice of which case
groups and game actions to reuse as to support agents to
solve Truco problems in new game situations. This paper

considers this research and expands it in direction to the
investigation of alternative case learning approaches.

B. CBR learning

Intelligent agents can be in constant learning. In the
case of CBR systems, the knowledge of the system is
stored mainly in the case base, among other repositories of
knowledge [25]. Exploring such case bases, the CBR
system can remember past cases to reuse successful
solutions to current problems. When a problem is solved
via CBR, for example, this problem-solving experience
can be recorded in the case base, possibly improving the
competence of the case base. In general, the CBR system
should have learning resources to save new cases in the
case base, but it should also have resources that allow
forgetting failure situations, redundant or unnecessary,
automatically removing such cases from the case base.

CBR systems are traditionally built from previously
organized case bases. In situations where such a case base
is not available or is available although it is partially
complete, it is possible to explore the ACE strategy [20].
In many problems, using this strategy allows a system to
develop its knowledge automatically. This is done through
trial and error, where the system has no prior knowledge.
The ACE flow consists of carrying out the action proposed
by a set of retrieved cases according to the maximum
number of cases and a certain minimum similarity
threshold. If it is not possible to retrieve any past situation
(or case) according to the defined criteria, random game
actions can be performed. As this random action can be
ineffective, the result obtained with this game action must
be observed. At the end of each game interaction, some
metrics are used to verify the effectiveness of each
performed game, where the result of each action employed
is evaluated, generating “rewards”. In general, this allows
one to assess what the best cases are. Thus, it is possible to
select only the best solutions and perform the removal of
actions with poor performance as in [26]. Due to the ability
to explore such game attempts, this technique is suitable
for learning in domains where the outcome of the games is
easily observable. As random game actions are made, it is
possible to perform different experiments and then select
the best ones.

In the scope of learning for games, agents should be
able to interact in the game as realistically as possible. In
many ways, these agents could act like a human player
would act given a problem situation. In this scenario, a
technique commonly used for the development of agents in
CBR systems is the “Learning by Observation”. Also
known as “Imitation Learning” or “Demonstration
Learning” as described in [11], observation learning is a
very common human learning strategy, where an example
(used as a model) is sought for information on how to
perform a decision for a problem situation. For instance, an
agent learns to move a bicycle pedal in a certain way by
watching a teacher to demonstrate the movements or
sequence of steps that should be performed. In
demonstration learning, a teacher interacts in the
environment performing actions after receiving stimuli
from the environment in which he/she is inserted into, thus
generating a new observed case, as detailed in [27]. The
actions taken by this teacher are observed by the system,

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 303

which memorizes what the teacher has taught and stores it
into the case base.

Observational learning is a passive learning technique,
where the expert may not even know that he/she is being
observed. A limitation of this technique is that it depends
on the behavior of the observed specialist. For example, if
during the observation the specialist does not have to solve
a specific problem, then experiences (cases) will not be
created to solve that problem. Even if the specialist is
observed for a long period of time, or on multiple
occasions, there is no guarantee that a complete sample of
the problem space can be collected [10]. Likewise, if a
large number of one type of game action is shown while a
smaller number of another type is presented, this can lead
to an unbalanced case base. For example, [28] used the
observation learning technique to teach a robot to play
football. By observing how other players acted, a case base
that covered many cases of one action and few others were
produced. In particular, 67.8% of cases involved running,
32.1% changing direction, and 0.1% kicking. In short, this
demonstrates that a passive observation behavior did not
allow capturing gaming experiences for rarer situations,
which may need to be better observed in order to improve
the performance of the system.

Using a system that monitors the actions of a teacher, it
is possible to develop a case base capable of solving a
large number of the most frequent problems occurring in a
game environment. However, it is essential to note it is
tiring for the instructor to perform all possible situations
that can occur at specific times. To avoid this, techniques
are needed to allow agents to learn from a few
demonstrations provided by a teacher or to detect that there
is no knowledge on how to solve certain situations in the
case base, as tried out in this article. With this, “active
learning” techniques [10, 11] can be explored in a
complementary way to observation learning techniques. In
practice, only when it is identified that a current case base
has not the competence to solve a current problem, the
specialist is invited to present a solution to this new
problem, leading to the retention of a new case in the case
base.

Aiming to decrease a teacher’s demonstration effort, an
example of active learning is the SALT (Selective Active
Learning from Traces) technique [11]. With this, there is a
Dl number of possible states that an intelligent system has
learned and Dt is the total number of necessary cases that
the system can encounter during its execution, where Dt
can be very different from Dl. If the system finds a known
situation, it acts alone. However, if a situation is found
outside the scope of knowledge of the system, control is
passed on to the teacher to solve the problem. This control
remains with the teacher until an execution state is found
in which the system is able to take control again. In
practice, this active learning algorithm has been evaluated
in two different game styles: a Super Mario platform game
in which the player must reach the end of the level while
avoiding enemies, and a puzzle game called Thermometers
in which it is necessary to fill thermometers of different
sizes and orientations with mercury where the amount of
mercury is indicated by the line and column in which it is
located.

C. The Game of Truco

The Truco [6] addressed in this work consists of the
Truco “Gaudério”, where this work is more specifically
focused on matches involving the dispute between two
players. Truco is based on the 40 cards of the Spanish deck
discarding all eight, nine, ten, and wild cards. Like other
card games, Truco is also susceptible to luck through the
drawing of cards. A match is counted to 24 points, winning
the first player to achieve this score. Each game is played
in “hands” that are worth n points. To play a hand, each
player receives three cards, where a hand can be divided
into two main stages: ENVIDO and TRUCO. Although
these disputes are different in the game, decisions, and
information about cards possibly revealed by the players in
the ENVIDO can influence the plays that are carried out in
the TRUCO. At each stage, players have different ways of
increasing the number of points that are played in the hand.
There is also a special case of ENVIDO called FLOR,
where it is necessary to have three cards of the same suit,
thus scoring three points in case of victory. It is possible to
earn a higher number of points in the game with the use of
FALTA-ENVIDO and REAL-ENVIDO kinds of
ENVIDO bets and with CONTRA-FLOR and CONTRA-
FLOR-E-O-RESTO kinds of FLOR bets. Each hand can
be played on the best of up to three rounds, in which the
player who plays the highest card wins in individual round
disputes. In each hand in the game, the order of whoever
plays first alternates between the players. In this case, there
are different ways to play (choice of moves), because
whoever plays first (called as hand player) can play
differently from who responds to a move (called as feet
player). In a single-handed contest, the alternation between
players is guided by the outcome of the hand’s rounds. The
player who wins a round must play first in the next round
of that hand.

In the ENVIDO stage, if a player has two cards of the
same suit he/she has ENVIDO points. To calculate these
points, the value of the two cards of the same suit is added
and to this value is added twenty (this is a fixed number
due to having two cards of the same suit). The value of
each card is its card number (a number from 1 to 7). A few
cards (10 to 12) are not worth extra points in the ENVIDO.
For example, if a player has a 6 of clubs and a 10 of clubs
it means that he/she has 26 points (20 fixed points plus 6
points). From these numbers of points and cards revealed
during the game, a player can make plausible inferences
regarding the possible cards that the opponent possesses.

After the ENVIDO, there is the TRUCO stage, where
bets can be proposed and increased at any time of the game
by any player. When making a TRUCO bet, it is possible
to earn a higher number of points in the game. Instead of
earning 1 point for winning the hand, it is possible to earn
up to 4 points through a so-called VALE-QUATRO bet. If
a player makes a TRUCO bet, the opponent has three
answer options. 1. To deny, it means that he/she folds that
hand. Therefore, a new hand can be started since the player
who made the TRUCO bet receives 1 point in the game. 2.
To accept the TRUCO bet. If accepted, the current hand is
worth two points in the game. 3. To raise, through
RETRUCO, to make the bet worth 3 points. Likewise, a
RETRUCO bet can be increased to VALE-QUATRO
(worth four) to raise the bet to 4 points. As in the TRUCO

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 304

stage, the player who wins 2, of 3, rounds wins the
disputed hand.

As the game of Truco has different states of dispute,
different game situations can be analyzed to guide the
player’s decision-making. In these situations, it is also
possible to bluff in various ways in Truco, making
ENVIDO and TRUCO bets without having a strong hand.
If the opponent denies the bet, the player wins the points
disputed in that hand. Players choose how to play (choose
moves) according to everything that is known or can be
inferred at a given time of the game, although there is
always uncertainty due to incomplete information.
Furthermore, the forms of play explored in these disputes
can be dynamically changed, where initial decisions on
how to play can be modified even during the different
rounds of the same hand in the game. That is, the player
may dynamically have to adapt to the situation and the
opponent. In our view, this scenario leads to a case where
decisions are made on a case-base basis. In AI, it means
that CBR is a relevant approach to be explored in the
modeling and development of agents to play the Truco
game.

III. A CBR APPROACH TO PLAY TRUCO

TrucoGame is a CBR system implemented in Java as
part of the activities of the AI and Games research group in
which this work is inserted into. In the TrucoGame, the
case base is stored in a SQL database. To collect games of
Truco, this system allows two human players to dispute
matches over the web. Through it, complete Truco
matches played among human players can be collected.
These game playing logs contain all game moves advanced
in those matches. There, each played hand was represented
as a case in the case base. Cases represent various kinds of
game information as presented in Table I. Because the
Truco cards have different levels of importance in the
game, the relevance of each card was represented through
a nonlinear numerical scale (see Table II), and then this
scale was used in the recording of the disputed hands of
Truco.

To build the initial TrucoGame case base, called
BASELINE in this work, the “learning by observation”
technique was explored. Through observation of game
matches, this case base recorded 48 matches played among
pairs of human players. This resulted in a case base
containing 513 Truco hands, which were recorded as
individual cases. To perform the observations, the
TrucoGame only observed the game actions played by one
of the human players, randomly selected during the
development of each match. In this way, the system
memorized only what this player could observe in the
game. For example, if a player withheld the cards (the
cards were played face down on the table), such cards were
not recorded in the case structure. That is because the
human player being observed would not have access to
that game information at the end of the match.

In this project, a single case base was initially used to
provide answers for all types of CBR queries emitted by
the implemented Truco player agents. However, with the
growth of this case base (since cases were continually
retained in it), the similarity calculations were a bit time-
consuming. With the use of such a lazy learning approach
(i.e., there is no generalization process as in other AI

techniques), the similarity of the query against all past
cases stored in the case base had to be computed to support
each one of the agent moves in the current disputed
matches. To improve the query response time, the initially
collected case base was divided into 3 distinct case bases.
In this way, each case base was directed to the resolution
of a type of problem in the Truco game. Each case base
started with the observed 513 Truco hands. Subsequently,
as a result of the case learning methods detailed in this
article, these case bases ended storing a number of
independent cases (see Table IV). In addition, although the
FLOR bet can be understood as an ENVIDO kind of game
move in Truco, this type of bet is uncommon in the game.
Therefore, an independent case base containing FLOR
cases was also developed in this project.

Table I - Examples of attributes used in the representation of the
Truco’s hands.

Kinds of
attributes

Description Local similarity
function

Received cards Cards received by players are
represented as numeric
attributes. The codification is
nonlinear and ranges from 1 to
52. Following the Truco rules
in [6], these numeric values
capture the importance of the
cards in the game (Table II).
Then, the received cards are
organized in low, medium, and
high attributes.

Absolute value of
the difference

Players’ order Player 1, or Player 2. Equal

Cards played in
each round of a
hand

They capture the player’s
choices according to the
strength of the cards (Table II).

Absolute value of
the difference

Winner in each
round of a hand

Player 1 or Player 2. Equal

Bets made by
the players

The ENVIDO and TRUCO
bets made by each player.

Equal

Number of
points available
in the hand

Total points for ENVIDO bets. Absolute value of
the difference

Number of
points won/lost

The number of points won or
lost in each different game
action executed in the hand,
and the game score before and
after the dispute of the hand.

Absolute value of
the difference

Table II – Codification of the cards in the Truco cases.

Category Truco cards TRUCO
enconding

ENVIDO
encoding

Top high Ace of spades ♠ 52 1
Ace of clubs ♣ 50 1

High 7 of spades ♠ 42 7
7 of diamonds ♦ 40 7

High white All 3’s 24 3
All 2’s 16 2

Medium white Ace of hearts ♥ and ace
of diamonds ♦

12 1

Lower black All 12’s 8 0
All 11’s 7 0
All 10’s 6 0

Lower white 7 of clubs ♣ and 7 of
hearts ♥

4 7

All 6’s 3 6
All 5’s 2 5
All 4’s 1 4

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 305

A. Case retrieval and game action reuse

Different kinds of queries are performed to support the
agent’s decisions in the TrucoGame. These queries are
related to each one of the problems to be solved in the
game. As each query is performed in the stages and rounds
of the hand dispute, the attributes used as parameters in
these queries are naturally different.

An example of a query for the resolution of an
ENVIDO problem can be described. This query captures a
game situation where the agent is the hand player of the
disputed hand. In this position, the agent makes an
ENVIDO bet. The observed agent, which has 29 points of
ENVIDO, should decide whether to accept this bet or not.
To solve this problem, a list of cases is retrieved from the
case base. Considering the most similar retrieved cases, a
solution to this problem is reused from them, where
information about which hand player advanced an
ENVIDO bet and which one won this bet is analyzed. In
such Truco hand, the feet player has not yet played its first
card on the table. Therefore, the opponent is not yet aware
of this card. Thus, the information representing the feet
player’s first card is discarded in the query formation. As a
result of the query execution, the 10 most similar cases are
retrieved from the TrucoGame case base, allowing the
agent to reapply a past game action, whether it is an honest
or deceptive (a bluff) game move, into the resolution of the
current problem. Another example of retrieval is presented
in Table III. This example concerns a query that is
performed to decide which card should be played at a
given hand situation. In this query, the data representing
the current game situation is detailed in the first row of
Table III. Once this query is executed, it is possible to
determine the game action executed by the majority of the
retrieved cases, aiming to reproduce this action on the
current game situation. In the retrieved cases, the low card
was not played in only 2 cases (cases 337 and 414).
Therefore, the majority’s decision involves playing the low
card from the agent’s hand on the table. As detailed in the
query, such a low card in the current hand is the 4 of
spades. As presented in these examples, similar game
moves are determined and executed by the Truco player
agents implemented in the TrucoGame.

Table III – Using the retrieved cases to decide what card to play.

Case Who is the
hand

player

High card Medium
card

Low
card

First
played
card

Sim
(%)

Query Agent (1) 3♦ (24) 10♣ (6) 4♠ (1)
306 Agent (1) 3♣ (24) 11♦ (7) 4♠ (1) 4♠ (1) 99.03
378 Agent (1) 3♣ (24) 10♦ (6) 4♥ (1) 4♥ (1) 98.79
164 Agent (1) 3♦ (24) 10♣ (6) 4♠ (1) 4♠ (1) 98.55
337 Agent (1) 3♥ (24) 6♥ (3) 5♣ (2) 6♥ (3) 98.55
186 Agent (1) 3♣ (24) 12♣ (8) 4♦ (1) 4♦ (1) 98.07
389 Agent (1) 3♠ (24) 4♠ (1) 4♥ (1) 4♠ (1) 98.07
286 Agent (1) 3♦ (24) 11♥ (7) 5♦ (2) 5♦ (2) 97.59
441 Agent (1) 3♠ (24) 11♦ (7) 4♥ (1) 4♥ (1) 97.59
213 Agent (1) 3♣ (24) 10♣ (6) 6♥ (3) 6♥ (3) 97.11
414 Agent (1) 3♠ (24) 7♣ (4) 6♠ (3) 7♣ (4) 96.75

The TrucoGame uses the “majority voting” criteria in

its reuse method. It means that the most common decision
in the retrieved cases for a given query is reused in the
resolution of the current problem situation. In practice, the
K cases retrieved for a query vote on their game actions.

Importantly, the most common game action advanced in
the past is only reused if it either resulted in a hand victory
or resulted in the loss of the least number of points.

IV. CBR LEARNING VIA CASE RETENTION

One of the key knowledge repositories [3] of a CBR
system is the case base. To support the construction of
competent case bases to be used by Truco player agents,
alternative case retention techniques were investigated in
this project. As part of training Truco games, agents played
against a version of themselves taken as opponents. In this
self-play learning model, the opponent agent only used the
BASELINE case base to support its game moves. This
BASELINE case base never retained new cases as a result
of such case retention experiments. It remained to store the
initially collected 513 cases.

Initially, this work explored the ACE technique. In
doing so, the BASELINE case base was used in the
computation of responses to CBR queries. However, when
a query has not returned at least 10 cases with similarity
values greater than 90%, the system executed a random
game move as described in Algorithm 1. This learning
strategy is explored in order to prevent the system from
always reproducing the same past game actions, without
learning something new, since the BASELINE case base
stored a limited number of cases.

Algorithm 1 – Reuse a past game action or randomly play.

Algorithm: reusePastOrPlayRandomGameAction

1. data: CB, a case base ∈ {envidoCB, florCBR,
trucoCB}; query, a query case regarding the
current problem; simThreshold, a similarity
threshold; numCases, a minimal number of
retrieved cases; Res, a list of retrieved cases
ranked by similarity; aReuseCriteria, majority
voting reuse criteria;
2. result: aGameAction, a selected game action.
3. begin
4. Res = {case1, case2, …, case10 ∈ CB |

(sim(query, casen) >= simThreshold)}
5. if |Res| >= numCases then
6. aGameAction = reuseGameAction(Res,

aReuseCriteria)
7. else
8. aGameAction = randomGameAction(query)
9. end if
10. return aGameAction
11. end

To decide when to retain a new case in the case base is
one of the main problems of case base maintenance tasks
in CBR systems [13, 14]. As the time required by the
similarity computations and the consequent retrieval of
cases from the case base is directly related to the size of
the case base, if the used case base stores redundant cases,
for instance, the response of performed queries may not be
efficient. To approach this problem, the “case substitution”
technique was also investigated in this project. In
summary, to represent these new cases in the case base,
two types of retention techniques were approached in the
Truco card game: “retention of new cases” and “retention
of new cases with substitution.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 306

A. The retention of cases in the TrucoGame case base

Similar to the learning strategy described in [5], to
limit the size of the case base (consequently, reducing the
response time of queries) and to avoid the retention of a
large number of cases in the case base, a new case was
added into this case base only when the performed query
has not retrieved cases with a similarity value greater than
the defined threshold. Because each decision in the
TrucoGame is the result of a voting method where the 10
most similar retrieved cases place a vote on their game
actions, a new case is retained into the case base if fewer
than 10 cases with similarity greater than the threshold
value are retrieved from the case base (Algorithm 2).

Algorithm 2 – Retention of new cases.

Algorithm: retainNewCase

1. data: CB, a case base ∈ {envidoCB, florCBR,
trucoCB}; query, a query case regarding the
current problem; curCase, current case
description and solution; simThreshold,
similarity threshold; numCases, minimal
number of retrieved cases; Res, a list of
retrieved cases ranked by similarity;

2. result: resCB, a resulting case base.
3. begin
4. Res = {case1, case2, …, case10 ∈ CB |

(sim(query, casen) >= simThreshold)}
5. if |Res| < numCases then
6. resCB = CB + curCase
7. else
8. resCB = CB
9. end if
10. return resCB
11. end

Algorithm 3 – Retention of new cases with substitution.

Algorithm: retainNewCaseWithSubstitution

1. data: CB, a case base ∈ {envidoCB, florCBR,
trucoCB}; query, a query case regarding the
current problem; curCase, current case
description and solution; simThreshold,
similarity threshold; numCases, minimal
number of retrieved cases; Res, a list of
retrieved cases ranked by similarity;
pastCase: past case retrieved for a given
query;

2. result: resCB, a resulting case base.
3. begin
4. Res = {case1, case2, …, case10 ∈ CB |

(sim(query, casen) >= simThreshold)}
5. if |Res| < numCases then
6. resCB = CB + curCase
7. else
8. foreach pastCase in Res do
9. if curCase.score > pastCase.score

then
10. resCB = CB – pastCase
11. end if
12. end foreach
13. resCB = CB + curCase
14. end if
15. return resCB
16. end

The “retention of new cases with substitution” is a
variation of the “retention of new cases” technique. In it,
even when a case used as a query is not considered new
since the case problem is highly similar to problem-solving
experiences captured in cases already stored in the case
base, there may exist a case stored in the case base that is
considered “worse” than the current case used as query.
When it happens, the past case is replaced by the new case.
In practice, each new case was compared to the retrieved
cases from the case bases, allowing the use of the overall
game score obtained at that stage of the game to assess
whether the new case is important to be retained. In this
situation, a case considered relevant for the TRUCO stage,
and not so relevant for the ENVIDO stage, is memorized
only in the case base in which it has demonstrated to
permit to obtain a better game result. This better result
evaluation is measured by the number of points that the
game actions stored in the cases earned in the game. In this
retention strategy, therefore, a new case is memorized only
when it permits to obtain a relevant score in the game hand
(Algorithm 3).

Because there may be situations in Truco where it is
not possible to make a game move that results in the
earning of many points, one game move is also considered
better than another one when it results in a lower loss of
points. During a Truco match, for example, where the
player accepted an ENVIDO bet and ended up losing two
points to its opponent, the action of accepting this
ENVIDO bet is considered a worse move than the action
of declining from it. That is because the bet refusal
resulted in the loss of only one point to the opponent.

Algorithm 4 – Asking for the help of the human player.

Algorithm: askHumanPlayerHelp

1. data: CB, a case base ∈ {envidoCB, florCBR,
trucoCB}; query, a query case regarding the
current problem; simThreshold, a similarity
threshold; numCases, a minimal number of
retrieved cases; Res, a list of retrieved
cases ranked by similarity; aReuseCriteria,
majority voting reuse criteria;

2. result: aGameAction, a selected game action.
3. begin
4. Res = {case1, case2, …, case10 ∈ CB |

(sim(query, casen) >= simThreshold)}
5. if |Res| >= numCases then
6. aGameAction = reuseGameAction(Res,

aReuseCriteria)
7. else
8. aGameAction = askForHelp(query)
9. end if
10. return aGameAction
11. end

To demonstrate how the “retention of new cases with

substitution” works, an example of an ENVIDO query
where such retention occurred can be presented. At the end
of the disputed hand, a query on the ENVIDO case base
returned the 10 most similar past cases. Since all retrieved
cases have a similarity greater than the defined threshold
(90%), it is analyzed whether there is any retrieved case
showing a result that is worse than the currently observed
result. Of these, case 243, for example, had a worse result
than the result of the new case. In this situation, the case

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 307

243 resulted in a balance of –1 point (the opponent won 1
point), while the new case resulted in a balance of zero
points. So, the retrieved case that is worse than the current
one (a defeat) is removed from the case base, being
replaced by the new case.

There are situations in the Truco game in which the
agent may encounter an unknown problem situation, where
the repetition of the past game move from the retrieved
cases may not provide a good solution for the current
problem. Furthermore, the execution of random game
action, as in the “automatic case elicitation” technique,
may not lead to the development of a valid/coherent
strategy in the game. To overcome these problems, another
approach for the retention of new cases in the case base
investigated in this work involves the “active learning”
technique [10, 11].

In the active learning context, a CBR query is
executed. As a result, there may not exist past cases stored
in the case base that have a similarity greater than 90%
with the current game situation captured in the query.
When the case base doesn’t contain problem-solving
experiences sufficiently similar to the current problem, the
system asks for the assistance of a human player
(Algorithm 4). In doing so, the system presents to the
human player all the game information that is known at the
moment that the query is formed. That is, the system
shows to the human player the visible state of the game
according to the perspective of the agent that has to make a
game move. With that, the human player can indicate
which game action should be executed. To do this, a
decision function is used to identify which game situations
the agent has the knowledge to solve and which ones it
needs to ask for the help of the human player. As a result
of this case learning process, a new problem-solving
experience can be formed and stored as a case into the case
base.

B. The exploration of case retention approaches

To assess the effectiveness of such learning techniques
in the context of the Truco card game, the case base
containing the 513 Truco hands from the 48 matches
played between pairs of human players (a mixture between
novice and experienced players) was initially used to guide
the game decisions of the implemented agents (here called
BOT). As described earlier, this initial case base was
called BASELINE. Then, alternative case retention
techniques aimed at improving the competence of this
BASELINE case base were tested in this project. To
approach this problem, a set of 300 training Truco matches
was played, where different Truco player agent
configurations were explored in these “training” matches.

During this learning process, which focused on the case
retention, 5 different agent setups were used in the
disputed matches. There, a type of BOT played against
another type. Each one of these 5 agents relied on its case
base for the answering of its queries, where such case
bases recorded the result of the case retention processes
performed in the 300 matches. While one of the agents was
learning with the development of these training games, the
opposing one had always used the BASELINE case base
to determine its game actions. This initial agent
configuration is called BOT0. Starting from the
BASELINE case base, the case bases used by each one of

these 5 agents were continuously expanded and modified
during the dispute of these training games, while the
BASELINE case base used by BOT0 was kept
unmodified. In summary, each one of these 5 different
agent configurations played 300 independent matches
against the BOT0 as part of the training Truco games. The
case retention settings used by the 5 different agents are
the following:

BOT1 - Retention of new cases: each game move is
determined as a result of a voting strategy as implemented
in the TrucoGame, with the voting of each one of the 10
most similar cases retrieved for a query executed by BOT1
in its case bases. With that, the new case is only retained in
the BOT1 case base if its query doesn’t retrieve at least 10
past cases with similarity greater than 90%;

BOT2 - Retention of new cases with substitution: as a
result of a query, if it is not possible to retrieve from the
BOT2 case bases at least 10 cases with similarity greater
than 90%, the case problem captured by the query is
considered as new. From this, this case is retained in the
BOT2 case bases. However, if 10 similar cases are
retrieved, each one of these 10 retrieved cases is compared
with the query. If there is a retrieved case with a game
score (i.e. number of points earned in that disputed hand)
that is lower than the score of the current case, the past
case retained in the BOT2 case base is not considered as
good as the current one. In this way, the case retrieved by
the query is removed from the BOT2 case base, and the
new case is inserted into this case base.

BOT3 - Random play and retention of new cases: for
each performed query, when it is not possible to retrieve at
least 10 cases with similarity greater than 90%, this agent
plays a random game move. In the developed
implementations, however, this random move only
involves the acceptance/refusal of TRUCO and ENVIDO
bets. In this situation, decisions regarding which cards to
play and in what order to play them remain being reused
from the cases retrieved as a result of the executed query.
Similar to the retention strategy explored by BOT1, BOT3
performs the retention of new cases in its case bases.

BOT4 - Random play and retention of best cases: it
combines the techniques used by BOT2 and BOT3.
Similar to BOT3, BOT4 retains cases in its case base
resulting from random moves. Similar to BOT2, the
retention technique used by BOT4 also removes cases
returned for queries in which the number of points earned
is lower than the number of points earned at the current
case situation.

BOT5 - Active learning case retention: the active
learning approach was used in BOT5 tutoring. In each
BOT5 game move, if it is not possible to retrieve from the
BOT5 case base at least 10 cases with similarity greater
than 90%, BOT5 requests the help of the human player
(the first author of this paper, with more than 10 years of
Truco experience). The aim is to determine what game
action has to be executed in the current situation. When
requesting such help, BOT5 presents to the human player
all the game information that this agent would normally
use in its query. Therefore, the human player can evaluate
this information to decide the next game move to be made
by BOT5 in that hand situation. All game actions
performed by this BOT5 and their results in the disputed
match are recorded in the structure of the new case. In the

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 308

end, this new case is only retained into the BOT5 case base
if at least one game move has been demonstrated by the
human player.

All BOT1 to BOT4 played against BOT0 in this case
learning process. Each competition took around 12h to
perform the 300 training Truco matches. For BOT5, the
presence of a human player was required during the
development of these 300 matches. During the BOT5
tutoring, the number of human player’ requests for help
were quite constant, especially in relation to the TRUCO
bet decisions, which are the game actions that consider the
highest number of attributes in the formed queries. Even
with the 300 training matches, it was not possible to
observe some rare Truco situations such as the occurrence
of CONTRA-FLOR bets. While BOT5 was being trained,
for example, only 6 hands involved CONTRA-FLOR
situations, in a total of ~6000 played hands. This
demonstrates that there may be necessary to carry out such
learning in a “guided” manner (so far not explored in this
project), where cards would be drawn in such a way that
these rare game situations could more frequently appear
during training.

V. EXPERIMENTS AND RESULTS

The case retention learning involved each one of the 5
agent configurations disputing the 300 Truco matches
against the BOT0. During these matches, each hand was
generated with shuffle and distribution of cards at random,
allowing the BOT to record different game problem-
solving experiences in their case bases. After this learning
stage, approximately 6,000 played hands were obtained,
where case bases of different sizes were constructed as
presented in Table IV. With the exception of the BOT5
case base, which is the result of the active learning process,
the size of the other case bases is similar. As far as
possible, the tutor sought to perform different playing
styles as part of the BOT5 tutoring games.

In the experiments carried out in this work, it was
explored the test methodology of the Annual Computer
Poker Competition (ACPC) [29]. According to it, a
duplicate match approach was used, where all players play
with the same sets of drawn cards. For example, in each
hand of a match the agent receives the set of cards directed
to its position on the table. At the end of the match, the
agents exchange positions and re-play the match using the
previously dealt cards. This strategy allows the reduction
of the variability of the cards and the adjustment of the
quality of the cards received by the players.

Table IV – Number of cases in each constructed case base.

Case base
(CB) Played hands envidoCB florCB trucoCB

BOT0 CB 513 513 513 513
BOT1 CB 6,859 1,183 689 1,401
BOT2 CB 6,338 1,656 704 1,445
BOT3 CB 6,263 1,171 688 1,711
BOT4 CB 5,876 1,497 698 1,717
BOT5 CB 6,562 681 520 5,125

To evaluate the results of the tested case retention

strategies, the 5 different agents using their respective case
bases played 30 matches against the BOT0. This number
of test matches is equivalent to 10% of the total matches
used in the training phase. This resulted in a total of 60

matches in which the agents altered their positions on the
table.

Fig. 1 – Results from the testing Truco matches.

Fig. 2 – Results from the BOT3 Truco matches.

Fig. 1 shows that BOT1 achieved the best results in the

tests. From BOT1 through BOT4, BOT1 may be
considered the “most human” one because it only reuses
previously collected human player game moves. This is
different from BOT2, which deleted cases from its case
bases as part of the case retention learning, and BOT3, and
BOT4, which randomly played and stored cases in their
case bases. BOT5, which used the case base resulting from
the tutoring process, presented an unexpected outcome in
the tests. In general, there was an initial expectation that
BOT5 would have an advantage over the others since its
case bases were the result of the direct intervention of the
human player. BOT5 also had a much larger TRUCO case
base. Even considering that, BOT5 has not achieved a
large number of victories against the BOT0. BOT2, which
performed the case substitution strategy in the formation of
its case bases, was the only one that lost against the BOT0.
This may be due to the fact that BOT2 forgot some of its
cases, which were removed from its case base because
they reflected a larger loss of points when compared to
game moves that avoided risk bets (accepting or increasing
the number of points in the dispute). For example, BOT2
proposed a VALE-QUATRO bet having strong Truco
cards in its hand. Despite this positive situation, luck
factors lead BOT2 to lose that past hand dispute. In the
retention of new cases with substitution, this case situation,
previously stored in the BOT2 case base, ended being
forgotten. Even if the BOT2 had received these high cards,
and the chance of winning was high, the fact that that agent
had lost eventually led the BOT2 to forget this case
situation during the case retention learning.

To determine which one of these tested agents was the
best Truco player, along with the assessment of the case
learning strategies tested in this work, Truco matches
played among the different BOT were also disputed. Such

0

5

10

15

20

25

30

35

40

BOT0 x BOT1 BOT0 x BOT2 BOT0 x BOT3 BOT0 x BOT4 BOT0 x BOT5

N
um

be
r o

f v
ic

to
rie

s

BOT0 BOTn

0

5

10

15

20

25

30

35

40

BOT1 x BOT3 BOT2 x BOT3 BOT4 x BOT3 BOT5 x BOT3
N

um
be

r o
f v

ic
to

rie
s

BOTn BOT3

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 309

competition used the same set of cards that were explored
in the matches played against the BOT0. As a result,
BOT3 (which memorized new cases and made random
game moves whenever necessary) achieved the best results
(Fig. 2). BOT3 overcome all other agents with a
reasonable margin of victories, with the exception of
BOT1 that explored a similar case retention strategy to
form its case base.

VI. CONCLUSIONS

Card games are great testing and development
environments for new AI techniques. One of these
techniques is CBR, which has been under-investigated in
the development of agents for new kinds of games, as it is
the case of the Truco game. However, CBR agents rely on
competent case bases, making it difficult (if not
impossible) to develop an efficient agent for new kinds of
games when these case bases are not promptly available
for various reasons. To approach this problem, alternative
case learning strategies focusing on the improvement of
the initially collected case bases are investigated in this
work. With the learning techniques implemented and
tested, the resulting agents were able to play better when
compared to agents based on a case base initially collected
with human players. The exception of this was the active
learning technique since the broad manner in which it was
explored in this work has not lead to a better agent. Further
research in this direction is under-development in our AI
and Games research group with particular attention to the
capacity of actively teaching the agents to buff in the
Truco game. In addition to evaluating the use of other case
learning methods and developing other kinds of validation
experiments (including disputes between agents and
human players), future works can investigate these
learning approaches along with other solution reuse
strategies [7] (other than the majority solution criteria) as
described in other works developed in our AI and Games
research group.

REFERENCES
[1] J. Hamari and M. Sjöblom, "What is eSports and why do people

watch it?," Internet research, vol. 27, pp. 211-232, 2017.
[2] S. Ontanón and A. Ram, "Case-based reasoning and user-generated

artificial intelligence for real-time strategy games," in Artificial
Intelligence for Computer Games, ed: Springer, 2011, pp. 103-124.

[3] R. L. De Mantaras, D. McSherry, D. Bridge, D. Leake, B. Smyth,
S. Craw, B. Faltings, M. L. Maher, M. T COX, and K. Forbus,
"Retrieval, reuse, revision and retention in case-based reasoning,"
The Knowledge Engineering Review, vol. 20, pp. 215-240, 2005.

[4] D. W. Aha, M. Molineaux, and M. Ponsen, "Learning to win:
Case-based plan selection in a real-time strategy game," presented
at the Int. Conf. on Case-Based Reasoning (ICCBR-05), Chicago,
IL, USA, 2005.

[5] V. Andreeva, J. Beland, S. Gaudreau, M. W. Floyd, and B.
Esfandiari, "Creating Non-Player Characters in a First-Person
Shooter Game Using Learning by Observation," presented at the
Workshop on Case-Based Agents, The 22nd Int. Conf. on Case-
Based Reasoning (ICCBR 2014), Cork, Ireland, 2014.

[6] L. L. Winne, Truco. Ciudad Autónoma de Buenos Aires Ediciones
Godot, 2017.

[7] G. B. Paulus, J. V. C. Assuncao, and L. A. d. L. Silva, "Cases and
Clusters in Reuse Policies for Decision-Making in Card Games,"
presented at the IEEE 31st Int. Conf. on Tools with Artificial
Intelligence (ICTAI 2019), Portland, OR, USA, 2019.

[8] G. Castillo, S. Avendaño, and N. A. Goussies, "An Human-
Computer Interface Using Facial Gestures for the Game of Truco,"

presented at the Iberoamerican Congress on Pattern Recognition,
Buenos Aires, Argentina, 2012.

[9] M. Fagan and P. Cunningham, "Case-based plan recognition in
computer games," presented at the Int. Conf. on Case-Based
Reasoning (ICCBR 2003), Trondheim, Norway, 2003.

[10] M. W. Floyd and B. Esfandiari, "An active approach to automatic
case generation," presented at the The 8th Int. Conf. on Case-Based
Reasoning (ICCBR 2009), Seattle, WA, USA, 2009.

[11] B. Packard and S. Ontanon, "Policies for active learning from
demonstration," presented at the 2017 AAAI Spring Symposium
Series, Stanford University, 2017.

[12] J. Schaeffer and J. van den Herikb, "Games, computers, and
artificial intelligence," Chips Challenging Champions: Games,
Computers and Artificial Intelligence, p. 3, 2002.

[13] B. Smyth and E. McKenna, "Competence models and the
maintenance problem," Computational Intelligence, vol. 17, pp.
235–249, 2001.

[14] J. M. Juarez, S. Craw, J. R. Lopez-Delgado, and M. Campos,
"Maintenance of Case Bases: Current Algorithms after Fifty
Years," presented at the Twenty-Seventh Int. Joint Conf. on
Artificial Intelligence (IJCAI-18), Stockholm, Sweden, 2018.

[15] S. Ontañón, "Case acquisition strategies for case-based reasoning
in real-time strategy games," presented at the The Twenty-Fifth
International Florida Artificial Intelligence Research Society
Conference (FLAIRS 2012), Marco Island, Florida, USA, 2012.

[16] G. M. Farouk, I. F. Moawad, and M. M. Aref, "A machine learning
based system for mostly automating opponent modeling in real-
time strategy games," presented at the The 12th Int. Conf. on
Computer Engineering and Systems (ICCES 2017), Cairo, Egypt,
2017.

[17] M. Certický and M. Certický, "Case-based reasoning for army
compositions in real-time strategy games," presented at the 13th
Scientific Conference of Young Researchers (SCYR 2013), 2013.

[18] D. S. L. Ariza, A. A. Sánchez-Ruiz, and P. A. González-Calero,
"Time Series and Case-Based Reasoning for an Intelligent Tetris
Game," presented at the Int. Conf. on Case-Based Reasoning
(ICCBR 2017), Trondheim, Norway, 2017.

[19] J. H. Powell, B. M. Hauff, and J. D. Hastings, "Utilizing case-
based reasoning and automatic case elicitation to develop a self-
taught knowledgeable agent," presented at the Challenges in Game
Artificial Intelligence: Papers from the AAAI Workshop, 2004.

[20] J. H. Powell, B. M. Hauff, and J. D. Hastings, "Evaluating the
effectiveness of exploration and accumulated experience in
automatic case elicitation," in The 6th Int. Conf. on Case-Based
Reasoning (ICCBR 2005), Chicago, IL, USA, 2005, pp. 397-407.

[21] I. Watson and J. Rubin, "Casper: A case-based poker-bot," in
Australasian Joint Conference on Artificial Intelligence, 2008, pp.
594-600.

[22] J. Rubin and I. Watson, "Similarity-based retrieval and solution re-
use policies in the game of Texas Hold’em," presented at the Int.
Conf. on Case-Based Reasoning (ICCBR 2010), Alessandria, Italy,
2010.

[23] J. Rubin and I. Watson, "Case-based strategies in computer poker,"
AI communications, vol. 25, pp. 19-48, 2012.

[24] A. Sandven and B. Tessem, "A case-based learner for poker,"
presented at the The Ninth Scandinavian Conference on Artificial
Intelligence (SCAI 2006), Helsinki, Finland, 2006.

[25] M. M. Richter and R. O. Weber, Case-based reasoning: Springer,
2016.

[26] J. H. Powell and J. D. Hastings, "An empirical evaluation of
automated knowledge discovery in a complex domain," presented
at the Workshop on Heuristic Search, Memory Based Heuristics
and their Applications: Twenty-First National Conference on
Artificial Intelligence, AAAI-06, Boston, Massachusetts, USA,
2006.

[27] M. W. Floyd and B. Esfandiari, "A case-based reasoning
framework for developing agents using learning by observation,"
presented at the 23rd IEEE Int. Conf. on Tools with Artificial
Intelligence (ICTAI 2011), Boca Raton, FL, USA, 2011.

[28] M. W. Floyd, B. Esfandiari, and K. Lam, "A Case-based
Reasoning Approach to Imitating RoboCup Players," presented at
the The Twenty-First International FLAIRS Conference (2008),
Coconut Grove, Florida, USA, 2008.

[29] ACPC. Annual Computer Poker Competition. Available:
http://www.computerpokercompetition.org/

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 310

