
Investigating Case Learning Techniques for 
Agents to Play the Card Game of Truco 

 

Ruan C. B. Moral 
Undergraduate Program in Computer Engineering 

Federal University of Santa Maria – UFSM  
Santa Maria – RS, Brazil  
ruancmoral@gmail.com 

Joaquim V. C. Assunção 
Applied Computing Department 

Federal University of Santa Maria – UFSM 
Santa Maria – RS, Brazil  

joaquim@inf.ufsm.br 

Gustavo B. Paulus 
Graduate Program in Computer Science 

Federal University of Santa Maria – UFSM 
Santa Maria – RS, Brazil  

gustavobpaulus@gmail.com 

Luis A. L. Silva 
Graduate Program in Computer Science 

Federal University of Santa Maria – UFSM 
Santa Maria – RS, Brazil  
luisalvaro@inf.ufsm.br 

 
 

Abstract - Truco is a popular game in many regions of South 
America; however, unlike worldwide games, Truco still 
requires a competitive Artificial Intelligence. Due to the 
limited availability of Truco data and the stochastic and 
imperfect information characteristics of the game, creating 
competitive models for a card game like Truco is a 
challenging task. To approach this problem, this work 
investigates the generation of concrete Truco problem-
solving experiences through alternative techniques of 
automatic case generation and active learning, aiming to 
learn with the retention of cases in case bases. From this, 
these case bases guide the playing actions of the implemented 
Truco bots permitting to assess the capabilities of each bot, 
all implemented with Case-Based Reasoning (CBR) 
techniques. 

Keywords - Case learning, Case-based reasoning, Card 
games, Truco game 

I.  INTRODUCTION 

Computer games are officially a sport (publicly known 
as E-Sports). These games are capable of moving 
thousands of people to attend annual competitions, such as 
the League of Legends World Championship in 2013 [1], 
for example. In this context, the effort to design techniques 
aimed at supporting the development of more fun and 
competitive computer games has allowed achieving 
significant advances in Artificial Intelligence (AI). As such 
games evolve, players also expect game situations that are 
closer to reality, with interactions between agent players 
that resemble the behavior of real people [2].  

For agents inserted into games to act similarly to 
humans, it is relevant to investigate ways of learning what 
the agent should perform in each problem situation of the 
game. In this line of research, Case-Based Reasoning 
(CBR) [3] is an important AI technique that reflects human 
decision-making behavior in the resolution of many 
complex problems. In different works in the area of 
computer game development [4], a case-based agent 
(described in this article by the term BOT) recalls a past 
game situation (a past case) similar to a current game 

situation (a current case problem to be solved). Once a 
concrete problem-solving experience is retrieved from 
memory, materialized as a case base in CBR, the agent 
reuses the decision made in the past to solve the current 
problem. For a case-based agent to perform actions in a 
competitive game, that agent can initially use 
demonstrations of game actions performed by human 
players, where demonstrations of various kinds can be 
recorded as cases in the case base [5]. In a complex game 
environment, however, it is exhausting for game 
developers to demonstrate every possible problem and 
solution that can be required by an agent or even to 
program a game script reflecting a general problem-
solving behavior. As explored in this article, it is necessary 
to have techniques that enable the BOT to learn how to act 
even when limited initial knowledge about the problem-
solving is available. In many senses, new cases have to be 
retained in case bases to support the decision-making 
process of agents in various kinds of computer games.  

To explore case learning techniques for games, a CBR 
system applied to the Truco’s card game was developed. 
Truco [6] is a widely practiced card game in the southern 
regions of South America, although some of its rules may 
vary according to the region, or country, in which it is 
played. In many ways, this game has characteristics that 
are similar to the game of Poker and other card games. 
Unlike Poker, however, research involving the game of 
Truco in the literature is still limited [7, 8]. In the field of 
research regarding CBR learning for competitive games 
disputed between pairs of opponents, the Truco game 
presents a fun and motivating environment where a set of 
research challenges for AI can be addressed, such as how 
to approach continuous learning, for example. 

In this project, a set of 513 hands of Truco matches 
played between two human players were initially collected 
and stored in a case base. From these cases, a BOT 
observed how human players acted in the past to then 
reproduced these actions in the current games. However, 
the main problem with this BOT is that 513 records of 
Truco hands may be a limited number of gaming 
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experiences compared to other game applications similar 
to Truco. As described in [9], for instance, 50,000 Poker 
hands were used to guide agents in making decisions in 
that game. Using the set of 513 cases of Truco games, 
therefore, this work investigates alternative case retention 
approaches to support intelligent agents to play the game 
of Truco. Among other goals, this initial case-base made it 
possible to investigate different forms of case retention: a) 
the retention of new cases and b) the retention of new 
cases with substitution, in addition to c) the use of random 
game actions to generate new problem-solving experiences 
to be retained. Such techniques were performed whenever 
the agent detected that it did not know how to solve a 
current problem in the game. As this BOT may also need 
to perform game actions as similar as possible to actions 
that human players would perform, a d) tutoring strategy 
based on the active learning technique [10, 11] was also 
explored in the case retention investigation presented in 
this work. In this case, when experiences capable of 
solving the current problem were not found in the case-
base used by the agent, and only in such situations, this 
agent requested the help of a human player (the first author 
of this paper), who indicated what this BOT should do. In 
this way, a new and concrete problem-solving experience 
was generated and inserted into the case-base, permitting 
the agent to develop new Truco moves. 

To assess the effectiveness of the different case 
learning techniques investigated in this work, a set of 
Truco matches between agents was performed. In doing 
so, agents’ game decisions were based on a) the case bases 
automatically generated and based on b) the initial case 
base (the BASELINE case base) collected in this project. 
In addition, a competition between agents playing with 
case bases generated from each one of these retention 
techniques was carried out to determine which agent have 
used the most competent case base. 

II. BACKGROUND TO THIS WORK 

The development of AI techniques for games has lately 
shown great effectiveness mainly with respect to 
deterministic board games like Chess and GO. Such games 
involve the dispute between two players, where the agents 
have perfect information about the game. To have perfect 
information means that at each moment of the game an 
agent can observe the environment and know the 
opponent’s moves. In general, these games may not be 
considered as complex as Poker, for example, which is a 
game with imperfect information. This is because there is 
information on games of Poker that is only observed with 
the development of the game, in addition to the luck 
factors involved [12]. For example, each player in the 
game of Poker receives shuffled cards. In addition, each 
agent only has information from their cards, usually not 
knowing the opponents’ cards. When Poker games are 
mostly played with entertainment purposes, bluff 
techniques are also often explored, where the quality of the 
received cards is not enough to make various good 
decisions. 

A. CBR in digital games 

Case-Based Reasoning (CBR) [3] is focused on the 
development of intelligent agents in a wide variety of 
applications, as well as being used to support the 

development of agents immersed in computer games. The 
basic idea of CBR is to recall a previous situation which 
resembles a current one and then reuse past case-based 
knowledge to find a solution to the current problem. In 
CBR, a central idea is that similar problems have similar 
solutions, and that these problems tend to repeat 
themselves over time. The CBR cycle is commonly 
described as a four-step process (4R cycle). The retrieval 
step uses the characteristics of a current problem, where a 
query on a case-base is performed. This allows retrieving 
the past cases that most resemble the current problem. The 
reuse step uses the most similar cases retrieved for a given 
query. This step involves reusing the past case solutions to 
solve the new problem. The revision step involves 
checking the quality of the reused solution, to avoid 
proposing solutions that are ineffective or even impossible 
to be applied to. Finally, the retention step involves 
analyzing whether the current case, solved from the reuse 
and revision of the past solutions, is relevant to be 
remembered to support the solution of new future 
problems.  

The retrieval of cases from the case-base is one of the 
main steps of the CBR cycle. A description of the current 
problem is created where the characteristics, considered 
relevant to find a solution to this new problem, are 
identified in the query formation. With this query 
description, a search in the case-base is carried out to 
identify which past problem-solving situations are the most 
similar to the current problem to be solved. The case 
retrieval strategy most commonly used in CBR systems is 
based on the K-Nearest Neighbor algorithm. There are 
several functions for the assessment of the case similarity 
between current and past case situations. These functions 
can be organized according to similarities that are local, 
computing similarities between individual case attributes, 
and similarities that are global, where an amalgamation 
function computes similarities in the level of cases. In 
CBR, a common approach is to apply different local 
similarity functions to different kinds of attributes, and 
then to use the Euclidean distance function to measure 
similarities between query and past cases, as explored in 
this work. Once such similarity is computed, the retrieved 
cases are organized in a ranking order based on the global 
similarity results. 

At the end of the 4R CBR cycle, it is necessary to 
analyze if the solved current problem should be 
remembered as to support the resolution of new problems 
in the CBR system. In this case, case retention in the case-
base involves a process of learning, such as learning how 
to solve a new problem that does not yet exist in the case 
base. The objective of retaining case-based knowledge 
about how to approach new problems is to constantly 
update and improve the competence of the case-base [13, 
14], permitting the CBR system to approach a larger 
number of problem situations.  

As described in [4], research involving the exploration 
of CBR techniques in games can be concentrated in 
categories: “classic board games”, “adventure games”, 
“team sports”, “real-time individual games,” “real-time 
god / management games”, and “strategy-based games in 
shifts” (discrete / turn-based strategy). In quite challenging 
scenarios, CBR techniques have recently been explored to 
solve problems in the category of RTS games. For 
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example, [15] describe case acquisition strategies to 
support the development of agents aimed at RTS games. In 
addition, [16] explore CBR in the automated modeling of 
learning processes and adaptation of opponents in the RTS 
game called GLest. In another work, [17] explore CBR to 
perform a more effective army composition in the RTS 
game StarCraft. In the card game of Truco, this article also 
explores learning techniques like the ones cited here. 

In more classic game environments, CBR is used in 
[18] to model and detect a player’s skill level in the Tetris 
game. The objective is to dynamically adjust the difficulty 
level of the game according to the skill of the player. 
Based on this adjustment, the approach involves improving 
player satisfaction to maintain his/her engagement with the 
game. [19] present the CHEBR system containing an agent 
capable of learning how to play checkers. CHEBR uses the 
“Automatic Case Elicitation” (ACE) [20] approach to 
building a case base. In this learning technique, similar to 
what this article explores, a query on the case base is 
performed. If a past case to solve the current problem is 
not found, a random attempt to solve the problem is 
performed. Then, the quality of this trial is assessed. From 
it, new relevant cases are determined and stored in the case 
base. [9] use CBR not to play, but to present a more 
challenging game for the players. COMETS is an agent 
capable of watching user’s moves in the Space Invader 
game. From this observation, the agent can detect plans or 
patterns that may appear, allowing the identification of the 
future actions of these players. The idea is to anticipate 
what a player can play to generate a more challenging 
game. 

Designed to play Texas Hold’em, the most common 
style of Poker, [21] describes the CASPER system (CASe-
based Poker playER). This system explores CBR 
techniques to make decisions on the types of strategies that 
must be applied during each stage of a Poker match. These 
strategies consist of actions that must be performed given 
the stage of the game: raise, bet, fold, take no action or 
accept the bet, among others. In addition, there is also a 
classification of these plays between honest or tricky ones. 
Thus, the developed agent can play with different styles, 
which have been divided into aggressive or passive. Like 
CASPER, SARTRE [22, 23] was designed to use CBR in 
the game of Poker to make betting decisions based on past 
cases. Unlike CASPER, which was developed for the 10-
player Texas Hold’em style, SARTRE is geared towards 
matches between two players, just as explored in this 
work. 

In particular to the Truco game context, [8] explore 
image processing techniques to analyze the visual 
messages often explored in multi-player Truco matches. 
Based on alternative CBR reuse criteria described in the 
literature [22-24], a two-step CBR reuse model was 
proposed in [7]. There, the integrated use of CBR and 
clustering techniques was explored to assess Truco cases 
stored in the case bases in terms of their decision-making 
game states along with the game actions advanced in the 
recorded Truco scenarios. The paper also investigates the 
exploration of different reuse criteria (probability lottery, 
majority rule, best-outcome) in the choice of which case 
groups and game actions to reuse as to support agents to 
solve Truco problems in new game situations. This paper 

considers this research and expands it in direction to the 
investigation of alternative case learning approaches. 

B. CBR learning 

Intelligent agents can be in constant learning. In the 
case of CBR systems, the knowledge of the system is 
stored mainly in the case base, among other repositories of 
knowledge [25]. Exploring such case bases, the CBR 
system can remember past cases to reuse successful 
solutions to current problems. When a problem is solved 
via CBR, for example, this problem-solving experience 
can be recorded in the case base, possibly improving the 
competence of the case base. In general, the CBR system 
should have learning resources to save new cases in the 
case base, but it should also have resources that allow 
forgetting failure situations, redundant or unnecessary, 
automatically removing such cases from the case base. 

CBR systems are traditionally built from previously 
organized case bases. In situations where such a case base 
is not available or is available although it is partially 
complete, it is possible to explore the ACE strategy [20]. 
In many problems, using this strategy allows a system to 
develop its knowledge automatically. This is done through 
trial and error, where the system has no prior knowledge. 
The ACE flow consists of carrying out the action proposed 
by a set of retrieved cases according to the maximum 
number of cases and a certain minimum similarity 
threshold. If it is not possible to retrieve any past situation 
(or case) according to the defined criteria, random game 
actions can be performed. As this random action can be 
ineffective, the result obtained with this game action must 
be observed. At the end of each game interaction, some 
metrics are used to verify the effectiveness of each 
performed game, where the result of each action employed 
is evaluated, generating “rewards”. In general, this allows 
one to assess what the best cases are. Thus, it is possible to 
select only the best solutions and perform the removal of 
actions with poor performance as in [26]. Due to the ability 
to explore such game attempts, this technique is suitable 
for learning in domains where the outcome of the games is 
easily observable. As random game actions are made, it is 
possible to perform different experiments and then select 
the best ones. 

In the scope of learning for games, agents should be 
able to interact in the game as realistically as possible. In 
many ways, these agents could act like a human player 
would act given a problem situation. In this scenario, a 
technique commonly used for the development of agents in 
CBR systems is the “Learning by Observation”. Also 
known as “Imitation Learning” or “Demonstration 
Learning” as described in [11], observation learning is a 
very common human learning strategy, where an example 
(used as a model) is sought for information on how to 
perform a decision for a problem situation. For instance, an 
agent learns to move a bicycle pedal in a certain way by 
watching a teacher to demonstrate the movements or 
sequence of steps that should be performed. In 
demonstration learning, a teacher interacts in the 
environment performing actions after receiving stimuli 
from the environment in which he/she is inserted into, thus 
generating a new observed case, as detailed in [27]. The 
actions taken by this teacher are observed by the system, 
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which memorizes what the teacher has taught and stores it 
into the case base. 

Observational learning is a passive learning technique, 
where the expert may not even know that he/she is being 
observed. A limitation of this technique is that it depends 
on the behavior of the observed specialist. For example, if 
during the observation the specialist does not have to solve 
a specific problem, then experiences (cases) will not be 
created to solve that problem. Even if the specialist is 
observed for a long period of time, or on multiple 
occasions, there is no guarantee that a complete sample of 
the problem space can be collected [10]. Likewise, if a 
large number of one type of game action is shown while a 
smaller number of another type is presented, this can lead 
to an unbalanced case base. For example, [28] used the 
observation learning technique to teach a robot to play 
football. By observing how other players acted, a case base 
that covered many cases of one action and few others were 
produced. In particular, 67.8% of cases involved running, 
32.1% changing direction, and 0.1% kicking. In short, this 
demonstrates that a passive observation behavior did not 
allow capturing gaming experiences for rarer situations, 
which may need to be better observed in order to improve 
the performance of the system. 

Using a system that monitors the actions of a teacher, it 
is possible to develop a case base capable of solving a 
large number of the most frequent problems occurring in a 
game environment. However, it is essential to note it is 
tiring for the instructor to perform all possible situations 
that can occur at specific times. To avoid this, techniques 
are needed to allow agents to learn from a few 
demonstrations provided by a teacher or to detect that there 
is no knowledge on how to solve certain situations in the 
case base, as tried out in this article. With this, “active 
learning” techniques [10, 11] can be explored in a 
complementary way to observation learning techniques. In 
practice, only when it is identified that a current case base 
has not the competence to solve a current problem, the 
specialist is invited to present a solution to this new 
problem, leading to the retention of a new case in the case 
base. 

Aiming to decrease a teacher’s demonstration effort, an 
example of active learning is the SALT (Selective Active 
Learning from Traces) technique [11]. With this, there is a 
Dl number of possible states that an intelligent system has 
learned and Dt is the total number of necessary cases that 
the system can encounter during its execution, where Dt 
can be very different from Dl. If the system finds a known 
situation, it acts alone. However, if a situation is found 
outside the scope of knowledge of the system, control is 
passed on to the teacher to solve the problem. This control 
remains with the teacher until an execution state is found 
in which the system is able to take control again. In 
practice, this active learning algorithm has been evaluated 
in two different game styles: a Super Mario platform game 
in which the player must reach the end of the level while 
avoiding enemies, and a puzzle game called Thermometers 
in which it is necessary to fill thermometers of different 
sizes and orientations with mercury where the amount of 
mercury is indicated by the line and column in which it is 
located. 

C. The Game of Truco 

The Truco [6] addressed in this work consists of the 
Truco “Gaudério”, where this work is more specifically 
focused on matches involving the dispute between two 
players. Truco is based on the 40 cards of the Spanish deck 
discarding all eight, nine, ten, and wild cards. Like other 
card games, Truco is also susceptible to luck through the 
drawing of cards. A match is counted to 24 points, winning 
the first player to achieve this score. Each game is played 
in “hands” that are worth n points. To play a hand, each 
player receives three cards, where a hand can be divided 
into two main stages: ENVIDO and TRUCO. Although 
these disputes are different in the game, decisions, and 
information about cards possibly revealed by the players in 
the ENVIDO can influence the plays that are carried out in 
the TRUCO. At each stage, players have different ways of 
increasing the number of points that are played in the hand. 
There is also a special case of ENVIDO called FLOR, 
where it is necessary to have three cards of the same suit, 
thus scoring three points in case of victory. It is possible to 
earn a higher number of points in the game with the use of 
FALTA-ENVIDO and REAL-ENVIDO kinds of 
ENVIDO bets and with CONTRA-FLOR and CONTRA-
FLOR-E-O-RESTO kinds of FLOR bets. Each hand can 
be played on the best of up to three rounds, in which the 
player who plays the highest card wins in individual round 
disputes. In each hand in the game, the order of whoever 
plays first alternates between the players. In this case, there 
are different ways to play (choice of moves), because 
whoever plays first (called as hand player) can play 
differently from who responds to a move (called as feet 
player). In a single-handed contest, the alternation between 
players is guided by the outcome of the hand’s rounds. The 
player who wins a round must play first in the next round 
of that hand. 

In the ENVIDO stage, if a player has two cards of the 
same suit he/she has ENVIDO points. To calculate these 
points, the value of the two cards of the same suit is added 
and to this value is added twenty (this is a fixed number 
due to having two cards of the same suit). The value of 
each card is its card number (a number from 1 to 7). A few 
cards (10 to 12) are not worth extra points in the ENVIDO. 
For example, if a player has a 6 of clubs and a 10 of clubs 
it means that he/she has 26 points (20 fixed points plus 6 
points). From these numbers of points and cards revealed 
during the game, a player can make plausible inferences 
regarding the possible cards that the opponent possesses.  

After the ENVIDO, there is the TRUCO stage, where 
bets can be proposed and increased at any time of the game 
by any player. When making a TRUCO bet, it is possible 
to earn a higher number of points in the game. Instead of 
earning 1 point for winning the hand, it is possible to earn 
up to 4 points through a so-called VALE-QUATRO bet. If 
a player makes a TRUCO bet, the opponent has three 
answer options. 1. To deny, it means that he/she folds that 
hand. Therefore, a new hand can be started since the player 
who made the TRUCO bet receives 1 point in the game. 2. 
To accept the TRUCO bet. If accepted, the current hand is 
worth two points in the game. 3. To raise, through 
RETRUCO, to make the bet worth 3 points. Likewise, a 
RETRUCO bet can be increased to VALE-QUATRO 
(worth four) to raise the bet to 4 points. As in the TRUCO 
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stage, the player who wins 2, of 3, rounds wins the 
disputed hand. 

As the game of Truco has different states of dispute, 
different game situations can be analyzed to guide the 
player’s decision-making. In these situations, it is also 
possible to bluff in various ways in Truco, making 
ENVIDO and TRUCO bets without having a strong hand. 
If the opponent denies the bet, the player wins the points 
disputed in that hand. Players choose how to play (choose 
moves) according to everything that is known or can be 
inferred at a given time of the game, although there is 
always uncertainty due to incomplete information. 
Furthermore, the forms of play explored in these disputes 
can be dynamically changed, where initial decisions on 
how to play can be modified even during the different 
rounds of the same hand in the game. That is, the player 
may dynamically have to adapt to the situation and the 
opponent. In our view, this scenario leads to a case where 
decisions are made on a case-base basis.  In AI, it means 
that CBR is a relevant approach to be explored in the 
modeling and development of agents to play the Truco 
game. 

III. A CBR APPROACH TO PLAY TRUCO 

TrucoGame is a CBR system implemented in Java as 
part of the activities of the AI and Games research group in 
which this work is inserted into. In the TrucoGame, the 
case base is stored in a SQL database. To collect games of 
Truco, this system allows two human players to dispute 
matches over the web. Through it, complete Truco 
matches played among human players can be collected. 
These game playing logs contain all game moves advanced 
in those matches. There, each played hand was represented 
as a case in the case base. Cases represent various kinds of 
game information as presented in Table I. Because the 
Truco cards have different levels of importance in the 
game, the relevance of each card was represented through 
a nonlinear numerical scale (see Table II), and then this 
scale was used in the recording of the disputed hands of 
Truco. 

To build the initial TrucoGame case base, called 
BASELINE in this work, the “learning by observation” 
technique was explored. Through observation of game 
matches, this case base recorded 48 matches played among 
pairs of human players. This resulted in a case base 
containing 513 Truco hands, which were recorded as 
individual cases. To perform the observations, the 
TrucoGame only observed the game actions played by one 
of the human players, randomly selected during the 
development of each match. In this way, the system 
memorized only what this player could observe in the 
game. For example, if a player withheld the cards (the 
cards were played face down on the table), such cards were 
not recorded in the case structure. That is because the 
human player being observed would not have access to 
that game information at the end of the match. 

In this project, a single case base was initially used to 
provide answers for all types of CBR queries emitted by 
the implemented Truco player agents. However, with the 
growth of this case base (since cases were continually 
retained in it), the similarity calculations were a bit time-
consuming. With the use of such a lazy learning approach 
(i.e., there is no generalization process as in other AI 

techniques), the similarity of the query against all past 
cases stored in the case base had to be computed to support 
each one of the agent moves in the current disputed 
matches. To improve the query response time, the initially 
collected case base was divided into 3 distinct case bases. 
In this way, each case base was directed to the resolution 
of a type of problem in the Truco game. Each case base 
started with the observed 513 Truco hands. Subsequently, 
as a result of the case learning methods detailed in this 
article, these case bases ended storing a number of 
independent cases (see Table IV). In addition, although the 
FLOR bet can be understood as an ENVIDO kind of game 
move in Truco, this type of bet is uncommon in the game. 
Therefore, an independent case base containing FLOR 
cases was also developed in this project.  

 
Table I - Examples of attributes used in the representation of the 
Truco’s hands. 

Kinds of 
attributes 

Description Local similarity 
function 

Received cards   Cards received by players are 
represented as numeric 
attributes. The codification is 
nonlinear and ranges from 1 to 
52. Following the Truco rules 
in [6], these numeric values 
capture the importance of the 
cards in the game (Table II). 
Then, the received cards are 
organized in low, medium, and 
high attributes. 

Absolute value of 
the difference 

Players’ order Player 1, or Player 2. Equal 

Cards played in 
each round of a 
hand 

They capture the player’s 
choices according to the 
strength of the cards (Table II). 

Absolute value of 
the difference 

Winner in each 
round of a hand 

Player 1 or Player 2. Equal 

Bets made by 
the players 

The ENVIDO and TRUCO 
bets made by each player. 

Equal 

Number of 
points available 
in the hand 

Total points for ENVIDO bets. Absolute value of 
the difference 

Number of 
points won/lost 

The number of points won or 
lost in each different game 
action executed in the hand, 
and the game score before and 
after the dispute of the hand. 

Absolute value of 
the difference 

 
Table II – Codification of the cards in the Truco cases. 

Category Truco cards TRUCO 
enconding 

ENVIDO 
encoding 

Top high Ace of spades ♠ 52 1 
Ace of clubs ♣ 50 1 

High 7 of spades ♠ 42 7 
7 of diamonds ♦ 40 7 

High white All 3’s 24 3 
All 2’s 16 2 

Medium white Ace of hearts ♥ and ace 
of diamonds ♦ 

12 1 

Lower black All 12’s 8 0 
All 11’s 7 0 
All 10’s 6 0 

Lower white 7 of clubs ♣ and 7 of 
hearts ♥ 

4 7 

All 6’s 3 6 
All 5’s 2 5 
All 4’s 1 4 
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A. Case retrieval and game action reuse 

Different kinds of queries are performed to support the 
agent’s decisions in the TrucoGame. These queries are 
related to each one of the problems to be solved in the 
game. As each query is performed in the stages and rounds 
of the hand dispute, the attributes used as parameters in 
these queries are naturally different. 

An example of a query for the resolution of an 
ENVIDO problem can be described. This query captures a 
game situation where the agent is the hand player of the 
disputed hand. In this position, the agent makes an 
ENVIDO bet. The observed agent, which has 29 points of 
ENVIDO, should decide whether to accept this bet or not. 
To solve this problem, a list of cases is retrieved from the 
case base. Considering the most similar retrieved cases, a 
solution to this problem is reused from them, where 
information about which hand player advanced an 
ENVIDO bet and which one won this bet is analyzed. In 
such Truco hand, the feet player has not yet played its first 
card on the table. Therefore, the opponent is not yet aware 
of this card. Thus, the information representing the feet 
player’s first card is discarded in the query formation. As a 
result of the query execution, the 10 most similar cases are 
retrieved from the TrucoGame case base, allowing the 
agent to reapply a past game action, whether it is an honest 
or deceptive (a bluff) game move, into the resolution of the 
current problem. Another example of retrieval is presented 
in Table III. This example concerns a query that is 
performed to decide which card should be played at a 
given hand situation. In this query, the data representing 
the current game situation is detailed in the first row of 
Table III. Once this query is executed, it is possible to 
determine the game action executed by the majority of the 
retrieved cases, aiming to reproduce this action on the 
current game situation. In the retrieved cases, the low card 
was not played in only 2 cases (cases 337 and 414). 
Therefore, the majority’s decision involves playing the low 
card from the agent’s hand on the table. As detailed in the 
query, such a low card in the current hand is the 4 of 
spades. As presented in these examples, similar game 
moves are determined and executed by the Truco player 
agents implemented in the TrucoGame. 

 
Table III – Using the retrieved cases to decide what card to play. 

Case Who is the 
hand 

player 

High card Medium 
card 

Low 
card 

First 
played 
card 

Sim 
(%) 

Query Agent (1) 3♦ (24) 10♣ (6) 4♠ (1)   
306 Agent (1) 3♣ (24) 11♦ (7) 4♠ (1) 4♠ (1) 99.03 
378 Agent (1) 3♣ (24) 10♦ (6) 4♥ (1) 4♥ (1) 98.79 
164 Agent (1) 3♦ (24) 10♣ (6) 4♠ (1) 4♠ (1) 98.55 
337 Agent (1) 3♥ (24) 6♥ (3) 5♣ (2) 6♥ (3) 98.55 
186 Agent (1) 3♣ (24) 12♣ (8) 4♦ (1) 4♦ (1) 98.07 
389 Agent (1) 3♠ (24) 4♠ (1) 4♥ (1) 4♠ (1) 98.07 
286 Agent (1) 3♦ (24) 11♥ (7) 5♦ (2) 5♦ (2) 97.59 
441 Agent (1) 3♠ (24) 11♦ (7) 4♥ (1) 4♥ (1) 97.59 
213 Agent (1) 3♣ (24) 10♣ (6) 6♥ (3) 6♥ (3) 97.11 
414 Agent (1) 3♠ (24) 7♣ (4) 6♠ (3) 7♣ (4) 96.75 

 
The TrucoGame uses the “majority voting” criteria in 

its reuse method. It means that the most common decision 
in the retrieved cases for a given query is reused in the 
resolution of the current problem situation. In practice, the 
K cases retrieved for a query vote on their game actions.  

Importantly, the most common game action advanced in 
the past is only reused if it either resulted in a hand victory 
or resulted in the loss of the least number of points.  

IV. CBR LEARNING VIA CASE RETENTION 

One of the key knowledge repositories [3] of a CBR 
system is the case base. To support the construction of 
competent case bases to be used by Truco player agents, 
alternative case retention techniques were investigated in 
this project. As part of training Truco games, agents played 
against a version of themselves taken as opponents. In this 
self-play learning model, the opponent agent only used the 
BASELINE case base to support its game moves. This 
BASELINE case base never retained new cases as a result 
of such case retention experiments. It remained to store the 
initially collected 513 cases.  

Initially, this work explored the ACE technique. In 
doing so, the BASELINE case base was used in the 
computation of responses to CBR queries. However, when 
a query has not returned at least 10 cases with similarity 
values greater than 90%, the system executed a random 
game move as described in Algorithm 1. This learning 
strategy is explored in order to prevent the system from 
always reproducing the same past game actions, without 
learning something new, since the BASELINE case base 
stored a limited number of cases. 

 
Algorithm 1 – Reuse a past game action or randomly play. 

Algorithm: reusePastOrPlayRandomGameAction 

1. data: CB, a case base ∈ {envidoCB, florCBR, 
trucoCB}; query, a query case regarding the 
current problem; simThreshold, a similarity 
threshold; numCases, a minimal number of 
retrieved cases; Res, a list of retrieved cases 
ranked by similarity; aReuseCriteria, majority 
voting reuse criteria; 
2. result: aGameAction, a selected game action. 
3. begin 
4. Res = {case1, case2, …, case10  ∈ CB | 

(sim(query, casen) >= simThreshold)} 
5. if |Res| >= numCases then 
6. aGameAction = reuseGameAction(Res, 

aReuseCriteria)  
7. else 
8. aGameAction = randomGameAction(query) 
9. end if 
10. return aGameAction 
11. end 

To decide when to retain a new case in the case base is 
one of the main problems of case base maintenance tasks 
in CBR systems [13, 14]. As the time required by the 
similarity computations and the consequent retrieval of 
cases from the case base is directly related to the size of 
the case base, if the used case base stores redundant cases, 
for instance, the response of performed queries may not be 
efficient. To approach this problem, the “case substitution” 
technique was also investigated in this project. In 
summary, to represent these new cases in the case base, 
two types of retention techniques were approached in the 
Truco card game: “retention of new cases” and “retention 
of new cases with substitution. 
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A. The retention of cases in the TrucoGame case base 

Similar to the learning strategy described in [5], to 
limit the size of the case base (consequently, reducing the 
response time of queries) and to avoid the retention of a 
large number of cases in the case base, a new case was 
added into this case base only when the performed query 
has not retrieved cases with a similarity value greater than 
the defined threshold. Because each decision in the 
TrucoGame is the result of a voting method where the 10 
most similar retrieved cases place a vote on their game 
actions, a new case is retained into the case base if fewer 
than 10 cases with similarity greater than the threshold 
value are retrieved from the case base (Algorithm 2). 

 
Algorithm 2 – Retention of new cases. 

Algorithm: retainNewCase 

1. data: CB, a case base ∈ {envidoCB, florCBR, 
trucoCB}; query, a query case regarding the 
current problem; curCase, current case 
description and solution; simThreshold, 
similarity threshold; numCases, minimal 
number of retrieved cases; Res, a list of 
retrieved cases ranked by similarity; 

2. result: resCB, a resulting case base. 
3. begin 
4. Res = {case1, case2, …, case10  ∈ CB | 

(sim(query, casen) >= simThreshold)} 
5. if |Res| < numCases then 
6. resCB = CB + curCase  
7. else 
8. resCB = CB 
9. end if 
10. return resCB 
11. end 

 
Algorithm 3 – Retention of new cases with substitution. 

Algorithm: retainNewCaseWithSubstitution 

1. data: CB, a case base ∈ {envidoCB, florCBR, 
trucoCB}; query, a query case regarding the 
current problem; curCase, current case 
description and solution; simThreshold, 
similarity threshold; numCases, minimal 
number of retrieved cases; Res, a list of 
retrieved cases ranked by similarity; 
pastCase: past case retrieved for a given 
query; 

2. result: resCB, a resulting case base. 
3. begin 
4. Res = {case1, case2, …, case10  ∈ CB | 

(sim(query, casen) >= simThreshold)} 
5. if |Res| < numCases then 
6. resCB = CB + curCase  
7.  else 
8.  foreach pastCase in Res do 
9. if curCase.score > pastCase.score 

then 
10.  resCB = CB – pastCase 
11. end if 
12. end foreach 
13. resCB = CB + curCase 
14.  end if 
15.  return resCB 
16.  end 

The “retention of new cases with substitution” is a 
variation of the “retention of new cases” technique. In it, 
even when a case used as a query is not considered new 
since the case problem is highly similar to problem-solving 
experiences captured in cases already stored in the case 
base, there may exist a case stored in the case base that is 
considered “worse” than the current case used as query. 
When it happens, the past case is replaced by the new case. 
In practice, each new case was compared to the retrieved 
cases from the case bases, allowing the use of the overall 
game score obtained at that stage of the game to assess 
whether the new case is important to be retained. In this 
situation, a case considered relevant for the TRUCO stage, 
and not so relevant for the ENVIDO stage, is memorized 
only in the case base in which it has demonstrated to 
permit to obtain a better game result.  This better result 
evaluation is measured by the number of points that the 
game actions stored in the cases earned in the game. In this 
retention strategy, therefore, a new case is memorized only 
when it permits to obtain a relevant score in the game hand 
(Algorithm 3). 

Because there may be situations in Truco where it is 
not possible to make a game move that results in the 
earning of many points, one game move is also considered 
better than another one when it results in a lower loss of 
points. During a Truco match, for example, where the 
player accepted an ENVIDO bet and ended up losing two 
points to its opponent, the action of accepting this 
ENVIDO bet is considered a worse move than the action 
of declining from it.  That is because the bet refusal 
resulted in the loss of only one point to the opponent. 

 
Algorithm 4 – Asking for the help of the human player.  

Algorithm: askHumanPlayerHelp 

1. data: CB, a case base ∈ {envidoCB, florCBR, 
trucoCB}; query, a query case regarding the 
current problem; simThreshold, a similarity 
threshold; numCases, a minimal number of 
retrieved cases; Res, a list of retrieved 
cases ranked by similarity; aReuseCriteria, 
majority voting reuse criteria; 

2. result: aGameAction, a selected game action. 
3. begin 
4. Res = {case1, case2, …, case10  ∈ CB | 

(sim(query, casen) >= simThreshold)} 
5. if |Res| >= numCases then 
6. aGameAction = reuseGameAction(Res, 

aReuseCriteria)  
7. else 
8. aGameAction = askForHelp(query) 
9. end if 
10. return aGameAction 
11. end 

 
To demonstrate how the “retention of new cases with 

substitution” works, an example of an ENVIDO query 
where such retention occurred can be presented. At the end 
of the disputed hand, a query on the ENVIDO case base 
returned the 10 most similar past cases. Since all retrieved 
cases have a similarity greater than the defined threshold 
(90%), it is analyzed whether there is any retrieved case 
showing a result that is worse than the currently observed 
result. Of these, case 243, for example, had a worse result 
than the result of the new case. In this situation, the case 
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243 resulted in a balance of –1 point (the opponent won 1 
point), while the new case resulted in a balance of zero 
points. So, the retrieved case that is worse than the current 
one (a defeat) is removed from the case base, being 
replaced by the new case. 

There are situations in the Truco game in which the 
agent may encounter an unknown problem situation, where 
the repetition of the past game move from the retrieved 
cases may not provide a good solution for the current 
problem. Furthermore, the execution of random game 
action, as in the “automatic case elicitation” technique, 
may not lead to the development of a valid/coherent 
strategy in the game. To overcome these problems, another 
approach for the retention of new cases in the case base 
investigated in this work involves the “active learning” 
technique [10, 11].  

In the active learning context, a CBR query is 
executed. As a result, there may not exist past cases stored 
in the case base that have a similarity greater than 90% 
with the current game situation captured in the query. 
When the case base doesn’t contain problem-solving 
experiences sufficiently similar to the current problem, the 
system asks for the assistance of a human player 
(Algorithm 4). In doing so, the system presents to the 
human player all the game information that is known at the 
moment that the query is formed. That is, the system 
shows to the human player the visible state of the game 
according to the perspective of the agent that has to make a 
game move. With that, the human player can indicate 
which game action should be executed. To do this, a 
decision function is used to identify which game situations 
the agent has the knowledge to solve and which ones it 
needs to ask for the help of the human player. As a result 
of this case learning process, a new problem-solving 
experience can be formed and stored as a case into the case 
base. 

B. The exploration of case retention approaches 

To assess the effectiveness of such learning techniques 
in the context of the Truco card game, the case base 
containing the 513 Truco hands from the 48 matches 
played between pairs of human players (a mixture between 
novice and experienced players) was initially used to guide 
the game decisions of the implemented agents (here called 
BOT). As described earlier, this initial case base was 
called BASELINE. Then, alternative case retention 
techniques aimed at improving the competence of this 
BASELINE case base were tested in this project. To 
approach this problem, a set of 300 training Truco matches 
was played, where different Truco player agent 
configurations were explored in these “training” matches. 

During this learning process, which focused on the case 
retention, 5 different agent setups were used in the 
disputed matches. There, a type of BOT played against 
another type. Each one of these 5 agents relied on its case 
base for the answering of its queries, where such case 
bases recorded the result of the case retention processes 
performed in the 300 matches. While one of the agents was 
learning with the development of these training games, the 
opposing one had always used the BASELINE case base 
to determine its game actions. This initial agent 
configuration is called BOT0. Starting from the 
BASELINE case base, the case bases used by each one of 

these 5 agents were continuously expanded and modified 
during the dispute of these training games, while the 
BASELINE case base used by BOT0 was kept 
unmodified. In summary, each one of these 5 different 
agent configurations played 300 independent matches 
against the BOT0 as part of the training Truco games. The 
case retention settings used by the 5 different agents are 
the following: 

BOT1 - Retention of new cases: each game move is 
determined as a result of a voting strategy as implemented 
in the TrucoGame, with the voting of each one of the 10 
most similar cases retrieved for a query executed by BOT1 
in its case bases. With that, the new case is only retained in 
the BOT1 case base if its query doesn’t retrieve at least 10 
past cases with similarity greater than 90%; 

BOT2 - Retention of new cases with substitution: as a 
result of a query, if it is not possible to retrieve from the 
BOT2 case bases at least 10 cases with similarity greater 
than 90%, the case problem captured by the query is 
considered as new. From this, this case is retained in the 
BOT2 case bases. However, if 10 similar cases are 
retrieved, each one of these 10 retrieved cases is compared 
with the query. If there is a retrieved case with a game 
score (i.e. number of points earned in that disputed hand) 
that is lower than the score of the current case, the past 
case retained in the BOT2 case base is not considered as 
good as the current one. In this way, the case retrieved by 
the query is removed from the BOT2 case base, and the 
new case is inserted into this case base. 

BOT3 - Random play and retention of new cases: for 
each performed query, when it is not possible to retrieve at 
least 10 cases with similarity greater than 90%, this agent 
plays a random game move. In the developed 
implementations, however, this random move only 
involves the acceptance/refusal of TRUCO and ENVIDO 
bets. In this situation, decisions regarding which cards to 
play and in what order to play them remain being reused 
from the cases retrieved as a result of the executed query. 
Similar to the retention strategy explored by BOT1, BOT3 
performs the retention of new cases in its case bases. 

BOT4 - Random play and retention of best cases: it 
combines the techniques used by BOT2 and BOT3. 
Similar to BOT3, BOT4 retains cases in its case base 
resulting from random moves. Similar to BOT2, the 
retention technique used by BOT4 also removes cases 
returned for queries in which the number of points earned 
is lower than the number of points earned at the current 
case situation. 

BOT5 - Active learning case retention: the active 
learning approach was used in BOT5 tutoring. In each 
BOT5 game move, if it is not possible to retrieve from the 
BOT5 case base at least 10 cases with similarity greater 
than 90%, BOT5 requests the help of the human player 
(the first author of this paper, with more than 10 years of 
Truco experience). The aim is to determine what game 
action has to be executed in the current situation. When 
requesting such help, BOT5 presents to the human player 
all the game information that this agent would normally 
use in its query. Therefore, the human player can evaluate 
this information to decide the next game move to be made 
by BOT5 in that hand situation. All game actions 
performed by this BOT5 and their results in the disputed 
match are recorded in the structure of the new case. In the 
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end, this new case is only retained into the BOT5 case base 
if at least one game move has been demonstrated by the 
human player. 

All BOT1 to BOT4 played against BOT0 in this case 
learning process. Each competition took around 12h to 
perform the 300 training Truco matches. For BOT5, the 
presence of a human player was required during the 
development of these 300 matches. During the BOT5 
tutoring, the number of human player’ requests for help 
were quite constant, especially in relation to the TRUCO 
bet decisions, which are the game actions that consider the 
highest number of attributes in the formed queries. Even 
with the 300 training matches, it was not possible to 
observe some rare Truco situations such as the occurrence 
of CONTRA-FLOR bets. While BOT5 was being trained, 
for example, only 6 hands involved CONTRA-FLOR 
situations, in a total of ~6000 played hands. This 
demonstrates that there may be necessary to carry out such 
learning in a “guided” manner (so far not explored in this 
project), where cards would be drawn in such a way that 
these rare game situations could more frequently appear 
during training.  

V. EXPERIMENTS AND RESULTS 

The case retention learning involved each one of the 5 
agent configurations disputing the 300 Truco matches 
against the BOT0. During these matches, each hand was 
generated with shuffle and distribution of cards at random, 
allowing the BOT to record different game problem-
solving experiences in their case bases. After this learning 
stage, approximately 6,000 played hands were obtained, 
where case bases of different sizes were constructed as 
presented in Table IV. With the exception of the BOT5 
case base, which is the result of the active learning process, 
the size of the other case bases is similar. As far as 
possible, the tutor sought to perform different playing 
styles as part of the BOT5 tutoring games.  

In the experiments carried out in this work, it was 
explored the test methodology of the Annual Computer 
Poker Competition (ACPC) [29]. According to it, a 
duplicate match approach was used, where all players play 
with the same sets of drawn cards. For example, in each 
hand of a match the agent receives the set of cards directed 
to its position on the table. At the end of the match, the 
agents exchange positions and re-play the match using the 
previously dealt cards. This strategy allows the reduction 
of the variability of the cards and the adjustment of the 
quality of the cards received by the players. 

 
Table IV – Number of cases in each constructed case base. 

Case base 
(CB) Played hands envidoCB florCB trucoCB 

BOT0 CB 513 513 513 513 
BOT1 CB 6,859 1,183 689 1,401 
BOT2 CB 6,338 1,656 704 1,445 
BOT3 CB 6,263 1,171 688 1,711 
BOT4 CB 5,876 1,497 698 1,717 
BOT5 CB 6,562 681 520 5,125 

 
To evaluate the results of the tested case retention 

strategies, the 5 different agents using their respective case 
bases played 30 matches against the BOT0. This number 
of test matches is equivalent to 10% of the total matches 
used in the training phase. This resulted in a total of 60 

matches in which the agents altered their positions on the 
table. 

 

 
Fig. 1 – Results from the testing Truco matches. 

 

 
Fig. 2 – Results from the BOT3 Truco matches. 

 
Fig. 1 shows that BOT1 achieved the best results in the 

tests. From BOT1 through BOT4, BOT1 may be 
considered the “most human” one because it only reuses 
previously collected human player game moves. This is 
different from BOT2, which deleted cases from its case 
bases as part of the case retention learning, and BOT3, and 
BOT4, which randomly played and stored cases in their 
case bases. BOT5, which used the case base resulting from 
the tutoring process, presented an unexpected outcome in 
the tests. In general, there was an initial expectation that 
BOT5 would have an advantage over the others since its 
case bases were the result of the direct intervention of the 
human player. BOT5 also had a much larger TRUCO case 
base. Even considering that, BOT5 has not achieved a 
large number of victories against the BOT0. BOT2, which 
performed the case substitution strategy in the formation of 
its case bases, was the only one that lost against the BOT0. 
This may be due to the fact that BOT2 forgot some of its 
cases, which were removed from its case base because 
they reflected a larger loss of points when compared to 
game moves that avoided risk bets (accepting or increasing 
the number of points in the dispute). For example, BOT2 
proposed a VALE-QUATRO bet having strong Truco 
cards in its hand.  Despite this positive situation, luck 
factors lead BOT2 to lose that past hand dispute. In the 
retention of new cases with substitution, this case situation, 
previously stored in the BOT2 case base, ended being 
forgotten. Even if the BOT2 had received these high cards, 
and the chance of winning was high, the fact that that agent 
had lost eventually led the BOT2 to forget this case 
situation during the case retention learning. 

To determine which one of these tested agents was the 
best Truco player, along with the assessment of the case 
learning strategies tested in this work, Truco matches 
played among the different BOT were also disputed. Such 
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competition used the same set of cards that were explored 
in the matches played against the BOT0. As a result, 
BOT3 (which memorized new cases and made random 
game moves whenever necessary) achieved the best results 
(Fig. 2). BOT3 overcome all other agents with a 
reasonable margin of victories, with the exception of 
BOT1 that explored a similar case retention strategy to 
form its case base.  

VI. CONCLUSIONS 

Card games are great testing and development 
environments for new AI techniques. One of these 
techniques is CBR, which has been under-investigated in 
the development of agents for new kinds of games, as it is 
the case of the Truco game. However, CBR agents rely on 
competent case bases, making it difficult (if not 
impossible) to develop an efficient agent for new kinds of 
games when these case bases are not promptly available 
for various reasons. To approach this problem, alternative 
case learning strategies focusing on the improvement of 
the initially collected case bases are investigated in this 
work. With the learning techniques implemented and 
tested, the resulting agents were able to play better when 
compared to agents based on a case base initially collected 
with human players. The exception of this was the active 
learning technique since the broad manner in which it was 
explored in this work has not lead to a better agent. Further 
research in this direction is under-development in our AI 
and Games research group with particular attention to the 
capacity of actively teaching the agents to buff in the 
Truco game. In addition to evaluating the use of other case 
learning methods and developing other kinds of validation 
experiments (including disputes between agents and 
human players), future works can investigate these 
learning approaches along with other solution reuse 
strategies [7] (other than the majority solution criteria) as 
described in other works developed in our AI and Games 
research group. 
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