
A fine granularity load balancing technique for MMOG servers using a
kd-tree to partition the space

Carlos Eduardo B. Bezerra, João L. D. Comba, Cláudio F. R. Geyer
Instituto de Informática

Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves, 9500, Porto Alegre

Abstract

MMOGs (massively multiplayer online games) are applications
that require high bandwidth connections to work properly. This
demand for bandwidth is specially critical on the servers that host
the game. This happens because the typical number of simultane-
ous participants in this kind of game varies from a few hundreds to
several tens of thousands, and the server is the one responsible for
mediating the interaction between every pair of players connected
to it. To deal with this problem, decentralized architectures with
multiple servers have been proposed, where each server manages a
region of the virtual environment of the game. Each player, then,
connects only to the server that manages the region where he is
playing. However, to distribute the load among the servers, it is
necessary to devise an algorithm for partitioning the virtual envi-
ronment. In order to readjust the load distribution during the game,
this algorithm must be dynamic. Some work has already been made
in this direction, but with a geometric algorithm, more appropriate
than those found in the literature, it should be possible to reduce
the distribution granularity without compromising the rebalancing
time, or even reducing it. In this work, we propose the use of a
kd-tree for dividing the virtual environment of the game into re-
gions, each of which being designated to one of the servers. The
split coordinates of the regions are adjusted dynamically according
to the distribution of avatars in the virtual environment. We com-
pared our algorithm to some approaches found in the literature and
the simulation results show that our algorithm performed better in
most aspects we analyzed.

Keywords: MMOGs, load balancing, distributed server, kd-trees.

Author’s Contact:

{carlos.bezera, comba, geyer}@inf.ufrgs.br

1 Introduction

The main characteristic of MMOGs is the large number of players
interacting simultaneously, reaching the number of tens of thou-
sands [Schiele et al. 2007]. When using a client-server architecture
for the players to communicate with one another, the server inter-
mediates the communication between each pair of players.

To allow the interaction of players, each one of them sends his com-
mands to the server, which calculates the resulting game state and
sends it to all the players to whom the state change is relevant. We
can see that the number of state update messages sent by the server
may grow proportionally to the square of the number of players, if
all players are interacting with one another. Obviously, depending
on the number of players, the cost of maintaining a centralized in-
frastructure like this is too high, restricting the MMOG market to
large companies with enough resources to pay the upkeep of the
server.

In order to reduce this cost, several decentralized solutions have
been proposed. Some of them use peer-to-peer networks, such
as [Schiele et al. 2007; Rieche et al. 2007; Hampel et al. 2006;
El Rhalibi and Merabti 2005; Iimura et al. 2004; Knutsson et al.
2004]. Others propose the use of a distributed server composed
of low-cost nodes connected through the Internet, as in [Ng et al.
2002; Chertov and Fahmy 2006; Lee and Lee 2003; Assiotis and
Tzanov 2006]. Anyway, in all these approaches, the “world”, or
virtual environment of the game is divided into regions and for ev-

ery region is assigned a server – or a group of peers to manage it,
when using peer-to-peer networks. Each of these regions must have
a content such that the load imposed on the corresponding server is
not greater than its capacity.

When an avatar (representation of the player in the virtual environ-
ment) is located in a region, the player controlling that avatar con-
nects to the server associated to that region. That server, then, is re-
sponsible for receiving the input from that player and for sending, in
response, the update messages. When a server becomes overloaded
due to an excessive number of avatars in its region and, therefore,
more players to be updated, the division of the virtual environment
must be recalculated in order to alleviate the overloaded server.

Usually, the virtual environment is divided into relatively small
cells, which are then grouped into regions and distributed among
the servers. However, this approach has a severe limitation in its
granularity, since the cells have fixed size and position. Using
a more appropriate geometric algorithm, it should be possible to
achieve a better player distribution among different servers, making
use of traditional techniques that are generally used for computer
graphics.

In this work, we propose the utilization of a kd-tree to perform
the partitioning of the virtual environment. When a server is over-
loaded, it triggers the load balancing, readjusting the limits of its
region by changing the split coordinates stored in the kd-tree. A
prototype has been developed and used in simulations. The results
found in these simulations have been compared to previous results
from approaches which use the cell division technique.

The text is organized as follows: in section 2, some related works
are described; in section 3, the algorithm proposed here is presented
in detail; in the sections 4 and 5, we present, respectively, the sim-
ulation details and its results and, in section 6, the conclusions of
this work are presented.

2 Related Work

Different authors have tried to address the problem of partitioning
the virtual environment in MMOGs for distribution among multi-
ple servers [Ahmed and Shirmohammadi 2008; Bezerra and Geyer
2009]. Generally, there is a static division into cells of fixed size
and position. The cells are then grouped into regions (Figure 1),
and each region is delegated to one of the servers. When one of
them is overwhelmed, it seeks other servers, which can absorb part
of the load. This is done by distributing one or more cells of the
overloaded server to other servers.

[Ahmed and Shirmohammadi 2008], for example, propose a cell-
oriented load balancing model. To balance the load, their algorithm
finds, first, all clusters of cells that are managed by the overloaded
server. The smallest cluster is selected and, from this cluster, it is
chosen the cell which has the least interaction with other cells of the
same server – the interaction between two cells A and B is defined
by the authors as the number of pairs of avatars interacting with
each other, one of them in A and the other one in B. The selected
cell is then transferred to the least loaded server, considering “load”
as the bandwidth used to send state updates to the players whose
avatars are positioned in the cells managed by that server. This
process is repeated until the server is no longer overloaded or there
is no more servers capable of absorbing more load – in this case,
one option could be to reduce the frequency at which state update
messages are sent to the players, as suggested by [Bezerra et al.
2008].

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

1



Figure 1: Division into cells and grouping into regions

Figure 2: Graph representation of the virtual environment

In [Bezerra and Geyer 2009], it is also proposed the division into
cells. To perform the division, the environment is represented by a
graph (Figure 2), where each vertex represents a cell. Every edge in
the graph connects two vertices representing neighboring cells. The
weight of a vertex is the server’s bandwidth occupied to send state
updates to the players whose avatars are in the cell represented by
that vertex. The interaction between any two cells define the weight
of the edge connecting the corresponding vertices. To form the re-
gions, the graph is partitioned using a greedy algorithm: starting
from the heaviest vertex, at each step it is added the vertex con-
nected by the heaviest edge to any of the vertices already selected,
until the total weight of the partition of the graph – defined as the
sum of the vertices’ weights – reaches a certain threshold related
to the total capacity of the server that will receive the region repre-
sented by that partition of the graph.

Although this approach works, there is a serious limitation on the
distribution granularity it can achieve. If a finer granularity is de-
sired, it is necessary to use very small cells, increasing the number
of vertices in the graph that represents the virtual environment and,
consequently, the time required to perform the balancing. Besides,
the control message containing the list of cells designated to each
server also becomes longer. Thus, it may be better to use another
approach to perform the partitioning of the virtual environment,
possibly using a more suitable data structure, such as the kd-tree
[Bentley 1975].

Figure 3: Space partitioning using a BSP tree

This kind of data structure is generally used in computer graphics.
However, as in MMOGs there is geometric information – such as
the position of the avatars in the environment –, space partitioning
trees can be used. Moreover, we cand find in the literature tech-
niques for keeping the partitions defined by the tree with a similar
“load”. In [Luque et al. 2005], for example, it is sought to reduce
the time needed to calculate the collisions between pairs of objects
moving through space. The authors propose the use of a BSP (bi-
nary space partitioning) tree to distribute the objects in the scene
(Figure 3). Obviously, if each object of a pair is completely in-
serted in a different partition, they do not collide and there is no
need to perform a more complex test for this pair. Assuming an
initial division, it is proposed by the authors a dynamic readjust-
ment of the tree as objects move, balancing their distribution on the
leaf-nodes of the tree and, therefore, minimizing the time required
to perform the collision detection. Some of the ideas proposed by
the authors may be used in the context of load balancing between
servers in MMOGs.

3 Proposed approach

The load balancing approach proposed here is based on two criteria:
first, the system should be considered heterogeneous (i.e. every
server may have a different amount of resources) and, second, the
load on each server is not proportional to the number of players
connected to it, but to the amount of bandwidth required to send
state update messages to them.

This choice is due to the fact that every player sends commands to
the server at a constant rate, so the number of messages received by
the server per unit time grows linearly with the number of players,
whereas the number of state update messages sent by the server
may be quadratic, in the worst case.

As mentioned in the introduction, to divide the environment of the
game into regions, we propose the utilization of a data structure
known as kd-tree. The vast majority of MMOGs, such as World of
Warcraft [Blizzard 2004], Ragnarok [Gravity 2001] and Lineage II
[NCsoft 2003], despite having three-dimensional graphics, the sim-
ulated world – cities, forests, swamps and points of interest in gen-
eral – in these games is mapped in two dimensions. Therefore, we
propose to use a kd-tree with k = 2.

Each node of the tree represents a region of the space and, more-
over, in this node it is stored a split coordinate. Each one of the
two children of that node represents a subdivision of the region rep-
resented by the parent node, and one of them represents the sub-
region before the split coordinate and the other one, the sub-region
containing points whose coordinates are greater than or equal to
the split coordinate. The split axis (in the case of two dimensions,
the axes x and y) of the coordinate stored alternates for every level
of the tree – if the first level nodes store x-coordinates, the second
level nodes store y-coordinates and so on. Every leaf node also
represents a region of the space, but it does not store any split coor-
dinate. Instead, it stores a list of the avatars present in that region.
Finally, each leaf node is associated to a server of the game. When
a server is overloaded, it triggers the load balancing, which uses
the kd-tree to readjust the split coordinates that define its region,
reducing the amount of content managed by it.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

2



Figure 4: Balanced kd-trees built with the described algorithm

Every node of the tree also stores two other values: capacity and
load of the subtree. The load of a non-leaf node is equal to the
sum of the load of its children. Similarly, the capacity of a non-leaf
node is equal to the sum of the capacity of its children nodes. For
the leaf nodes, these values are the same of the server associated to
each one of them. The tree root stores, therefore, the total weight
of the game and the total capacity of the server system.

In the following sections, it will be described the construction of
the tree, the calculation of the load associated with each server and
the proposed balancing algorithm.

3.1 Building the kd-tree

To make an initial space division, it is constructed a balanced kd-
tree. For this, we use the recursive function shown in Algorithm 1
to create the tree.

Algorithm 1 node::build tree(id, level, num servers)

if id + 2level ≥ num servers then
left child← right child← NIL;
return;

else
left child← new node();
left child.parent← this;
right child← new node();
right child.parent← this;
left child.build tree(id, level + 1, num servers);
right child.build tree(id+2level, level+1, num servers);

end if

In Algorithm 1, the id value is used to calculate whether each node
has children or not and, in the leaf nodes, it determines the server
associated to the region represented by each leaf of the tree. The
purpose of this is to create a balanced tree, where the number of
leaf nodes on each of the two sub-trees of any node differs, in the
maximum, by one. In Figure 4 (a), we have a full kd-tree formed
with this simple algorithm and, in Figure 4 (b), an incomplete kd-
tree with six-leaf nodes. As we can see, every node of the tree in
(b) has two sub-trees whose number of leaf nodes differs by one in
the worst case.

Figure 5: A load splitting considering only the number os avatars

Figure 6: Relation between avatars and load

3.2 Calculating the load of avatars and tree nodes

The definition of the split coordinate for every non-leaf node of
the tree depends on how the avatars will be distributed among the
regions. An initial idea might be to distribute the players among
servers, so that the number of players on each server is proportional
to the bandwidth of that server. To calculate the split coordinate, it
would be enough to simply sort the avatars in an array along the axis
used (x or y) by the tree node to split the space and, then, calculate
the index in the vector, such that the number of elements before this
index is proportional to the capacity of the left child and the number
of elements from that index to the end of the array is proportional
to the capacity of the right child (Figure 5). The complexity of this
operation is O(nlogn), due to the sorting of avatars.

However, this distribution is not optimal, for the load imposed by
the players depends on how they are interacting with one another.
For example, if the avatars of two players are distant from each
other, there will be probably no interaction between them and,
therefore, the server will need only to update every one of them
about the outcome of his own actions – for these, the growth in the
number of messages is linear with the number of players. On the
other hand, if the avatars are close to each other, each player should
be updated not only about the outcome of his own actions but also
about the actions of every other player – in this case, the number
of messages may grow quadratically with the number of players
(Figure 6). For this reason, it is not sufficient only to consider the
number of players to divide them among the servers.

A more appropriate way to divide the avatars is by considering the
load imposed by each one of them on the server. A brute-force
method for calculating the loads would be to get the distance sepa-
rating each pair of avatars and, based on their interaction, calculate
the number of messages that each player should receive by unit of
time. This approach has complexity O(n2). However, if the avatars
are sorted according to their coordinates on the axis used to divide
the space in the kd-tree, this calculation may be performed in less
time.

For this, two nested loops are used to sweep the avatars array, where
each of the avatars contains a load variable initialized with zero.
As the vector is sorted, the inner loop may start from an index be-
fore which it is known that no avatar aj has relevance to that being
referenced in the outer loop, ai. It is used a variable begin, with
initial value of zero: if the coordinate of aj is smaller than that of

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

3



Figure 7: Sweep of the sorted array of avatars

ai, with a difference greater than the maximum view range of the
avatars, the variable begin is incremented. For every aj which is
at a distance smaller than the maximum view range, the load of ai

is increased according to the relevance of aj to ai. When the inner
loop reaches an avatar aj , such that its coordinate is greater than
that of ai, with a difference greater than the view range, the outer
loop moves immediately to the next step, incrementing ai and set-
ting the value of aj to that stored in begin (Figure 7).

Let width be the length of the virtual environment along the
axis used for the splitting; let also radius be the maximum view
range of the avatars, and n, the number of avatars. The num-
ber of relevance calculations, assuming that the avatars are uni-
formly distributed in the virtual environment is O(m× n), where
m is the number of avatars compared in the internal loop, i.e.
m = 2×radius×n

width
. The complexity of sorting the avatars along one

of the axes is O(nlogn). Although it is still quadratic, the execution
time is reduced significantly, depending on the size of the virtual
environment and on the view range of the avatars. The algorithm
could go further and sort each set of avatars aj which are close (in
one of the axes) to ai according to the other axis and, again, perform
a sweep eliminating those which are too far away, in both dimen-
sions. The number of relevance calculations would be O(p× n),
where p is the number of avatars close to ai, considering the two
axes of coordinates, i.e. p = (2×radius)2×n

width×height
. In this case, height

is the extension of the environment in the second axis taken as ref-
erence. Although there is a considerable reduction of the number
of relevance calculations, it does not pay the time spent in sorting
the sub-array of the avatars selected for each ai. Adding up all the
time spent on sort operations, it would be obtained a complexity of:
O(nlogn + n×mlogm).

After calculating the load generated by each avatar, this value is
used to define the load on each leaf node and, recursively, on the
other nodes of the kd-tree. To each leaf node a server and a region
of the virtual environment are assigned. The load of the leaf node
is equal to the server’s bandwidth used to send state updates to the
players controlling the avatars located in its associated region. This
way, the load of each leaf node is equal to the sum of the weights
of the avatars located in the region represented by it.

3.3 Dynamic load balancing

Once the tree is built, each server is associated to a leaf node –
which determines a region. All the state update messages to be sent
to players whose avatars are located in a region must be sent by the
corresponding server. When a server is overloaded, it may transfer
part of the load assigned to it to some other server. To do this, the
overloaded server collects some data from other servers and, using
the kd-tree, it adjusts the split coordinates of the regions.

Every server maintains an array of the avatars located in the region
managed by it, sorted according to the x coordinate. Also, each
element of the array stores a pointer to another element, forming
a chained list that is ordered according to the y coordinated of the
avatars (Figure 8). By maintaining a local sorted avatar list on each
server, the time required for balancing the load is somewhat re-
duced, for there will be no need for the server performing the rebal-
ance to sort again the avatar lists sent by other servers. It will need
only to merge all the avatars lists received from the other servers in

Figure 8: Avatar array sorted by x, containing a list sort by y

Figure 9: Search for an ancestor node with enough resources

an unique list, used to define the limits of the regions, what is done
by changing the split coordinates which define the space partitions.

When the overloaded server initiates the rebalance, it runs an algo-
rithm that traverses the kd-tree, beginning from the leaf node that
defines its region and going one level up at each step until it finds
an ancestor node with a capacity greater then or equal to the load.
While this node is not found, the algorithm continues recursively
up the tree until it reaches the root. For each node visited, a request
for the information about all the avatars and the values of load and
capacity is sent to the servers represented by the leaf nodes of the
sub-tree to the left of that node (Figure 9). With these data, and its
own list of avatars and values of load and capacity, the overloaded
server can calculate the load and capacity of its ancestral node vis-
ited in the kd-tree, which are not known beforehand – these values
are sent on-demand to save up some bandwidth of the servers and
to keep the system scalable.

Reaching an ancestral node with capacity greater than or equal to
the load – or the root of the tree, if no such node is found – the
server that initiated the balance adjusts the split coordinates of the
kd-tree nodes. For each node, it sets the split coordinate in a way
such that the avatars are distributed according to the capacity of
the node’s children. For this, it is calculated the load fraction that
should be assigned to each child node. The avatar list is then swept,
stopping at the index i such that the total load of the avatars before
i is approximately equal to the value defined as the load to be des-
ignated to the left child of the node whose split coordinate is being
calculated (Figure 10). The children nodes have also, in turn, their
split coordinates readjusted recursively, so that they are checked for
validity – the split coordinate stored in a node must belong to the
region defined by its ancestors in the kd-tree – and readjusted to
follow the balance criteria defined.

As the avatar lists received from the other servers are already sorted
along both axes, it is enough to merge these structures with the
avatar list of the server which initiated the rebalance. Assuming
that each server already calculated the weight of each avatar man-

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

4



Figure 10: Division of an avatar list between two brother nodes

aged by it, the rebalance time is O(nlogS), where n is the number
of avatars in the game and S is the number of servers. The com-
munication cost is O(n), caused by the sending of data related to
te n avatars. The merging of all avatar lists has O(n) complexity,
for the avatars were already sorted by the servers. At each level of
the kd-tree, O(n) avatars are swept in the worst case, in order to
find the i index whose avatar’s coordinate will be used to split the
regions defined by each node of the tree (Figure 10). As this is a
balanced tree with S leaf nodes, it has a height of dlogSe.

4 Simulations

To evaluate the proposed dynamic load balancing algorithm, a vir-
tual environment across which many avatars moved was simulated.
Starting from a random point in the environment, each avatar moved
according to the random waypoint model [Bettstetter et al. 2002].
To force a load imbalance and stress the algorithms tested, we de-
fined some hotspots – points of interest to which the avatars moved
with a higher probability than to other parts of the map. This way,
a higher concentration of avatars was formed in some areas. Al-
though the movement model used is not very realistic in terms of
the way the players move their avatars in real games, it was only
used to verify the load balance algorithms simulated. For each al-
gorithm tested, we simulated two situations: one with the presence
of hotspots and one without hotspots.

The proposed approach was compared to the ones presented in sec-
tion 2, from other authors. However, it is important to observe
that the model employed by [Ahmed and Shirmohammadi 2008]
considers hexagonal cells, while in our simulations we used rect-
angular cells. Furthermore, the authors considered that there is a
transmission rate threshold, which is the same for all servers in the
system. As we assume a heterogenous system, their algorithm was
simulated considering that each server has its own transmission rate
threshold, depending on the upload bandwidth available in each one
of them. However, we kept what we consider the core idea of the
authors’ approach, which is the selection of the smallest cell clus-
ter managed by the overload server, then choosing that cell with the
lowest interaction with other cells of the same server, and finally the
transferring of this cell to the least loaded server. Besides Ahmed’s
algorithm, we also simulated some of the ones proposed in [Bezerra
and Geyer 2009] – Progrega and BFBCT.

The simulated virtual environment consisted of a two-dimensional
space, with 750 moving avatars, whose players were divided among
eight servers (S1, S2, ..., S8), each of which related to one of the re-
gions determined by the balancing algorithm. For the cell-oriented
approaches simulated, the space was divided into a 15 × 15 cell
grid, or 225 cells. The capacity of each server Si was equal to
i × 20000, forming a heterogeneous system. This heterogeneity
allowed us to evaluate the load balancing algorithms simulated ac-
cording to the criterion of proportionality of the load distribution on
the servers.

In addition to evaluate the algorithms according to the proportion-
ality of the load distribution, it was also considered the number
of player migrations between servers. Each migration involves a

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

Lo
ad

Load
Overhead

Server 8Server 7Server 6Server 5Server 4Server 3Server 2Server 1

Figure 11: Average load on each server (by algorithm, without
hotspots)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

P
ow

er
K

D
T

re
e

B
F

B
C

T
P

ro
gr

eg
a

A
hm

ed

Lo
ad

Load
Overhead

Server 8Server 7Server 6Server 5Server 4Server 3Server 2Server 1

Figure 12: Average load on each server (by algorithm, with
hotspots)

player connecting to the new server and disconnecting from the old
one. This kind of situation may occur in two cases: the avatar
moved, changing the region in which it is located and, conse-
quently, changing the server to which its player is connected; or the
avatar was not moving and still its player had to migrate to a new
server. In the latter case, obviously the player’s transfer was due
to a rebalancing. An ideal balancing algorithm performs the load
redistribution requiring the minimum possible number of player
transfers between servers, while keeping the load on each server
proportional to its capacity.

Finally, the inter-server communication overhead will also be eval-
uated. It occurs when two players are interacting, but each one of
them is connected to a different server. Although the algorithm pro-
posed in this work does not address this problem directly, it would
be interesting to evaluate how the load distribution performed by it
influences the communication between the servers.

5 Results

Figures 11 and 12 present the average load (plus the inter-server
communication overhead) on each server, for each algorithm tested.
The first figure shows the values in a situation without hotspots and,
therefore, a smaller total load. The second, in turn, presents the load
distribution when the server system is overloaded. We can see, in
Figure 11, that all algorithms have met the objective of keeping
the load on each server less than or equal to its capacity, when the
system has sufficient resources to do so. In Figure 12, it is demon-
strated that all the algorithms managed to dilute – in a more or less
proportional manner – the load excess on the servers. It is important
to observe, however, that the load shown in Figure 12 is only theo-

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

5



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 200  400  600  800  1000  1200

D
ev

ia
tio

n 
fr

om
 th

e 
id

ea
l b

al
an

ce

Time (s)

KDTree
BFBCT
Ahmed

Progrega

Figure 13: Average deviation of the ideal balance of the servers
(without hotspots)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 200  400  600  800  1000  1200

D
ev

ia
tio

n 
fr

om
 th

e 
id

ea
l b

al
an

ce

Time (s)

KDTree
BFBCT
Ahmed

Progrega

Figure 14: Average deviation of the ideal balance of the servers
(with hotspots)

retical. Each server will perform some kind of “graceful degrada-
tion” in order to keep the load under its capacity. For example, the
update frequency might be reduced and access to the game could
be denied for new players attempting to join, which is a common
practice in most MMOGs.

In figures 13 and 14, it is shown how much the balance generated by
each algorithm deviates from an ideal balance – that is, how much,
on the average, the load on the servers deviate from a value ex-
actly proportional to the capacity of each one of them – over time.
It is possible to observe that, in both situations – with and without
hotspots – the algorithm that uses the kd-tree has the least deviation.
This is the due to the fine granularity of its distribution, which, un-
like the other approaches tested, is not limited by the size of a cell.
In the situation with hotspots, the algorithm that uses the kd-tree is
particularly effective, because rebalance is needed. In a situation
where the system has more resources than necessary, the propor-
tionality of the distribution is not as important: it is enough that
each server manages a load smaller than its capacity.

Regarding player migrations between servers, all the algorithms –
except BFBCT – had a similar number of user migrations in the
absence of hotspots (Figure 15). This happens because the load of
the game is less than the total capacity of the server system, which
required less rebalancing and, thus, caused less migrations of play-
ers between servers. Figure 16, however, demonstrates that the al-
gorithm that uses the kd-tree had a significantly lower number of
user migrations than the other approaches. This is due, in the first
place, to the fact that the regions defined by the leaf nodes of the
kd-tree are necessarily contiguous, and each server was linked to
only one leaf node. An avatar moving across the environment di-
vided into very fragmented regions constantly crosses the borders

 0

 50000

 100000

 150000

 200000

 250000

KDTree BFBCT Progrega Ahmed

P
la

ye
r 

m
ig

ra
tio

ns

Figure 15: Player migrations between servers (without hotspots)

 0

 50000

 100000

 150000

 200000

 250000

KDTree BFBCT Progrega Ahmed

P
la

ye
r 

m
ig

ra
tio

ns

Figure 16: Player migrations between servers (with hotspots)

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 200  400  600  800  1000  1200

In
te

r-
se

rv
er

 c
om

m
un

ic
at

io
n 

ov
er

he
ad

Time (s)

KDTree
BFBCT
Ahmed

Progrega

Figure 17: Inter-server communication for each algorithm over
time (without hotspots)

between these regions and causes, therefore, its player to migrate
from server to server repeatedly. Another reason for this result is
that each rebalancing executed with the kd-tree gets much closer to
an ideal distribution than the cell-based algorithms – again, thanks
to the finer granularity of the kd-tree based distribution –, requiring
less future rebalancing and, thus, causing less player migrations.

Finally, it is shown the amount of communication between servers
for each simulated algorithm, over time. In Figure 17, all algo-
rithms have similar results, and the one which uses the kd-tree is
slightly better than the others. This is also explained by the fact
that the regions are contiguous, minimizing the number of bound-

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

6



 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 200  400  600  800  1000  1200

In
te

r-
se

rv
er

 c
om

m
un

ic
at

io
n 

ov
er

he
ad

Time (s)

KDTree
BFBCT
Ahmed

Progrega

Figure 18: Inter-server communication for each algorithm over
time (with hotspots)

aries between them and, consequently, reducing the probability of
occurring interactions between pairs of avatars, each one in a dif-
ferent region. In Figure 18, it is possible to see that the inter-server
communication caused by Progrega was considerably lower than all
the others in a situation of system overload. The reason for this is
that its main goal – besides balancing the load – is precisely to re-
duce the communication between servers. However, even not con-
sidering the additional cost, the algorithm that uses the kd-tree got
second place in this criterion.

6 Conclusions

In this work, we proposed the use of a kd-tree to partition the vir-
tual environment of MMOGs and perform the load balancing of
servers by recursively adjusting the split coordinates stored in its
nodes. One of the conclusions reached was that the use of kd-trees
to make this partitioning allows a fine granularity of the load dis-
tribution, while the readjustment of the regions becomes simpler –
by recursively traversing the tree – than the common approaches,
based on cells and/or graph partitioning.

The finer granularity allows for a better balancing, so that the load
assigned to each server is close to the ideal value that should be
assigned to it. This better balance also helped to reduce the number
of migrations, by performing less rebalancing operations. The fact
that the regions defined by the kd-tree are necessarily contiguous
was one of the factors that contributed to the results of the proposed
algorithm, which was better than the other algorithms simulated in
most of the criteria considered.

In conclusion, it was possible to use methods that can reduce the
complexity of each rebalancing operation. This is due, first, to
the reduction of the number of operations for calculating the rel-
evance between pairs of avatars by sweeping a sorted avatar list
and, secondly, to keeping at each server an avatar list already sorted
in both dimensions, saving the time that would be spent on sort-
ing the avatars when they were received by the server executing the
rebalance.

Acknowledgements

The development of this work has been supported by the National
Research Council (CNPq) and by the Coordination for Improve-
ment of the Higher Education Personnel (CAPES).

References

AHMED, D., AND SHIRMOHAMMADI, S. 2008. A Microcell Ori-
ented Load Balancing Model for Collaborative Virtual Environ-
ments. In VECIMS, 86–91.

ASSIOTIS, M., AND TZANOV, V. 2006. A distributed architecture
for MMORPG. In Proceedings of the ACM SIGCOMM work-
shop on Network and system support for games, NetGames, 5.,
New York: ACM, Singapore, 4.

BENTLEY, J. 1975. Multidimensional binary search trees used for
associative searching.

BETTSTETTER, C., HARTENSTEIN, H., AND PÉREZ-COSTA, X.
2002. Stochastic Properties of the Random Waypoint Mobility
Model: epoch length, direction distribution, and cell change rate.
In Proceedings of the ACM international workshop on Modeling
analysis and simulation of wireless and mobile systems, 5., New
York: ACM, Atlanta, GA, 7–14.

BEZERRA, C. E. B., AND GEYER, C. F. R. 2009. A load balanc-
ing scheme for massively multiplayer online games. Massively
Multiuser Online Gaming Systems and Applications, Special Is-
sue of Springer’s Journal of Multimedia Tools and Applications.

BEZERRA, C. E. B., CECIN, F. R., AND GEYER, C. F. R. 2008.
A3: a novel interest management algorithm for distributed sim-
ulations of mmogs. In Proceedings of the IEEE/ACM Inter-
national Symposium on Distributed Simulation and Real-Time
Applications, DS-RT, 12., Washington, DC: IEEE, Vancouver,
Canada, 35–42.

BLIZZARD, 2004. World of warcraft. 2004. Available at:
<http://www.worldofwarcraft.com/>. Last time accessed: 24
jul. 2009.

CHERTOV, R., AND FAHMY, S. 2006. Optimistic Load Balanc-
ing in a Distributed Virtual Environment. In Proceedings of the
ACM International Workshop on Network and Operating Sys-
tems Support for Digital Audio and Video, NOSSDAV, 16., New
York: ACM, Newport, USA, 1–6.

EL RHALIBI, A., AND MERABTI, M. 2005. Agents-based model-
ing for a peer-to-peer MMOG architecture. Computers in Enter-
tainment (CIE) 3, 2, 3–3.

GRAVITY, 2001. Raganarök online. 2001. Available at:
<http://www.ragnarokonline.com/>. Last time accessed: 24 jul.
2009.

HAMPEL, T., BOPP, T., AND HINN, R. 2006. A peer-to-peer archi-
tecture for massive multiplayer online games. In Proceedings of
the ACM SIGCOMM workshop on Network and system support
for games, NetGames, 5., New York: ACM, Singapore, 48.

IIMURA, T., HAZEYAMA, H., AND KADOBAYASHI, Y. 2004.
Zoned federation of game servers: a peer-to-peer approach to
scalable multi-player online games. In Proceedings of the ACM
SIGCOMM workshop on Network and system support for games,
NetGames, 3., New York: ACM, Portland, USA, 116–120.

KNUTSSON, B., ET AL. 2004. Peer-to-peer support for massively
multiplayer games. In Proceedings of the IEEE Annual Joint
Conference of the IEEE Computer and Communications Soci-
eties, INFOCOM, 23., [S.l.]: IEEE, Hong Kong, 96–107.

LEE, K., AND LEE, D. 2003. A scalable dynamic load distri-
bution scheme for multi-server distributed virtual environment
systems with highly-skewed user distribution. In Proceedings of
the ACM symposium on Virtual reality software and technology,
New York: ACM, Osaka, Japan, 160–168.

LUQUE, R., COMBA, J., AND FREITAS, C. 2005. Broad-phase
collision detection using semi-adjusting BSP-trees. In Proceed-
ings of the 2005 symposium on Interactive 3D graphics and
games, ACM New York, NY, USA, 179–186.

NCSOFT, 2003. Lineage ii. 2003. Available at:
<http://www.lineage2.com/>. Last time accessed: 24 jul.
2009.

NG, B., ET AL. 2002. A multi-server architecture for distributed
virtual walkthrough. In Proceedings of the ACM symposium on
Virtual reality software and technology, VRST, New York: ACM,
Hong Kong, 163–170.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

7



RIECHE, S., ET AL. 2007. Peer-to-Peer-based Infrastructure Sup-
port for Massively Multiplayer Online Games. In Proceedings of
the 4th IEEE Consumer Communications and Networking Con-
ference, CCNC, 4., [S.l.]: IEEE, Las Vegas, NV, 763–767.

SCHIELE, G., ET AL. 2007. Requirements of Peer-to-Peer-based
Massively Multiplayer Online Gaming. In Proceedings of the
IEEE International Symposium on Cluster Computing and the
Grid, CCGRID, 7., Washington, DC: IEEE, Rio de Janeiro, 773–
782.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

8



A Generative Programming Approach for Game Development

Victor T. Sarinho*       Antônio L. Apolinário

State University of Feira de Santana, Brazil

Abstract

Nowadays,  due to  the great  distance  between design 
and  implementation  worlds,  different  skills  are 
necessary  to  create  a  game  system.  To  solve  this 
problem,  a  lot  of  strategies  for  game  development, 
trying  to  increase  the  abstraction  level  necessary for 
the game production, were proposed. In this way, a lot 
of game engines, game frameworks and others, in most 
cases  without  any  compatibility  or  reuse  criteria 
between them, were developed. This paper presents a 
new  generative  programming  approach,  able  to 
increase  the  production  of  a  digital  game  by  the 
integration  of  different  game  development  artifacts, 
following a system family strategy focused on variable 
and common aspects of a computer game.  As result, 
high level abstractions of games, based on a common 
language, can be used to configure metaprogramming 
transformations during the game production, providing 
a great compatibility level between game domain and 
game implementation artifacts.
Keywords:  generative  game  development,  game 
feature  models,  game  specification  language,  game 
metaprogramming.

Authors’ contact:
*vsarinho@gmail.com
apolinario@ecomp.uefs.br

1. Introduction

During  a  game  development  project,  according  the 
design  and  implementation  diversity,  the  game 
production  becomes  highly  complex  and  expensive 
[Sarinho and Apolinário 2008]. 

To change this scenario, new approaches for game 
production,  able  to  organize  the  game  development 
process,  using available engines  and frameworks,  are 
necessary [Furtado and Santos 2006].

An  interesting  approach  able  to  perform  these 
objectives  in  a  software  production is  the generative 
programming.  According  Czarnecki  and  Eisenecker 
[2000],  generative  programming  is  “the  process  to 
generate  programs  where  automated  source  code 
creation is  done through code generators  to  improve 
programmer productivity”. 

The difference of generative programming by other 
approaches is because it aims to automate the software 
development process using a wide range of static and 
dynamic  technologies,  including  metaprogramming, 
reflection,  program and model  analysis,  for  example 
[Czarnecki  and  Kim  2005].  It  aims  to  model  and 
implement  “system  families”  in  such  a  way  that  a 
given  system can  be automatically  generated  from a 

specification  written  in  one  or  more  textual  or 
graphical domain specific languages [Czarnecki 2004].

Nevertheless,  to define a generative programming 
approach  for  game  development,  a  lot  of  available 
development  techniques  and  domain  aspects  used 
during  the  game  production  must  be  considered. 
Therefore,  questions  like:  “How  the  generative 
programming can be applied on game development?”, 
“How many game software artifacts are necessary to 
achieve  an  automatic  source  code  generation  for  a 
game development?”, and “How the commonality and 
variability  can  be  represented  and  used  during  the 
game development?” are raised.

This  paper  presents  a  generative  programming 
proposal for generic game development. It is based on 
game  feature  models,  able  to  represent  variable  and 
common implementation aspects  of computer  games, 
and metaprogramming resources, able to represent and 
generate  compatible  source  code  for  available  game 
engines and game frameworks.

It is organized as follows: Section 2 presents some 
generative  software  artifacts,  and  their  related  game 
works, necessary for the game development. Section 3 
describes  the  GameSystem,  DecisionSupport and 
SceneView (GDS)  feature  model;  the  Game 
Specification  Language  (GSL);  and  the 
metaprogramming  approach  necessary  for  the  game 
development.  Section  4  presents  the  Pac-Man  case 
study  using  the  generative  programming  proposal. 
Finally, Section 5 presents some conclusions about the 
paper.

2. Related Work

Next  subsections  will  present  important  artifacts  for 
generative programming that will be used in this paper. 
In  addition,  some  game  researchs  for  each  type  of 
generative artifact will be described. 

2.1 Feature Model Artifacts

According  Czarnecki  and  Kim  [2005],  the  feature 
modeling  has  several  applications  in  generative 
software  development,  including  domain  analysis, 
product-line  scoping,  and  feature-based  product 
specification.

Feature  modeling  is  a  technique  for  managing 
software  commonalities  and  variabilities.  It  can  be 
used  to:  capture  the  results  of  domain  analysis; 
facilitate  scoping  of  product  lines,  domain-specific 
language  families,  components,  platforms,  and  other 
reusable  assets;  and  provide  a  basis  for  automated 
configuration  of  concrete  products,  languages, 
components, platforms, etc [Czarnecki and Kim 2005].

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

9



In  a  game  development  perspective,  Zhang  and 
Jarzabek  [2005]  proposed  the  application  of  feature 
models,  defining  similarities  and  differences  among 
four different RPGs, to configure a RPG product line 
architecture (RPG-PLA).

To represent  a  generic  game design,  Sarinho and 
Apolinário [2008] proposed the  NESI feature model, 
able to represent conceptual game aspects in four main 
views:  Narrative,  Entertainment,  Simulation  and 
Interaction.

Another interesting work was presented by Furtado 
[2006]  where  a  game  ontology  to  set  game 
implementations  was  proposed.  It  was  not  a  feature 
model, but some similar characteristics were presented 
in this research.

Unfortunately,  none of them are able to represent 
common and variable aspects of implementation in a 
generic computer game.

2.2 Domain-Specific Language Artifacts

According  Fowler  [2005],  a  Domain-Specific 
Language  (DSL)  is  a  limited  form  of  computer 
language designed for a specific class of problems. It is 
a  small,  usually  declarative,  language  that  offers 
expressive  power  focused  on  a  particular  problem 
domain  [Furtado  and  Santos  2006].  In  many  cases, 
DSL  programs  are  translated  to  calls  to  a  common 
subroutine library,  and the DSL can  be viewed as  a 
way  to  hide  the  details  of  that  library  [Furtado  and 
Santos 2006].

An interesting research about DSL for games was 
presented by Moreno-Ger et al. [2005], who described 
a  suitable  Domain-Specific  Language  to  build 
educational  games.  To  support  this  language,  an 
abstract  syntax  and  its  operational  semantics,  and  a 
specific game engine were presented.

In  this  work,  DSLs  will  be  usefull  to  realize the 
generic  game  feature  models  in  a  reusable  way, 
providing  an  optimal  support  for  application 
developers  by the available  and  compatible  software 
development environments.

2.3 Metaprogramming Artifacts

According  Azanza  et  al.  [2007],  “Generative 
programming is  about  developing metaprograms that 
synthesize  other  programs”,  and  according  Batory 
[2006], “metaprogramming is the concept that program 
synthesis is a computation”. 

To  exemplify,  Batory  [2006]  asserts  that  Model-
Driven  Development  (MDD)  is  a  metaprogramming 
paradigm,  where  models  are  program  values  and 
transformations are program functions that map these 
values. In fact, “the main difference between MDD and 
generative  software  development  is  the  focus  of  the 
latter on system families” [Czarnecki 2004].

For  Trujillo  et  al.  [2007],  Scripts  that  transform 
models into executables are also metaprograms. They 
are ”programs that manipulate values that themselves 
are programs”. 

Looking for game researchs, Cutumisu et al. [2007] 
presented a three-step process allowing game authors 
(non-programmers)  to  generate  the  necessary 
procedural  scripts  to  implement  meaningful 
interactions between the PC and game objects.

In  this  work,  scripts  that  transform  the  DSLs 
models,  able  to  represent  generic  characteristics  of 
computer games, into executables will be used.

3. The Generative Approach

The  main  objective  of  the  generative  approach  for 
games  presented  in  this  paper  is  to  integrate  feature 
models,  domain-specific  languages  and 
metaprogramming scripts  for  games  as  a unique and 
organized approach for game implementation. 

In  this  way,  this  section  will  present  a  feature 
model able to represent game implementation aspects, 
a  domain-specific  language  able  to  represent  the 
feature model as a concrete syntax, and a collection of 
metaprogramming scripts able to translate the DSL for 
game engines, frameworks and similars.

3.1 The GDS Model

The objective of the GDS model (Figure 1) is define a 
game as a combination of three main standard features: 
GameSystem,  DecisionSupport and  SceneView,  where 
each main feature describes generic configurations and 
behavioral  aspects  of  a  game.  It  is  organized  as  a 
collection  of  features  depicting  various  resources  of 
game  implementation found in  several  related  works 
(see reference section).

The  GameSystem feature  (Figure  2)  is  the  main 
joint point of the game. It is responsible to control the 
game execution, describing available  GameBehaviors, 
GameContext and GameObservers of the game. By the 
execution  of  GameBehaviors,  activated  by 
GameObservers or  not,  the  current  Player in  the 
GameSession can  trigger  actions  that  can  affect  all 
defined  data  in  the  game,  like  DecisionEntities and 
SceneNodes for example. Some game subsystems, like 
FileSystem and  Networking for  example,  can  also 
execute some  synchronous and  asynchronous actions, 
triggering in the same way specific  behaviors  in the 
game.

The DecisionSupport feature (Figure 3) is an effort 
to integrate some AI game strategies used by different 
digital  games.  It  presents  DecisionEntities,  like 
Scenario and  Agent,  the  ContextState of  each 
DecisionEntity,  represented  as  FiniteState or 
NeuralNet for  example,  and  predefined 

Figure 1: GDS feature model.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

10



DecisionBehaviors,  able  to  read  and  change 
DecisionEntities and ContextStates values during their 
executions.

The SceneView (Figure 4) feature is a collection of 
SceneNodes distributed by  Spatial sessions with a lot 
of  SceneBehaviors and  SceneObservers to  execute 
scene  actions.  Each  Spatial session  is  composed  by 

some  SceneNodes.  A  SceneNode represents  a 
hierarquical  information  about  the  scene,  with  a 
specific  Location and a  BoudingVolume for  collision 
detection. Each  SceneNode can represent  at the same 
time  AudioNode,  GraphicNode and  PhysicsNode 
informations.  Sorting informations about  the  Spatial, 
like Portals, BSPs and others can also be defined. 

Figure 2: GameSystem feature diagram.

Figure 3: DecisionSupport feature diagram.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

11



3.2 The Game Specification Language

According  [Czarnecki  2004],  feature  models  are  the 
starting  point  in  the  development  of  both DSLs  and 
system-family  architectures.  DSL  presents  a  lot  of 
benefits:  it  is  concise,  self-documenting  to  a  large 
extent,  and  can  be  reused  for  different  purposes;  it 
enhances  productivity,  reliability,  maintainability and 
portability;  it  represents  domain knowledge,  enabling 
the conservation and reuse of this knowledge; and it 
allows validation and optimization at the domain level 
[Furtado and Santos 2006].

DSLs  are  usually  declarative,  offering  only  a 
restricted  set  of  notations  and  abstractions. 
Consequently,  they  can  be  viewed  as  specification 
languages,  like  SQL,  HTML,  TeX,  BNF  and  XML 
derivations, for example [Furtado and Santos 2006].

According  W3C  [2009],  the  Extensible  Markup 
Language  (XML)  is  a  “simple,  very  flexible  text 
format  derived  from  SGML  (ISO  8879)”.  It  was 
originally  designed  to  meet  the  challenges  of  large-
scale electronic publishing, allowing the exchange of a 
wide variety of data on the Web and elsewhere [W3C 
2009].

In  this  way,  using  the  GDS  model  as  a 
commonality  and  variability  guide  for  game 
implementations,  and  the  XML  as  a  standard  text 
format, a Game Specification Language (GSL), which 
can  be  caracterized  as  a  textual  DSL for  games,  is 
defined. 

GSL presents a textual representation of the GDS 
model  structure  (taking  advantage  of  the  available 
XML tools),  organized  by  the  root  tag  GSL and  its 
three main subtags: GameSystem, DecisionSupport and 
SceneView,  with  detailed  values  of  attributes  and 
subtags when necessary. 

For each main subtags, a lot of tags can be defined 
to support the context data of a game. This context data 
can  be  represented  using  individual  tags,  like 
GameContext and  PlayerContext,  or  using  multiple 
tags, like Players, DecisionEntities and SceneNodes. 

Subtags  of  GameBehavior,  GameObserver, 
DecisionBehavior,  DecisionObserver, SceneBehavior 
and  SceneObserver,  representing  behavior  and 
observer characteristics in a game, can also be defined, 
according the game project.

To illustrate a complete organization of these tags 
and subtags, section 4.1 shows an example of a GSL 
script, describing a simplified representation of a Pac-
Man game [Iwatani 1980].

3.3 Metaprogramming Scripts for Games

Based  on GDS model and XML text  format,  a GSL 
specification is a structured game description, focused 
on  common  and  variable  characteristics  of  a  game 
implementation, where source code elements for real 
games can be created using a generative approach. 

In fact,  by the application of some translations in 
the GSL specification, using a specific game engine or 
game framework as the final target, the production of a 
real  game based  on a declarative  resource  (the GSL 
specification) is possible.  

Unfortunately,  different  game  development 
artifacts can be used during the game production (game 
engines,  game  makers,  game  frameworks,  etc).  As 
result,  to  support  the  logic  and  structure  of  a  GSL 
specification,  a  specific  translation  process  must  be 
defined for each game development artifact used in the 
game production. 

To  solve  this  problem,  a  game  metaframework, 
composed by a set of  core classes able to support the 

Figure 4: SceneView feature diagram.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

12



GSL structure,  that  becomes  the  main  target  of  the 
generative  scripts  based  on  GSL  specifications,  is 
proposed. 

The  metaframework  objective  is  to  create  a 
communication layer between the generated code from 
GSL specifications  with available game development 
artifacts.  So,  a  direct  consequence  of  the  adaptation 
package (composed by classes that realize the adapter 
pattern [Gama et al. 1994]), necessary to maintain the 
compatibility  between  metaframework  core classes 
and similars  classes  available in the respective  game 
development artifact that will be reused.

Figure  5  illustrates  the  metaframework  package 
diagram, showing the necessary structures  to support 
GSL specifications: core (abstract structures to support 
GSL  games),  adaptation (collection  of  adapters 
necessary  to  support  a  new  game  engine  or  game 
framework),  behavior (actions  to  be  executed  by  a 
GSL  game),  listener (game  observers  that  will  be 
triggered by game subsystems or game behaviors) and 
context (game data structures that will be instantiated 
during  the  game  play).  External  game  development 
artifacts  are  also  presented  (game  engines,  game 
frameworks and  game makers),  showing their  import 
relationships with  adaptation  structures,  allowing the 
game  portability  with  different  game  development 
artifacts. 

Figure  6  presents  a  class  diagram  [Booch  et.  al. 
1998] with an initial proposal for the core package. It 
describes  a  GameSession abstract  class  composed by 
three  types  of  GenericObservers (GameObserver, 
DecisionObserver and  SceneObserver),  and  some 
collections  of  game  elements,  like  spatials, 
decisionEntities and players. A Spatial is composed by 
a  collection  of  sceneNodes (which  can  be  an 
AudioNode,  a  GraphicNode or  a  PhysicsNode).  A 
DecisionEntity can be an Agent (with some collections 
of skills, memories, motivations and personalities) or a 
Scenario (with  a  collection  of  locations and  some 
informations for each  Location).  Each  DecisionEntity 

contains informations about its ContextState, and each 
GenericObserver contains  a  collection  of 
GenericListener able  to  execute  a  GenericBehavior 
when necessary.

For  the  metaprogramming  scripts,  these  are 
described  by  Extensible  Stylesheet  Language  (XSL) 
files [XSL 2009], able to translate GSL specifications 
in  a  compatible  source  code  with  the  proposed 
metaframework.  According  Harold  [1998],  XSL 
includes  both  a  transformation  language  and  a 
formatting  language.  The  transformation  language 
“provides elements that define rules for how one XML 
document  is  transformed  into  another  document”. 
“They  are  purely  about  moving  data  from  one 
computer system or program to another”.

To  illustrate  the  application  of  a  XSL  script  to 
transform  a  GSL game  to  a  real  game,  section  4.3 
presents some examples of XSL rules able to produce a 
simplified version of the Pac-Man game (after translate 
the GSL specification presented in section 4.1).

4. Case Study: A Simplified Pac-Man

To exemplify an application of the proposed generative 
approach,  a  simplified version of the Pac-Man game 
will be designed.

This simplified project will ommit ghosts (only one 
ghost will be available), big pills (excluding the ghost 
vunerability), difficult levels (same skills for the ghost 
during the game play), score, fruits, ghost house, and 
others.

Only  the  default  characteristics  of  the  Pac-Man 
game will be present, like: the pac-man character, one 
ghost  character,  pills,  walls,  collision  treatment 
between these game elements, lifes and a treatment for 
the  completion  of  the  game  (game  over  or  game 
victory). 

Initial  menu,  game  presentation,  high  scores, 
multiplayer  support  and  other  “GameSystems” 
characteristics were also ommited.

Figure 5: The metaframework package diagram.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

13



4.1 Modeling the GSL Script

To represent  the Simplified Pac-Man game, Figure 7 
shows its  GSL specification  proposal,  describing the 
necessary  information  to  model  and  configure  this 
game, allowing its realization according the generative 
approach.

For  behaviors  tags  (MoveGhost, 
RestoreInitialPosition, for example) and observers tags 
(UpDirection,  LoseLifeListener,  for  example),  in  this 
case, the existence of them is sufficient to represent the 
desired  actions.  Metaprogramming  scripts  will  be 
responsible to decide what kind of source code will be 
generated by the existence of these tags.

For context tags (DecisionEntities and SceneNodes, 
for  example),  the  structure  and  some  parameters 
(imageFile,  X and  Y coordinates,  for  example)  to 
configure the final source code, were described. 

For the Model tag, used in all SceneNodes, it works 
with special  files describing rendering and animation 
informations.  As  result,  different  ways  to  represent 
data  file  or  image  files  are  presented  in  the  GSL 
specification  for  the  Model tag:  one  image  file, 
multiples image files, one data file, one data file and 
one  image  file,  etc.  Therefore,  some  special  and 

different  treatments  are  expected  in  the 
metaprogramming scripts for each Model tag.

Due  to  space  limitations,  the  specification  of 
Spatial tags  was  simplified  (and  highlighted  using 
different font styles) to show only the Location and the 
Model tags.

4.2 New Classes and Adapters

According section 3.3, the proposed metaframework is 
the main target  for  generative  scripts  based  on GSL 
specifications. In this way, to allow the realization of 
these  GSL specifications,  some adaptations  and  new 
structures  will  be  applied  to  the  metaframework, 
during the execution of those generative scripts. 

To illustrate these metaframework updates, Figure 
8 presents a class diagram showing some new classes 
added  to  the  following  metaframework  packages: 
adaptation,  behavior,  listener and  context. These new 
classes  and  adapters  were  developed  according  the 
GTGE game framework  [GTGE 2009],  allowing the 
communication between them.

As result,  adaptations and new classes for  Player 
(DefaultPlayer),  GameSession (GameSessionGTGE 
adapter),   GenericObserver (SceneObserverGTGE and 
GameObserverGTGE adapters),  Spatial (SpatialField 

Figure 6: Class diagram for the core package.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

14



Figure 7: GSL specification of the Simplified Pac-Man.

    <SceneView>
        <SceneBehavior>
            <MathBehavior> 
                <Translate> 
                    <MoveGhost/> <MovePacMan/>
                </Translate>
            </MathBehavior>
            <GraphicBehavior>
                <Rendering> <UpdateHUD/> </Rendering>
            </GraphicBehavior>
            <PhysicsBehavior>
                <CollisionTreatment>
                    <PacManPillCollisionTreatment/>
                    <PacManWallCollisionTreatment/>
                    <GhostWallCollisionTreatment/>
                    <PacManGhostCollisionTreatment/>
                </CollisionTreatment>
            </PhysicsBehavior>
        </SceneBehavior>

        <SceneObserver>
            <CollisionOcurrence>
                <PacManPillCollision/>
                <PacManWallCollision/>
                <GhostWallCollision/>
                <PacManGhostCollision/>
            </CollisionOcurrence>
        </SceneObserver>

        <Spatial ID="GamePlay">
            <SceneNode>
                <HUDNode>  ...
<Location X="X_HUD_INIT" Y="Y_HUD_INIT"/> …
<Model imageFile="twoLifes.png"/> …
                </HUDNode>
                <WallNode> …
<Location X="X_INIT" Y="Y_INIT"/> ...
<Model dataFile="scenario.dat" imageFile="wall.png"/> ...
                </WallNode>
                <PillNode> …
<Location X="X_INIT" Y="Y_INIT"/> ...
<Model dataFile="pills.dat" imageFile="pill.png"/> ...
                </PillNode>
                <GhostNode> ...
<Location X="X_GHOST_INIT" Y="Y_GHOST_INIT"/>
<Model>
    <Image fileName="ghost1.png"/>
    <Image fileName="ghost2.png"/>
</Model> …
                </GhostNode>
                <PacManNode> ...
<Location X="X_PACMAN_INIT" Y="Y_PACMAN_INIT"/> ...
<Model>
    <Image fileName="pacman0.png"/>
    <Image fileName="pacman1.png"/>
    <Image fileName="pacman2.png"/>
    <Image fileName="pacman3.png"/>
    <Image fileName="pacman4.png"/>
 </Model> ...
                </PacManNode>
            </SceneNode>
        </Spatial>

        <Spatial ID="GameVictory"> …  
<Location align="center"/> ...
<Model imageFile="victory.png"/> ...
        </Spatial>

        <Spatial ID="GameOver">  … 
<Location align="center"/>
<Model imageFile="gameover.png"/>
        </Spatial>

    </SceneView>
</GSL>

<GSL>
    <GameSystem>
        <GameBehavior>
            <GameCycle>
                <GameOver/> <GameVictory/>
            </GameCycle>
            <PlayerBehavior> <ActionControl/> </PlayerBehavior>
        </GameBehavior>

        <GameObserver>
            <ControlSystem>
                <Keyboard>
                    <UpDirection/> <DownDirection/>
                    <LeftDirection/> <RightDirection/> <ESC/>
                </Keyboard>
            </ControlSystem>
        </GameObserver>

        <GameSession>
            <SessionStatus status="GamePlay"/>
            <PlayerContext>
                <Player>
                    <ID value="1"/>
                    <Name value="Player1"/>
                    <ControlMap>
                        <LeftDirection_MoveLeft/>
                        <RightDirection_MoveRight/>
                        <UpDirection_MoveUp/>
                        <DownDirection_MoveDown/>
                        <ESC_ButtonPress/>
                    </ControlMap>
                </Player>
            </PlayerContext>
        </GameSession>
    </GameSystem>

    <DecisionSupport>
        <DecisionBehavior>
            <LogicBehavior>
                <GameRule> <LoseLife/> </GameRule>
                <GameFlow>
                    <RestoreInitialPosition/>
                </GameFlow>
            </LogicBehavior>
        </DecisionBehavior>

        <DecisionObserver>
            <AgentDataUpdate>
                <LoseLifeListener/>
            </AgentDataUpdate>
        </DecisionObserver>

        <DecisionEntity>
            <ID value="PacMan"/>
            <DecisionEntityType>
                <Agent>
                    <PacMan>
                        <Skill> <Life value="2"/> </Skill>
                    </PacMan>
                </Agent>
            </DecisionEntityType>
        </DecisionEntity>

        <DecisionEntity>
            <ID value="CornerScenario"/>
            <DecisionEntityType>
                <Scenario>
                    <Location file="corner.dat">
                        <Information>
                            <ScenarioInfo> <Ways/> </ScenarioInfo>
                        </Information>
                    </Location>
                </Scenario>
            </DecisionEntityType>
        </DecisionEntity>
    </DecisionSupport>

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

15



adapter  and  some  context  classes  like 
GamePlaySpatialField),  SceneNode (SpriteSceneNode 
adapter),  DecisionEntity (CornerLocation,  Life), 
GenericListener (ControlSystemListener), and a lot of 
subclasses  of  CollisionGroup and  GenericBehavior, 
were presented.

4.3 Building Games with XSL Rules

To  create  these  game  structures  described  above 
(classes  and  adapters) for  the  proposed 
metaframework,  a  set  of  metaprogramming  scripts, 
able to translate the GSL specification in a compatible 
source code, must be created. 

These  metaprogramming  scripts  will  be  defined 
using  the  Extensible  Stylesheet  Language  (XSL) 
format, which can define rules that transform one GSL 
specification  to  a  desired  source  code  (according 
section 3.3), like classes and adapters for example.

Some examples of XSL rules, able to translate the 
GSL specification of the Simplified Pac-Man to a real 
game,  were  illustrated  in  Figure  9.  These  rules  are 
validated  by  templates,  where,  for  each  template 
validation,  one  of  these  transformations  is  expected: 

direct  code  introduction  inside  a  class  for  each 
identified element, internal template validation for each 
identified  element  to  introduce  a  code,  direct  code 
introduction inside a class, direct introduction of GSL 
values inside a class, and a complete class introduction 
in the final code.

As result, after the XSL rules execution described 
in Figure 9, the following resources will be available to 
the Simplified Pac-Man game: creation of all declared 
Players,  Keyboard event  treatment,  introduction  to 
decision  support  code  for  PacMan,  source  code 
inclusion of the  SessionStatus value, and the creation 
of a class to support the GameOver behavior.

4.4 Metaframework Integration

During the integration process between a game engine 
or  a  game  framework  with  the  proposed 
metaframework, a lot of special resources of the game 
development  artifact  can  be  used,  instead  of  the 
metaframework structures. 

For example, the GTGE framework gives a special 
collection  of  classes  to  work  with  collision  between 
game  objects.  In  this  way,  subclasses  of  the 

Figure 8: Class diagram with new classes for adaptation, behavior, listener and context packages.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

16



CollisionGroup like  PacManGhostCollisionTreatment 
are  presented  in  the  class  diagram  (Figure  8).  But, 
according  the  GSL  specification  (Figure  7), 
PacManGhostCollisionTreatment is  a  SceneBehavior. 
So,  it  should  be  a  subclass  of  the  GenericBehavior 
class  (defined  in  the  core package  of  the 
metaframework  -   Figure  6),  like  UpdateHUD and 
MoveGhost (Figure 8), instead of a GTGE class.

In the same way, none decision information about 
the  Pac-Man  position  were  specified  in  the  GSL 
specification  (Figure  7).  This  information  is  directly 
extracted by available GTGE resources,  avoiding the 
creation  of  Information/AgentInfo/PacManPosition 
tags for each Location in the Scenario.

These decisions about what type of game logic or 
game structure to be used during the generative script 
production are,  in most  cases,  defined  by the “game 
programmer”.  The “game programmer” is the person 
who  knows  the  available  game  engine  or  game 
framework resources.  The “game programmer” is the 
best person who can define the best solution of what 
types  of  game  structures  must  be  reused  or  not  by 
game  engines  or  game  frameworks.  The  “game 
programmer” is the responsible to decide what types of 
GameSystem,  DecisionSupport and  SceneView 
structures  will  be  excluded  during  the  generative 
process. 

4.5 The Final Game

To  show  the  final  result  of  the  XSL  execution, 
transforming the  proposed GSL specification  (Figure 

7) in a real game, Figure 10 presents a captured image 
of the Simplified Pac-Man during its game play.

Although  different  techniques  had  been  used  to 
develop this final  game,  like the GDS feature model 
and the proposed metaframework, some game updates 
can  be  performed  in  a  faster  way,  according  the 
generative game artifact. 

For example, to change the initial quantity of lifes 
available to the player in the Simplified Pac-Man, two 
simple updates in the GSL specification (Figure 7) are 
necessary: a new value to the Life tag attribute, and a 
new initial image to the HUDNode tag.

As result, the maintainability of the Simplified Pac-
Man can be described by single updates on a specific 
generative artifact used to produce it.

####  Direct code introduction inside a class for each identified element:
<xsl:for-each select="/GSL/GameSystem/GameSession/PlayerContext/*">
        gameSession.addPlayer(new DefaultPlayer(<xsl:value-of select="ID/@value"/>,"<xsl:value-of select="Name/@value"/>"));
</xsl:for-each>

#### Internal template validation for each identified element to introduce a code:
<xsl:for-each select="/GSL/GameSystem/GameObserver/ControlSystem/Keyboard/*">
            <xsl:choose>
                <xsl:when test="name(.)='UpDirection'">
        if (keyDown(KeyEvent.VK_UP)) {
            String[] values = {"UpDirection"};
            gameSession.gameObserver.fire(gameSession, "GameSystem&#47;GameObserver&#47;ControlSystem", values);
        }
                </xsl:when>
                <xsl:when test="name(.)='DownDirection'">

. . . 
</xsl:for-each>

#### Direct code introduction inside a class:
<xsl:if test="/GSL/DecisionSupport/DecisionEntity/ID/@value='PacMan'">
        gameSession.addDecisionEntitiy(GameDecisionData.createPacMan());
</xsl:if>

#### Direct introduction of GSL values inside a class:
gameSession.setStatus("<xsl:value-of select="/GSL/GameSystem/GameSession/SessionStatus/@status"/>");

#### Complete class introduction in the final code:
<xsl:template match="/GSL/GameSystem/GameBehavior/GameCycle/GameOver">
    class GameOver extends GenericBehavior {
        public void execute(GameSession gameSession, Object[] params){
            gameSession.setStatus("GameOver");
        }
    }
</xsl:template>

Figure 9: Some XSL rules to transform the GSL specification of the Simplified Pac-Man game.

Figure 10: Simplified Pac-Man during the game play.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

17



5. Conclusions

This paper presented a generative attempt to develop 
computer  games  in  general,  using  different 
technologies  to  complete  this  task,  like:  the  GDS 
feature  model,  the  GSL  format,  the  metaframework 
proposal and some metaprogramming scripts based on 
XSL format.

The great  objective  of  this  work  is  to  describe  a 
different  game  development  experiment,  able  to 
increase  the  level  of  software  reuse  and 
maintainability,  allowing  the  creation  and  the 
adaptation of new games by declarative specifications, 
metaprogramming  definitions  and  metaframework 
updates. 

As  a  result  of  this  approach,  new  development 
strategies can be applied during the game production, 
according  the  final  game  environment  (engines, 
frameworks or platforms, for example), resulting in a 
low  coupling  development  strategy  between  game 
domain and game implementation software artifacts.

For  future  works,  two  main  researchs  will  be 
developed.  First,  the  creation  of  collections  of 
metaframework adaptations for different game artifacts 
to  be  used  in  a  metagenerative  approach  for  games. 
Second, the definition of collections of game domain 
resources  by  the  analysis  of  different  game  topics, 
game  genres,  game  platforms,  etc,  allowing  the 
creation of a repository of game dynamics [Hunicke et 
al. 2004], using feature models and GSL specifications 
as a common language.

References

AZANZA,  M.,  TRUJILLO,  S.  AND DIAZ,  O.,  2007.  Towards 
Generative Metaprogramming.  In:  2nd Summer School  
on  Generative  and  Transformational  Techniques  in  
Software Engineering (GTTSE 2007),  Braga, Portugal,  
2-7 July 2007.

BATORY,  D.,  2006.  Multi-Level  Models  in  Model  Driven 
Development,  Product-Lines,  and  Metaprogramming. 
IBM Systems Journal, 45(3).

BOOCH, G., RUMBAUGH, J. AND JACOBSON, I., 1998. The Unified 
Modeling  Language  User  Guide.  Addison-Wesley. 
ISBN-10: 0201571684.

CUTUMISU, M., ONUCZKO, C., CRAWFORD, C., MCNAUGHTON, M., 
ROY,  T.,  SCHAEFFER,  J.,  SCHUMACHER,  A.,  SIEGEL,  J., 
SZAFRON,  D.,  WAUGH,  K.,  CARBONARO,  M., DUFF,  H.,  AND 
GILLIS,  S., 2007.  ScriptEase:  A  generative/adaptive 
programming paradigm for game scripting.  In: Science 
of  Computer  Programming,  Volume 67,  Issue  1  (June  
2007),  pp.  32-58.  ISSN:0167-6423,  Elsevier  North-
Holland, Inc.  Amsterdam, The Netherlands.

CZARNECKI,  K.,  2004.  Overview  of  generative  software 
development.  In  UPP  2004,  volume  3566  of  LNCS,  
pages 326--341. Springer.

CZARNECKI,  K.  AND EISENECKER,  U.,  2000.  Generative 
Programming. Addison-Wesley, ISBN: 0201309777.

CZARNECKI, K.  AND KIM, C., 2005. Cardinality-Based Feature 
Modeling  and  Constraints:  A  Progress  Report.  In  
OOPSLA’05  International  Workshop  on  Software 
Factories (online proceedings).

FOWLER, M., 2005. Language Workbenches: The Killer-App 
for Domain Specific Languages?. Available from: http://
www.martinfowler.com/articles/languageWorkbench.htm
l [Accessed 07 July 2009].

FURTADO, A AND SANTOS, A., 2006. Applying Domain-Specific 
Modeling to Game Development with the Microsoft DSL 
Tools.  Tutorial  (in  English).  In:  3rd  Brazilian 
Symposium  on  Computer  Games  and  Digital  
Entertainment (SBGames2006).

FURTADO, A., 2006. Defining and Using Ontologies as Input 
for Game Software Factories.  In: Proceedings of the 3rd 
Brazilian Symposium on Computer  Games and Digital  
Entertainment.

GAMMA,  E.,  HELM,  R.,  JOHNSON,  R.  AND VLISSIDES,  J.,  1994. 
Design Patterns: Elements of Reusable Object-Oriented 
Software.  Addison-Wesley  Professional.  ISBN  0-201-
63361-2.

GTGE,  2009. Golden  T  Game  Engine  (GTGE). Golden 
Studios.  Available from: http://www.goldenstudios.or.id/
products/GTGE/ [Accessed 07 July 2009].

HAROLD, E., 1999. XML Bible. Wiley. ISBN-10: 0764532367

HUNICKE,  R.,  LEBLANC,  M.,  AND ZUBECK,  R.,  2004.  MDA: A 
formal approach to game design and game research.  In:  
Proceedings of the AAAI-04 Workshop on Challenges in  
Game AI, July 2004., pp. 1-5.

IWATANI, T. 1980. Pac-Man. Namco.

MORENO-GER, P., MARTÍNEZ-ORTIZ, I., SIERRA, J. AND FERNÁNDEZ-
MANJÓN,  B., 2005.  Language-Driven  Development  of 
Videogames: the <e-Game> Experience. In: Proceedings 
of  the  5th  International  Conference  on  Entertainment 
Computing (ICEC 2005), Cambridge, UK. Lecture Notes 
in Computer Science 4161, 153-164.

SARINHO,  V.  AND APOLINÁRIO,  A.,  2008.  A  Feature  Model 
Proposal for Computer Games Design.  In: Proceedings 
of the VII Brazilian Symposium on Computer Games and 
Digital Entertainment, Belo Horizonte, p. 54-63.

TRUJILLO,  S.,  AZANZA,  M.  AND DIAZ,  O.,  2007.  Generative 
Metaprogramming.  In: 6th International Conference on 
Generative  Programming  and  Component  Engineering 
(GPCE’07), October 1–3, Salzburg, Austria. 

W3C,  2009. World Wide Web Consortium.  Available from: 
http://www.w3.org/ [Accessed 07 July 2009].

XSL,  2009. The  Extensible  Stylesheet  Language  Family. 
Available  from:  http://www.w3.org/Style/XSL/ 
[Accessed 07 July 2009].

ZHANG,  W.  AND JARZABEK,  S.,  2005.  Reuse  without 
Compromising  Performance:  Experience  from  RPG 
Software  Product  Line  for  Mobile  Devices.   In: 
Proceedings of the 9th Int. Software Product Line Conf.,  
SPLC'05, Sept. 2005, Rennes, France, pp. 57-69.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

18



A Model for Interactive TV Storytelling 
Marcelo M. Camanho1 Angelo E. M. Ciarlini1  

Antonio L. Furtado2       Cesar T. Pozzer3        Bruno Feijó2 
 

1UNIRIO, Dep. Informática Aplicada, Brazil  
2PUC-Rio, Dep. Informática, Brazil      3UFSM, Dep. Eletrônica e Computação, Brazil 

 
 Abstract 
Interactive storytelling systems are applications to 
generate and dramatize interactive stories. The main 
challenge to such systems is the generation of coherent 
stories while users are watching and interfering with 
what is happening. In an interactive TV environment, 
quality and diversity of narratives are crucially 
important objectives. In addition, new requirements 
related to comfort in user interaction, responsiveness 
and scalability have to be taken into account. In this 
paper, we present a model for interactive TV 
storytelling to cope with these requirements. The 
model was implemented in a new version of the 
planning-based interactive storytelling system Logtell. 
 
Keywords: Interactive TV, Interactive Storytelling, 
Modeling and Simulation, Planning, Multimedia 
 
Authors’ contact: 
marcelo.camanho@uniriotec.br 
angelo.ciarlini@uniriotec.br 
furtado@inf.puc-rio.br 
pozzer@inf.ufsm.br 
bfeijo@inf.puc-rio.br 

1. Introduction 
Interactive storytelling systems are computer 
applications for telling stories that can be modified to 
some extent by their users. While in conventional 
games stories are essentially used to create challenges 
for the player, in interactive storytelling applications 
stories are expected to surprise and entertain. As a 
consequence, the quality of the stories in terms of 
coherence and dramatic content must be regarded as a 
prime concern. Different approaches for interactive 
storytelling have been proposed and implemented with 
different goals. Some of them are more directed to 
games and others to filmmaking and literature. One of 
the main challenges for the implementation of such 
systems continues to be the conciliation of a good level 
of interactivity with the coherence of the stories.  
 In recent years, traditional Analog TV is gradually 
being replaced by Digital TV, with higher sound and 
image quality, and with new interaction possibilities. 
Besides that, we have seen an ample dissemination of 
new communication media, such as broadband Internet 
and 3G mobile phones, which offer competing 
alternatives for the exhibition of shows that would, in 
principle, seem naturally fit for TV.   
 The phrase interactive TV (iTV) has been used 
both in the context of open Digital TV and other media 
featuring some kind of interactivity for TV programs. 
As TV is one of the classical media for telling stories, 

new possibilities of interaction open great 
opportunities for the creation of interesting 
applications. In this context, however, certain 
requirements tend to become even more essential, such 
as quality, coherence and diversity of stories, as well as 
the need for comfortable and simple interaction 
methods. It is necessary to find hybrid means for 
presenting stories on iTV, mixing features of games 
and conventional TV. On the one hand, the appeal of 
TV programs for regular spectators has to be 
maintained, but, on the other hand, various ways of 
interacting with the medium should be provided. And 
one must consider not only the case in which users 
want to actively intervene in a story, but also the case 
in which they just want to watch TV without being 
called to interact by any means. 
 When spectators watch a film on TV, their 
satisfaction is directly related to the quality of the 
story, and coherence is a crucial issue for a good story. 
Interaction methods should not violate coherence and, 
at the same time, should facilitate variation, so that the 
user does not get tired of watching the same story over 
and over again, as happens in a number of games. 
 TV is a medium which demands high 
responsiveness, that is, the satisfaction of users’ 
expectations without compromising the quality of 
service. When watching TV one is not pleased, for 
instance, with an excess of interruptions during the 
presentation of a movie. In addition, programs are 
watched by a huge amount of people. Hence, adequate 
responsiveness requirements related to presentation 
flow and scalability have to be taken into account when 
we think about interactive TV storytelling.   
 In this paper, we describe a new model for 
controlling interactive TV storytelling processes which 
has been incorporated in the implementation of Logtell 
2, a second version of the logic-based interactive 
storytelling system Logtell  [Ciarlini et al 2005]. In the 
model, plot generation, user interaction and 
dramatization occur in parallel, and we strive to 
conciliate the requirements of different levels of 
interaction with coherence and diversity of stories, 
aiming at the high responsiveness demanded by the 
medium. 
 The paper is organized as follows. Section 2 gives a 
brief state of the art survey of storytelling systems and 
iTV. Section 3 presents the proposed model, and 
section 4 describes its implementation. Section 5 
contains concluding remarks. 

2. TV and Interactive Storytelling 
Since the 1990’s we have seen more and more a 
process of digital convergence, which has brought 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

19



together many improvements and innovations in 
different areas, such as the infra-structure of 
communication networks, compression software and 
hardware,  data transmission and broadcasting services 
[Furht 1996]. As a result of this convergence, new 
possibilities for TV broadcasting emerged such as 
open, satellite and cable Digital TV, Mobile TV, Web 
TV and IPTV.  These developments have enhanced the 
experience of watching conventional TV.  The first 
obvious benefit has been the improvement in image 
and sound quality, but changes have also been seen in 
the content that is available to spectators [Driscoll 
2000]. Interactivity has scarcely begun to be explored, 
but it is already clear that it can radically change the 
way people watch TV. In particular, in developing 
countries, where TV has a much wider penetration than 
the Internet [CPqD 2005], interaction in an open digital 
TV environment has practical relevance, because it can 
significantly increase the access of a large part of the 
population to Education, Culture and Entertainment  
[Sancrini 2005]. 
 Many opportunities for interactivity with users are 
possible, making it a topic of growing interest for 
research and development, both in industry and 
academia. There is, however, no consensus on how 
interaction with TV should happen. Possibilities of 
interaction depend on the computer power of the set-
top boxes that receive and process the signal. Some 
specialists support the idea of lazy interactivity, with 
simple set-top boxes, by means of which the user has 
more limited options, but minimal effort and attention 
are demanded. Some others favor more powerful set-
top boxes, but with easy and intuitive interfaces, so 
that users are able to watch TV and interact in a more 
active way. The specific features of set-top boxes that 
will prevail are not yet clear. It is quite possible 
however that there is space for both approaches. 
Anyway, it can be expected that the degree of 
interactivity will increase as interactive TV 
environments evolve. Interactive TV, or simply iTV, is 
a generic term that covers an ample set of possibilities 
of increasing sophistication, including: 
• a weaker interactivity that corresponds to watching 

shows at a desired schedule, skipping ads, 
executing VCR commands, obtaining more 
information about what is shown (e.g. movies and 
news), etc.; 

• directed and individualized advertising, together 
with sales and marketing; 

• direct interaction with the presented content, 
changing, for instance, the ending of a story that is 
being watched; and 

• the continuous interaction of a group of users with 
a shared content. 

 The first two items correspond to most of the new 
applications we have seen in recent years. The last two 
items are closely related to storytelling and tend to 
demand more research, but they have a strong appeal 
for the development of new applications that focus on 
Entertainment and/or Education. TV is a classical 
medium for telling stories in various formats, such as 

films, soap operas, cartoons and documentaries. Many 
possibilities for adapting these kinds of TV programs 
can be tried in order to incorporate interactivity in 
effective ways. Some experiments have already been 
made, but finding engaging formats that allow users to 
fully explore interactivity remains an open issue. 
 Some experiences of interactivity with TV content 
have already been carried out, even in conventional 
analog TV, although in an improvised and rigid way.  
An example is provided by reality shows, where 
spectators can make decisions by means of votes 
submitted by phone or via Internet. 
 Interaction with the content that is being presented 
is more complex than the other possibilities of 
interaction. It demands more sophisticated interaction 
methods and some kind of standardization of set-top 
boxes. Moreover, practical business concerns have to 
be addressed, because the user will have much more 
control on what is presented. 
 Projects like ShapeShifting Media [Ursu et al 2008] 
propose new forms of interactivity with TV content in 
opposition to the forms that have already been 
incorporated in interactive Digital TV environments. 
The project works with narrative models and some 
interesting applications have been developed as part of 
the project, such as My News & Sports My Way, in 
which the content of a continuous presentation of news 
is recombined in accordance with users’ interest, and  
the romantic comedy Accidental Lovers, in which users 
can watch at real-time and influence a couple’s 
relationship. 
 Despite the existence of some projects that tackle 
the interaction with TV content up to a certain extent, 
the dynamic creation of interactive stories at real-time 
for TV is still an open research issue. The mass 
production of coherent, diversified and engaging 
stories that can be influenced by users, in a 
comfortable way, is not a trivial task. 
 Interactive Storytelling has evolved as an 
interdisciplinary research area, involving Games, 
Filmmaking, Literature, Psychology, Cognitive 
Science and various fields of Computer Science, such 
as Computer Graphics and Artificial Intelligence. 
 Some approaches for Interactive Storytelling are 
classified as character-based [Cavazza 2002] because 
they focus on modeling characters as autonomous 
agents. In these approaches, stories emerge from the 
interaction between the characters. When this approach 
is adopted, it is easier to implement direct interaction 
with the characters, but harder to keep the story 
coherent. Other approaches are classified as plot-based 
[Grasbon and Brown 2001; Paiva et al 2001; Spierling 
et al 2002], since they focus on plot structure. They are 
directly influenced by the work of the Russian literary 
theoretician Vladimir Propp in his seminal work on the 
fairy-tales genre [Propp 1968]. In  plot-based 
approaches, keeping the coherence of stories is easier, 
but opportunities of interaction are rather limited. Few 
attempts exist to combine both approach. Façade 
[Mateas and Stern 2003], for instance, keeps the 
characters' autonomy most of the time, but their goals 
and their behavior can be changed by a drama manager 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

20



to move the plot forward. Genres that stress realism 
typically demand more coherence; on the other hand, 
in various genres, a free direct interaction between 
characters might result in a more engaging experience. 
In general, the right approach depends on the goal of 
each application and the genre of stories to be 
generated and told. 
 To create stories, a promising strategy is the use of 
automated planning algorithms, as in [Riedl and Young 
2004], allowing to explore alternative ways whereby a 
logically connected chain of events could achieve the 
goals of the characters and/or those of the story. 
Diversity and coherence can be thus conciliated, but 
interaction must be constrained so as to limit the 
stories to those acceptable to the algorithms. In 
[Cavazza 2002], hierarchical task network (HTN) 
planning is used to control the way characters achieve 
their goals in accordance with user intervention. HTN 
planning tends to be efficient but less general, 
requiring the previous construction of a task hierarchy 
and methods to perform each task. In Façade, a 
reactive planning language is used to emulate the 
personality of believable agents. In Mimesis [Young 
2001], a planner combining HTN and partial-order 
planning is used to create a storyline beforehand. 
Techniques of mediation are used at run time to 
guarantee coherence, including the adoption of 
alternative story lines or interventions for forcing the 
failure of users' actions. 
 Logtell is an interactive storytelling system based 
on logical modeling and planning-based simulation, 
which also tries to conciliate plot-based and character-
based features. The main difference of the approach 
adopted in Logtell from other planning-based 
interactive storytelling systems is the goal of the 
system. Instead of working on alternatives for an entire 
story line, Logtell seeks to generate a maximum of 
different and coherent stories of a certain genre along 
multiple simulation stages, combined with user 
intervention. A formal model for capturing the logics 
of the story genre is specified to determine the scope of 
coherent alternatives. When plots are fully or partially 
generated, they can be dramatized via an animation of 
virtual actors in a 3D scenario. 
  Research on Interactive Storytelling may hopefully 
provide the basis for creating good models. The model 
proposed in this paper for interactive TV storytelling 
processes uses the original model of Logtell as a 
starting point, but also takes into account the 
specificities of a medium where high responsiveness is 
demanded and a majority of users may still prefer to 
assume a more passive behavior. 

3. Proposed Model  
The approach for interactive storytelling we have 
adopted assumes a third person viewpoint. We also 
assume that the conventions of the story genre can be 
logically modeled.  The basic idea is to let the user 
interact with the story as if he or she were a “deus-ex-
machina”, with the power to choose alternatives for the 
future, cause the story to backtrack to previous points 
and try to force the occurrence of events and situations. 

User interventions have however to preserve coherence 
with the logical model. Interventions that do not make 
sense are rejected, but those that are found to be 
logically compatible can be incorporated, generating 
consequences to the rest of the story. In this way, the 
approach can be seen as an extension of the experience 
of watching a film on TV.  
 Interactions can vary from a level in which the user 
just watches a story as in conventional TV to a level of 
strong interventions in which the user is enabled to 
explore the possibilities allowed by the story genre. 
Although this ability was already provided by the first 
version of Logtell, the system still remained essentially 
a tool for logically modeling and simulating a story 
world obeying the rules of a genre. Varied and 
coherent plots could be generated with user 
intervention, but dramatization occurred only after the 
generation of the plot and there was no user 
intervention during the dramatization. The model 
proposed here uses the original model of Logtell as a 
starting point but modifies it in several ways to make it 
compatible with an  iTV context. In order to do that, 
the model seeks to fulfill the following requirements: 

I. It should be possible to create diverse stories, all 
of them coherent and resulting from interactions 
with the users. 

II. Presentation flow must be continuous, that is, 
plot generation, user interaction and dramatiza-
tion should occur in parallel without delays. 

III. Comfortable and simple interaction methods at 
various levels should be provided so that differ-
ent kinds of users can enjoy the experience.  

IV. Users should be allowed both to interact with sto-
ries as single users and to share the control of 
stories with other users. 

V. The underlying architecture should be scalable, 
in view of the massive nature of the medium.  

In this section we present the basic architecture 
proposed by the model and then we discuss how the 
requirements listed above can be fulfilled by a system 
implementing this architecture. 

3.1 Architecture 
Figure 1 presents the client-server architecture pro-
posed by the model. The client-side is responsible for 
user interaction and dramatization of stories. At the 
application server side there is a pool of servers sharing 
the responsibility of creating and controlling multiple 
stories, which are presented in different clients. This 
takes care of the case wherein multiple users are simul-
taneously sharing the same story. If clients are set-top 
boxes for interactive TV, their computational resources 
are limited, making it hard to perform CPU-intensive 
tasks such as automated planning. By concentrating 
simulation tasks in application servers, it is easier to 
achieve higher scalability. In addition, it is also easier 
to exert control when a single story is shared by many 
users. 
The access of all modules to the context of the stories, 
specified in the Context Database, is always performed 
via the Context Control Module (CCM), which runs in 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

21



the server. The context contains the description of the 
genre according to which stories are to be generated, 
and also the intended initial state specifying characters 
and the environment at the beginning of the story. The 
genre is basically described by: (a) a set of 
parameterized basic operations, with pre- and post-
conditions, logically specifying the predetermined 
repertoire of events that can occur; (b) a set of goal-
inference rules, specified in a temporal modal logic 
formalism, which define situations that lead characters 
to pursue the achievement of goals; (c) a library of 
typical plans, corresponding to typical combinations of  
operations for the achievement of specific goals, which 
is organized in “part-of” and “is-a” hierarchies; (d) 
logical descriptions of initial situations for the stories, 
introducing characters and their current properties; (e) 
a nondeterminisc automaton for each operation, 
specifying alternative ways whereby the event 
associated with the operation can be dramatized; and 
(f) graphical models of 3D virtual actors. 

 

Fig. 1. Basic Architecture for iTV Storytelling 

 Plot generation is performed by the Interactive Plot 
Generator (IPG) [Ciarlini and Furtado, 2002]. IPG 
generates plots as a sequence of chapters. Each chapter 
corresponds to a cycle in which, subject to user 
interference, goals are inferred and planning is used to 
achieve the goals. IPG is controlled by the Simulation 
Controller. Multiple stages, each one corresponding to 
a chapter, usually occur in order to generate a plot. In 
case there is no user intervention, goals are inferred 
and events are planned continuously. Logical 
coherence of a requested user intervention is always 
checked before being incorporated, or else discarded if 
inconsistent. 
 The Simulation Controller is responsible for 
informing the Drama Manager, at the client side, the 
next events to be dramatized;  receiving interaction 
requests and incorporating them in the story;  selecting 
viable and hopefully interesting suggestions for users 
who are intent on performing strong interactions; 
controlling a number of instances of the Interactive 
Plot Generator, in order to obtain the next events to be 
dramatized; and controlling the time spent during 
simulation. 
 The Simulation Controller also keeps snapshots of 
the state of the simulation after the generation of each 
chapter, so that simulation can be resumed from any 
previous chapter of the story. In this way, intervention 

can be used to force a story to return to a previous 
point, from which alternative continuations can be 
tried. Snapshots are also important to allow different 
servers from a pool to deal with the same story, thus 
enhancing scalability. When the simulation of a story 
in about to be continued, the previous snapshot can be 
recovered from the database and the process can be 
resumed by any server available. 
 On the client side, the user interacts with the 
system via the User Interface, which informs the 
desired interactions to the Interface Controller placed 
at the server side. The Drama Manager requests the 
next event to be dramatized from the Simulation 
Controller, and controls actor instances for each 
character in a 3D environment running on the 
Graphical Engine. On the server side, the Interface 
Controller centralizes suggestions made by the various 
clients. When multiple users share the same story, 
interactions are selected according to the number of 
clients that requested them. When there is only one 
client, suggestions are automatically sent to the 
Simulation Controller.  
 The architecture in Figure 1 avoids the transmission 
of video on demand during the storytelling process, a 
precaution that ought to be taken in order to allow 
many simultaneous stories without compromising 
bandwidth. All data necessary for 3D dramatization on 
the client side can be transmitted before starting the 
simulation. During the process, the transmitted data is 
restricted to information about user interaction, the 
indication of events to be dramatized and 
synchronization commands. This strategy assumes 
however that there is enough computational power at 
the client side to generate a 3D animation.  In another 
scenario, with many users sharing a limited number of 
stories but having very little computational power, the 
architecture can be modified to have a Drama Manager 
for each story running on the server-side. Each Drama 
Manager would then generate video to be broadcasted 
to the users that share the corresponding story. 
 In the sequel, we discuss the main strategies to 
control interactive storytelling processes in the 
described architecture.   

3.2 Coherence and Diversity of Stories 
Coherence and diversity of narratives are key factors to 
the success of any interactive storytelling application 
for iTV. If stories do not seem plausible and coherent 
with respect to the genre, the user may lose interest for 
the experience.  If generated stories have little 
variation, their ability to entertain and surprise tends 
also to be reduced. After a few trials, users would be 
ready to discard the application.   
 Balancing coherence and diversity of stories with 
interactivity is a difficult challenge. Too much 
interactivity can easily hinder the coherence of the 
story. Too little interactivity on the other hand would 
reduce the variation in stories and the impact of the 
experience. 
 Conciliation of coherence, diversity and 
interactivity can be achieved by means of hard-coding 
various coherent alternatives. Façade, for instance, as 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

22



previously mentioned, is among the most successful 
interactive storytelling applications, allowing users to 
enjoy an interesting interactive experience for about 20 
minutes.  The structure of the system demanded 
however a huge authorial effort (with thousands of 
lines of code) to model a single dramatic situation with 
different possible outcomes. Another problem with this 
kind of solution is that authors lacking the required 
kind of programming expertise may find difficult to 
directly model situations as part of the application 
code. For the mass production of interactive 
storytelling contexts, as would be necessary for iTV, 
other solutions have to be sought. 
 The strategy that we propose is the construction of 
a logical model for the genre and the use of planning 
and inference of goals to guarantee coherence while 
exploring diversity. Plot generation starts by inferring 
goals for the various characters (and for the story as a 
whole) from the initial situation. Given this initial 
input, the system uses a planner that inserts events in 
the story-plot in order to fulfill the goals. When the 
planner detects that all goals have been either achieved 
or abandoned, the first chapter of the story is finished. 
If the user does not like the story, IPG can be asked to 
generate a different alternative for a chapter and to 
develop the story from this point on. If the user does 
not interfere in the process, chapters are continuously 
generated by inferring new goals from the situations 
generated in the previous chapter. If new goals are 
inferred, the planner is activated again to fulfill them.  
 The process thus alternates goal-inference and 
planning until the moment the user decides to stop or 
no new goal is inferred. Users can also interfere in the 
process by choosing alternatives and forcing the 
occurrence of events and situations as described in 
section 3.4. Notice that, in this process, we mix 
forward and backward reasoning. In the goal-inference 
phase, we adopt forward reasoning: past situations 
generate goals to be fulfilled in the future. In the 
planning phase, an event inserted in the plot for the 
achievement of a goal may have unsatisfied pre-
conditions, to be handled through backward reasoning. 
To establish a pre-condition, the planner can insert 
previous events with further unfulfilled pre-conditions, 
and so on. The planner used in IPG is a partial-order 
planner, adopting a least-commitment strategy to more 
easily accomplish the conciliation of different goals. 
Constraints (including the order of events) are 
established only when necessary, and all possibilities 
for solving conflicts between events in the 
establishment of pre-conditions are considered. 
 IPG provides a base for virtually creating any plot 
compatible with the rules of the genre. At each stage, 
the user can reject the alternative being currently 
presented and ask for another, or may opt for a direct 
intervention. And whenever the user intervention is 
compatible with the genre, IPG provides means for 
adapting the story so that the user's contribution can be 
incorporated. In this way, the adopted approach aims to 
provide coherence and diversity by construction. 
Authorial effort is still necessary to formally model the 
interactive storytelling context, but this is inevitable in 

the creation of any interactive or conventional story. 
The difference is that, thanks to the plan-based support 
described here, plots need not be devised beforehand 
by the author. 

3.3. Continuous Presentation Flow 
When spectators watch movies on TV, events are 
presented continuously. This is not a difficult task 
because the whole story is generated and filmed 
beforehand. In iTV this is not the case, but, if iTV 
storytelling purports to be an extension of the 
experience of watching conventional films, the 
presentation flow should likewise be continuous. 
 A premise of our model is that users should feel 
that they can change, to a significant extent, the story 
being presented according to their will. The continuous 
presentation of a story that is modified by user 
interventions is a challenge, even if dramatization is 
performed by means of 3D animations instead of real 
actors. If we want to reach the same level of coherence 
of a conventional story, plots have to be continuously 
adapted to incorporate user interventions. Checking the 
coherence of an intervention at real-time and 
computing the possible consequences of the 
intervention to the rest of the story is not trivial and 
may become excessively time-consuming. Some kind 
of synchronization between plot generation, user 
interaction and dramatization is then mandatory. 
 In order to synchronize the processes, narratives are 
divided into chapters. While a chapter is being 
presented to the user, IPG can already start generating 
the future chapters. When user interventions are 
coherent, they are incorporated in the next chapter. In 
this way, we try to keep plot generation some steps 
ahead of the dramatization, so that chapters are 
continuously generated and dramatized. The main 
problem occurs when a user intervenes in the story, 
trying to force a situation or the occurrence of an event. 
Since user interaction affects the situation of the 
chapter currently being presented, future chapters 
previously generated without taking the intervention 
into consideration would no longer be useful. The 
difficulty is that, as the next chapter has to be ready 
before the end of the dramatization of the current 
chapter, there is a risk of interruption in the 
presentation flow. The following strategy is applied, 
with two options. When the Simulation Controller 
detects that more time is needed for generating the next 
chapter, a message is sent to the Drama Manager to the 
effect that the duration of the remaining events in the 
current chapter will be extended, as detailed in [Doria 
et al 2008]. If there is no way to extend the chapter 
being presented until the next chapter is ready, the user 
intervention is discarded, as if it were inconsistent. In 
this case, the chapter that had been generated without 
incorporating the user intervention is used. 
 An alternative to reduce the number of times when 
coherent user interventions are rejected is the use of 
other instances generated by IPG, besides those 
corresponding to the current flow of the stories. Such 
instances can be used to try to anticipate the effects of 
possible user interventions, so that future chapters will 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

23



be ready when necessary. In a continuous presentation 
of the story, strong user interventions are based on 
suggestions given by the system. The Simulation 
Controller is then aware of possible user interventions, 
and IPG instances that incorporate each one of them 
can be started. 
 Due to the combinatorial complexity of automatic 
planning, the most time-consuming part of the 
simulation corresponds to planning events to reach 
inferred goals or goals imposed by the user. In the 
simple scenario used to test our model, the current 
planning algorithm adopted by IPG has been able to 
generate chapters in due time. However, in order to 
maintain responsiveness in more complex scenarios, it 
may be necessary to enhance the performance of our 
planner. The possibilities envisaged include combining 
the current planner with graph planning techniques 
[Geverini and Serina 2002], and resorting to heuristics 
and control strategies [Hoffman 2001] and/or HTN 
techniques [Nau et al 2003].  

3.4. Interaction Methods 
In an iTV storytelling application, the user should be 
able to easily interact with the story. Interaction must 
never disrupt the user’s immersion in the story, exactly 
as one expects from conventional TV. In opposition to 
what occurs in various games, the user’s ability to 
quickly react is not so critical, because the effort 
involved in interacting with a story is basically 
intellectual, rather than physical. 
 Interaction methods have also to take into 
consideration the different kinds of prospective users 
of the application.  Some users may want to essentially 
remain as spectators, willing to interact very little with 
the story. Others would be prepared to continuously 
intervene in the story, actively determining the way the 
plot unfolds. It is then necessary to provide more than 
one method, to accommodate different levels of 
intervention in the stories. 
 Our model offers the possibility of both weak and 
strong interventions in the story. By means of weak 
interventions, the user can select alternatives that are 
automatically generated by IPG. Strong interventions 
are used to try to force the occurrence of events or 
specific situations.  The window in Figure 2 shows the 
current version of our tool's interface, through which 
users interact with the story being dramatized as 
displayed in the main window. The interface has 
certainly to be improved and adapted to devices other 
than a desktop computer, but has already served to 
check the viability of our initial set of interaction 
mechanisms. 
 Chapters are continuously generated and presented 
in the main window. When a chapter is being 
presented, a new line corresponding to that chapter is 
inserted into the list box Chapters. The description in 
natural language of a selected chapter appears in a text 
box. Weak interventions occur by means of the 
commands Rewind and Another.  In order to execute 
such commands, the user has only to select a chapter 
and press the corresponding button. 
 

 
Figure 2: Window for continuous interaction. 

 The Rewind command was so named by analogy 
with the rewinding fuction of Video Cassette 
Recorders, but, in fact, it is considerably more 
powerful. By executing this command, we allow the 
user to “return” until the time the selected chapter was 
being presented. The chapter is presented again and the 
user has the opportunity of interacting with the system 
and checking alternatives for the following chapters. 
When this command is executed, the Simulation 
Controller retrieves the snapshot corresponding to the 
storytelling process at the time the chapter was 
presented and resumes the simulation from this point, 
discarding the snapshots of the next states, which will 
be generated again in accordance with the user’s 
interactions. 
 Command Another is used to ask the system to 
provide an alternative for the selected chapter. It is 
similar to command Rewind, in that it also involves a 
return until the time the selected chapter was being 
presented. In response to the command, IPG generates 
another solution for the goals that were reached. In this 
way a different combination of events can be generated 
for the chapter, whereby a completely different 
continuation of the story can be developed. 
 Commands Rewind and Another demand a 
moderate mental effort from the user and are quite 
intuitive. They are useful when users want to explore 
other alternatives for the story without having to 
assume a more active participation in the plot 
generation process. 
 In contrast, strong interventions correspond to the 
specification of events and situations that should occur 
in the next chapter. Situations are considered as goals 
to be achieved at a certain time, and events can have 
unfulfilled preconditions that might demand the 
insertion of more events. In such cases, IPG has to plan 
a chapter with additional events and constraints that 
make the user intervention consistent with the plot and 
the rules of the genre. If this is not possible, the user 
intervention is simply rejected. In a continuous 
presentation, the specification of events and situations 
from scratch might impose an excessive burden to the 
user. To make the process simpler, the model proposes 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

24



a mechanism in which viable strong interventions are 
suggested to the users, so that they can simply select 
the one that better suits their taste and press a button. 
The list box Suggestions in the interface contains 
suggestions from which the user can select at a given 
time. The list is updated whenever the presentation of a 
new chapter starts, so that only meaningful suggestions 
are presented.  
 The Simulation Controller is responsible for 
generating suggestions of strong interventions. 
Suggestions should be consistent and lead the plot 
towards different outcomes. The methods below are 
proposed by the model to obtain meaningful 
suggestions: 
• The first method corresponds to the specification 

by the author of rules for the inference of sugges-
tions. Such rules are specified in the same tempo-
ral modal logic used to describe goal-inference 
rules. The Simulation Controller evaluates all rules 
in accordance with the context of the current chap-
ter and collects suggestions that would make 
sense. Suggestions obtained in this way can be 
quite helpful to create an interesting set of options 
for the users. This method demands however an 
additional authorial effort. 

• A second method uses a library of typical plans 
organized in a hierarchy of events. Typical plans 
usually consist of certain combinations of events 
whereby the various characters pursue their goals, 
but they can also correspond to motifs, i.e. recur-
ring structures compiled in the course of critical 
studies on the genre [Polti 1945]. IPG contains a 
procedure for the recognition of plans, based on an 
algorithm specified by Kautz [Kautz 1991]. The 
procedure is able to discover that some given 
events are compatible with a motif for which we 
have a typical plan, enabling the Simulation Con-
troller to suggest the inclusion of additional events 
contained in the plan. 

• A third method corresponds to an analysis of goal-
inference rules in face of the current plot. If the 
system detects that a goal-inference rule will be 
triggered if a certain situation is verified in the 
next chapter, this situation can be selected as an 
interesting suggestion. 

 Interactive TV is still a novel environment. A 
model for iTV storytelling has then to be open enough 
to incorporate new kinds of interaction. With this in 
mind, the model considers the possibility of 
incorporating other methods for weak and strong 
interventions, such as letting users insert abstract 
events and situations in the story, which are 
automatically specialized by the simulation process; 
tune narrative tensions by means of numeric scales 
referring to levels of violence, romantic turns, etc.; and 
communicate with the system by entering phrases in (a 
restricted subset of) natural language. 
 Besides the support for real-time generation and 
dramatization of stories, it is important to support the 
authorial effort. The original version of Logtell already 
worked in a step-by-step mode, in which the partial 

plot after each chapter was presented as a graph and 
could be inspected in detail. In this mode, weak and 
strong interventions are also possible and 
dramatization for the plot generated  so far has to be 
explicitly activated by the user. The user could even 
analyze the generation of the whole plot and activate 
dramatization only at the end. The present model 
considers that the continuous interaction mode 
previously presented should coexist with the step-by-
step mode.  

3.5. Sharing Stories 
A most important iTV storytelling mode of application 
is the creation of stories that are influenced by a great 
number of users. Weak interventions, via commands 
like Rewind and Another, are not so appealing when 
multiple users are watching the same story. More 
attention should then be directed to interaction methods 
enabling strong interventions.  
 Criteria on how to deal with different interventions 
are necessary. A first possibility is to consider that, 
when users ask the system to incorporate a specific 
suggestion, they are only voting for the suggestion.  
The most voted suggestion would then be chosen to be 
incorporated. 
 The Interface Controller organizes the interaction 
with clients and interacts with the Simulation 
Controller as if there were a single user. In order to do 
that, it coordinates the simultaneous dramatization and 
the presentation of suggestions for strong interventions 
in the various clients. It also controls the time during 
which users’ choices are considered. After computing 
the most voted suggestion, the Interface Controller 
checks whether the number of votes reaches a 
minimum threshold. If this is the case, the suggestion 
is sent to the Simulation Controller. However, the 
selection of strong interventions does not have to be 
limited to considering only the most voted 
intervention. Other possible strategies are: 
• The number of votes can be weighted by the po-

tential of each option to trigger goal-inference 
rules.  In this way, options that generate more in-
teresting situations tend to be chosen. 

• Compatible interventions can be combined in the 
same chapter. In particular, different groups of us-
ers may have different options. They can, for in-
stance, be distinguished by the characters the 
group components decide to support. IPG would 
then try to combine the choices of all groups.  

 When the possibility of influencing the story by 
tuning narrative tensions is admitted, the numeric 
scales can be controlled by the average of the values 
assigned by the users.  
 The way groups are formed to share a story is also 
an issue to be resolved as part of the implementation of 
the model. A simple solution is to assume that any user 
is allowed to schedule the start of a story based on a 
specific context at a certain time. As other users notice 
one such story in a list of scheduled stories, they may 
then be tempted to join the group. Users can either 
have equal rights to intervene in the story or not; in the 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

25



latter case, different criteria can be established to 
assign their rights and privileges. Methods for the 
communication among users who share the same story 
can also be devised, so that they would be able to 
discuss their interventions. 
 Other alternative methods and criteria for multiuser 
interaction can be examined. The model proposes a 
platform to experiment with them in order to test their 
feasibility, and determine which ones are more 
engaging for the audience. 

3.6. Scalability 
Due the massive aspect of the medium, an iTV 
storytelling system has to cope with the possibility that 
a huge number of people might be using the 
application at the same time. They can use the system 
simultaneously to generate stories in different contexts; 
they can share a same context to obtain different 
stories; and they can simply share stories. As TV 
spectators are not used to experiment unexpected 
delays, the scalability of an iTV storytelling 
application is crucial.   
 In our model, plot generation consumes 
considerable computational resources in terms of CPU 
time and memory. In order to avoid the creation of a 
bottleneck, IPG and the Simulation Controller can run 
in multiple servers. Snapshots of each story can be 
temporarily stored in a database, so that any available 
server can restore a specific snapshot and generate the 
next chapter for the corresponding story. In this way, 
responsiveness can be maintained by simply increasing 
the number of servers in the pool. Additional servers 
can also be considered to avoid bottlenecks in the 
access to the database and in the communication with 
clients. 
 Regarding scalability, another important issue to be 
taken into account is that users might want to interact 
with the application via different platforms and with 
different local computational resources. In particular, if 
local resources are very limited, the execution of the 
dramatization in the server tends to be mandatory. For 
this purpose, it may be necessary to adopt a hybrid 
architecture in which some clients can dramatize their 
own stories locally, and other clients can only share 
stories dramatized and broadcasted from the server. 

4. Model Implementation 
In this section, we explain the main issues and the 
options adopted for the implementation of Logtell 2, a 
new version of Logtell that incorporates the iTV 
storytelling model described in section 3. 

4.1 Application Environment 
Logtell 2 was built utilizing a modular architecture, 
employing different technologies appropriate to its 
intended functionalities. The User Interface, the 
Interface Controller and the Simulation Controller 
modules were implemented in Java. The Drama 
Manager maintains the original 3D engine 
implemented in the first version of Logtell, coded in 
C++. The Drama Manager communicates with the 
parts of the system implemented in Java via a DLL that 

provides an interface connection with the C++ code. 
The IPG planner is implemented in a version of 
SICStus Prolog supporting Constraint Programming. 
The Simulation Controller manages plot generation by 
accessing IPG via a Java bean that uses native C++ 
calls to communicate with the SICstus Prolog 
interpreter. 
 One of the main requirements for the 
implementation of Logtell 2 was the use of a client-
server environment designed for availability and 
scalability. Since the application is mostly Java-based, 
given that both the interface and server side code is 
implemented in this language, a popular J2EE 
application server was used, namely JBoss [Marrs and 
Davis 2005]. JBoss provides a good set of facilities 
such as distributed services, security, support for 
asynchronous messages, remote proxies, database 
access, Web Services and HTTP servers, all desirable 
for a complete system for interactive TV. Regarding 
scalability in particular, JBoss makes easier the 
construction of a pool of servers to provide services to 
a great number of clients. 
 It is also important to notice that, since the JBoss 
architecture handles Web Services, different ways of 
accessing Logtell 2 can be provided. Since all services 
were codded using the Enterprise Java Beans 3.0 
standard, under the form of Stateless Session Beans, 
their conversion into Web Services becomes 
practically automatic, thus making it possible to use 
mobiles among other ways of access.  

4.2 Logtell 2’s Modules 
The effort for constructing a distributed iTV 
storytelling processor mainly involved the 
implementation of the User Interface, the Interface 
Controller and the Simulation Controller modules. 
 The services provided by the application servers in 
Logtell 2 follow the EJB standard. The Simulation 
Controller was implemented as a Stateless Session 
Bean. The logic control tasks for the creation of stories 
have been assigned to distinct submodules: generic 
services to manipulate the story are handled by 
StoryManagerService, while the generation of the 
story-plot via IPG is performed by subclasses of the 
AbstractStoryWriter: one for continuous stories 
(ContinuousStoryWriter) and one for stories generated 
in step-by-step mode (StepByStepStoryWriter) 
 The StoryManagerService centralizes the services 
of updating and retrieving stories and their respective 
chapter snapshots, using a database abstraction in the 
form of Database Abstract Objects (DAOs). Stories are 
iteratively generated. Whenever a new simulation cycle 
is requested, the service restores the previous story 
snapshot and then proceeds to write another part of the 
story. In continuous mode, the code that prompts story 
generation organizes the plot composition in chapters, 
wherein the total order of the events is established 
automatically, obeying partial-order constraints 
established by IPG. In step-by-step mode, the ordering 
is determined by the user on the graphic interface. 
 In the continuous mode, there is an instance of 
ContinuousStoryWriter for each story that is being 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

26



generated on the fly. The ContinuousStoryWriter 
works as if it were a “live screenwriter”. For that, it 
manipulates a StepByStepStoryWriter instance, 
keeping control over the story that is being generated. 
The ContinuousStoryWriter implements the strategy of 
always being ahead of what is being watched by (one 
or more) users. When, in the continuous mode, a 
chapter is requested by the client, the server side 
checks whether this is the most recently created. In this 
case, to avoid an interruption to the story flow, a 
message is sent to the corresponding 
ContinuousStoryWriter of that story, requesting the 
generation of the next chapter.  
 The Simulation Controller is also responsible for 
providing the new forms of strong intervention in 
continuous mode, which are based on suggestions of 
strong interventions. Strong interventions are only 
incorporated if IPG validates them as coherent. In 
addition, the chapter incorporating the intervention has 
to be generated before the end of the dramatization in 
all clients that are watching the same story.  
 The multi-user story generation process is very 
similar to regular continuous mode. The main 
difference is that multi-user stories do not start 
instantaneously. They are scheduled to start at a certain 
time by one user. At any time, a user can inspect the 
set of scheduled stories and join the group of users that 
will watch and interact with the story selected. At the 
scheduled starting time, the story dramatizations start 
in all clients and are synchronized from this moment 
on. For the time being, strong interactions provided by 
different clients are chosen to be incorporated only on 
the basis of the most-voted strategy.  
 The User Interface contains submodules that 
implement the interface with users in continuous mode 
and in step-by-step mode. In step-by-step mode, the 
User Interface communicates directly with the 
Simulation Controller. In continuous mode, it 
communicates with the Interface Controller. The 
Interface Controller is in charge of centralizing the 
interaction (in case of multi-user interaction), 
redirecting user interventions to the Simulation 
Controller and synchronizing the list of suggestions of 
strong interventions in the clients. 
 In the current version of Logtell 2, the Drama 
Manager and the IPG planner have received relatively 
minor modifications with respect to their original 
versions. In IPG, modifications were introduced to 
allow the Simulation Controller to save and recover 
story snapshots after the generation of each chapter. 
The evaluation of rules for inferring promising strong 
interventions was the other extension of IPG 
incorporated in this version. The Drama Manager 
remains essentially the same module of Logtell’s first 
version, but another version is presently under 
development, which uses a nondeterministic 
dramatization model to allow the system to control the 
duration of events and provide different dramatizations 
for the same event [Doria et al 2008]. In order to 
provide better quality in 3D animations, the current 3D 
engine is also being replaced by a module that controls 
characters in the UNITY 3D game engine. 

4.3 Using the Prototype 
In order to evaluate the prototype, we utilized the same 
storytelling context adopted in [Ciarlini et al 2005] 
where the first version of Logtell was described, with 
minor modifications. The context corresponds to a 
small sub-class of the popular Swords and Dragons 
genre. In this context, the events that can occur 
correspond to attacks to the opponent's home, fights 
between characters, kidnapping of a victim, liberation 
of a victim, charms, weddings, etc. Goal-inference 
rules used in this context establish relations between 
situations and goals, such as: if the villain is strong, the 
hero wants to become even stronger; if a victim is 
kidnapped, a hero will want to rescue her; etc. 
 The prototype was applied to generate stories in 
this context, using machines connected via a local 
network. When stories were generated and dramatized 
in continuous mode, without user intervention, there 
was no perceptible interruption (less than 200 ms) 
between the time a chapter is over on the client and the 
time the following chapter starts. Chapters were 
generated on the server with more than enough time 
left while the user was watching the previous chapters. 
In situations where network problems could arise, there 
might be a chance that the user's experience would be 
affected; fortunately this is not likely to happen, since 
the amount of information that is sent to the client is 
very small in the current way the system is designed.  
 Tests were also performed using the forms of 
interaction specific to the continuous mode. When 
executing the command  Rewind, the time to resume 
the story at the indicated chapter was also insignificant 
(~ 350 ms). The execution of command Another takes 
a little more time (~ 5 seconds), because it demands 
not only the recovery of a previous context, but also 
the generation of another solution for the chapter, but 
the time consumed still seemed quite acceptable. In 
general, it was verified that, under ideal conditions, the 
results were satisfactory for the continuous 
presentation flow when using weak interventions. By 
"ideal conditions" we mean a situation where the 
computational resources in the application environment 
are not overloaded. 
 When using strong interventions, there were also 
no additional delays compared to the tests where the 
user watched passively. This happens because, in 
continuous mode, interventions are incorporated only 
when the server still has time to prepare the next 
chapter. In the worst case, the intervention is ignored 
but no interruption occurs. In most occasions, the 
dramatization time of a chapter showed to be long 
enough to allow the incorporation of coherent 
interventions. 
 Regarding the diversity of the stories, it was 
possible to obtain in continuous mode most of the 
stories that a user could obtain in step-by-step mode. 
The presentation of meaningful suggestions for strong 
interventions showed to be effective to allow users to 
actively intervene in the story with minimal effort. 
 We had no difficulty to generate different stories 
simultaneously. The process of sharing stories worked 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

27



equally well in the same circumstances. Tests were 
done with clients running both on the same and on 
different machines. As far as scalability is concerned, 
more tests have still to be performed, but preliminary 
results indicate that the model can work well with a 
large number of clients. 

5. Concluding Remarks 
The model of interactive storytelling, discussed in the 
present paper, aims at the generation and dramatiza-
tion, by means of 3D animations, of interactive stories 
in iTV environments. The implementation and use of  
the Logtell 2 prototype, based on the model, served to 
confirm that the architecture and methods proposed are 
viable and able to cope with the requirements of coher-
ence and diversity of story-plots, continuous presenta-
tion flow, comfort and ease in interaction, multiple 
user participation in stories, and scalability. The proto-
type currently runs on a local network. We are now 
preparing a version for the Web, with the ultimate pur-
pose of reaching the open Brazilian Digital TV envi-
ronment. Tests on an increasingly larger scale will be 
performed at each stage of the implementation. 
 In more detail, we are working on a new version of 
the Drama Manager with better 3D animations, addi-
tional dramatization possibilities, and with the ability 
to control the duration of each event. Another short-
term objective of the project is the full implementation 
of features of the model for which a simplified solution 
was initially adopted. For instance, the coordination of 
a pool of servers will supersede the limited use of a 
single server to handle all stories. Also bulkier snap-
shots should no longer be kept in main memory, being 
transferred to database storage. More advanced meth-
ods for user interaction and evaluation of suggestions 
for strong interventions are still to be implemented. As 
extensions to the model itself, we are considering the 
use of nondeterministic planners for plot generation, 
and of frame-based schemes and methods to deal with 
the drives, attitudes and emotions of the acting charac-
ters. 

Acknowledgements 
The authors are grateful to Fundação CAPES for 
partially supporting this work. 

References 
CAVAZZA, M., CHARLES, F. AND MEAD, S. 2002. Character-

based interactive storytelling. IEEE Intel-ligent Systems, 
special issue on AI in Interactive Entertainment, 17(4):17-
24  

CIARLINI, A.E.M., POZZER, C. T., FURTADO AND A.L., FEIJO, 
B., 2005. A Logic-Based Tool for Interactive Generation 
and Dramatization of Stories. In: Proc. ACM SIGCHI 
International Conference on Advances in Computer 
Entertainment Technology, Valencia. 

CIARLINI, A. AND FURTADO, A. 2002. Understanding and 
Simulating Narratives in the Context of Information 
Systems. In Proc. ER'2002 – 21st. International 
Conference on Conceptual Modelling, Tampere, Finland, 
Oct. 2002 

CPQD. 2008. Modelo de Referência – Sistema Brasileiro de 
Televisão Digital Terrestre.  

  Vers. PD.30.12.36A.0002A/RT-08-AB. 2006.  
     <http://www.tvdi.inf.br/index.php?s=artigos>.  
DORIA, T. R., CIARLINI, A. E. M.  AND ANDREATTA, A., 2008. 

A Nondeterministic Model for Controlling the 
Dramatization of Interactive Stories. In: Proceedings of 
the ACM MM2008 - 2nd ACM Workshop on Story 
Representation, Mechanism and Context - SRMC’08. 

DRISCOLL, G. 2000. The essential guide to digital set-top 
boxes and interactive TV. Prentice Hall, Upper Saddle 
River, NJ, 1st edition, Nov. 2000. 

FURHT, B. 1996. Interactive television systems. In: Proc.1996 
ACM Symposium on Applied Computing, p. 7-11, 
Philadelphia, Pennsylvania, February 1996. ACM Press. 

GRASBON, D. AND BRAUN, N. 2001. A morphological 
approach to interactive storytelling. In: Proc. CAST01, 
Living in Mixed Realities. Special issue of 
Netzspannung.org/journal, the Magazine for Media 
Production and Intermedia Research, pp. 337-340, Sankt 
Augustin, Germany 

GEVERINI, A. AND SERINA, I. 2002. LPG: A planner based on 
local search for planning graphs. In Proceedings of the 
International Conference on AI Planning Systems (AIPS), 
pp. 968-973. 

HOFFMAN, J. 2001. FF: The Fast-Forward planning system. 
AI Magazine, v. 22, n. 3, pp. 57-62. 

KAUTZ, H. A. 1991. A Formal Theory of Plan Recognition 
and its Implementation. In: Allen, J. F. et al (eds.): 
Reasoning about Plans. Morgan Kaufmann, San Mateo 

MARRS, T.  AND DAVIS, S. 2005. JBoss at Work: A Practical 
Guide. O'Reilly Media, Inc. 

MATEAS, M. AND STERN, A. 2003. Façade: An Experiment in 
Building a Fully-Realized Interactive Drama. In: Proc. 
Game Developers Conference, p. 4-8, 2003. 

NAU, D. S., AU, T.-C., ILGHAMI, O., KUTER, U., MURDOCK, 
W., WU, D. AND YAMAN, F. 2003. SHOP2: An HTN 
planning system. Journal of Artificial Intelligence 
Research, 20:379-404. 

PAIVA, A., MACHADO, I. AND PRADA, R. 2001. Heroes, 
villains, magicians, ... Dramatis personae in a virtual story 
creation environment. In: Proc. Intelligent User Interfaces 

POLTI, G. 1945. Thirty-Six Dramatic Situations. Whitefish, 
MT: Kessinger Publishing. 

PROPP, V. 1968 Morphology of the Folktale, Laurence Scott 
(trans.), Austin: University of Texas Press. 

RIEDL, M. AND  YOUNG, R.M. 2004. An intent-driven planner 
for multi-agent story generation. In 3rd International 
Conference on Autonomous Agents and Multi Agent 
Systems, New York, 186-193 

SANCRINI, M., 2005. O Uso da Televisão Digital no Contexto 
Educativo, Educação Temática Digital, Campinas, v. 7, n. 
1, ISSN 1676-2592, pp. 31-44. 

SPIERLING, U., BRAUN, N., IURGEL, I. AND GRASBON, D. 2002. 
Setting the scene: playing digital director in interactive 
storytelling and creation. Computers & Graphics, v. 26, 
n.1, pp. 31-44, 2002. 

URSU, M.F., THOMAS, M., KEGEL, I., et al. 2008. Interactive 
TV Narratives: Opportunities, Progress, and Challenges. 
In: ACM Transactions on Multimedia Computing, 
Communications, and Applications, v. 4, n. 4. ISSN:1551-
6857 

YOUNG, R. 2001. An Overview of the Mimesis Architecture: 
Integrating Intelligent Narrative Control into an Existing 
Gaming Environment. The Working Notes of the AAAI 
Spring Symp. on Artificial Intelligence and Interactive 
Entertainment 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

28



A Neighborhood Grid Data Structure for Massive 3D Crowd Simulation on
GPU

Mark Joselli
UFF, Medialab

Erick Baptista Passos
UFF, Medialab

Marcelo Zamith
UFF, Medialab

Esteban Walter Gonzalez Clua
UFF, Medialab

Anselmo Montenegro
UFF, Medialab

Bruno Feijó
PUC-RIO, ICAD Games

Figure 1: A screenshot of the simulation.

Abstract

Simulation and visualization of emergent crowd in real-time is a
computationally intensive task. This intensity mostly comes from
the O(n2) complexity of the traversal algorithm, necessary for the
proximity queries of all pair of entities in order to compute the rel-
evant mutual interactions. Previous works reduced this complexity
by considerably factors, using adequate data structures for spatial
subdivision and parallel computing on modern graphic hardware,
achieving interactive frame rates in real-time simulations. How-
ever, the performance of existent proposals are heavily affected by
the maximum density of the spatial subdivision cells, which is usu-
ally high, yet leading to algorithms that are not optimal. In this
paper we extend previous neighborhood data structure, which is
called neighborhood grid, and a simulation architecture that pro-
vides for extremely low parallel complexity. Also, we implement a
representative flocking boids case-study from which we run bench-
marks with simulation and rendering of up to 1 million boids at
interactive frame-rates. We remark that this work can achive a min-
imum speeup of 2.94 when compared to traditional spatial subdivi-
sion methods with a similar visual experience and with lesser use
of memory.

Keywords:: GPGPU, CUDA, Crowd Simulation, Cellular Au-
tomata, Flocking Boids

Author’s Contact:

{mjoselli,epassos,mzamith,esteban,anselmo}@ic.uff.br
bruno@inf.puc-rio.br

1 Introduction

In a typical natural environment it is common to find a huge number
of animals, plants and small dynamic particles. This is also the case
in other densely populated systems, such as sport arenas, communi-
ties of ants, bees and other insects, or even streams of blood cells in
our circulatory system. Computer simulations of these systems usu-

ally present a very limited number of independent entities, mostly
with very predictable behavior. There are several approaches that
aim to include more realistic behavioral models for crowd simula-
tion such as [Reynolds 1987; Musse and Thalmann 1997; Shao and
Terzopoulos 2005; Pelechano et al. 2007; Treuille et al. 2006].

Algorithms for massive crowd simulation are driven by the need
to avoid the O(n2 ) complexity of the proximity queries between
entities. Several approaches have been proposed to cope with this
issue [Reynolds 2000; Chiara et al. 2004; Courty and Musse 2005]
but none of them has reached an ideal level of scalability. As far as
we know, no work until the present date has proposed a real time
simulation of more than just a few thousands of complex entities
interacting with each other. Applications for these computation-
ally demanding algorithms range over crowd behavior prediction
in emergency scenarios, street traffic simulation and enrichment of
computer game worlds.

Non-graphics algorithms traditionally executed on the CPU, such as
behavioral artificial intelligence algorithms, are sometimes suitable
for parallel execution, which makes them appropriate to be imple-
mented on the GPU [Joselli et al. 2008]. However, the first applica-
tions of GPUs performing general purpose computation (GPGPU)
had to rely on the adaptation of graphics rendering APIs to differ-
ent concepts, leading to a difficult learning curve and sometimes not
very efficient data structures for the proposed solutions. The CUDA
[NVidia 2009], CAL [AMD 2007] and OpenCL [Group 2009] tech-
nologies aim to provide a new abstraction layer on top of graphics
hardware to facilitate its usage for non-graphics processing. Crowd
simulation that explores this programming model on the GPU is a
promising line of research.

Most of the research on crowd simulation tries to avoid the high
complexity of proximity queries by applying some form of spatial
subdivision to the environment and classifying entities among the
cells based on their position. To accelerate data fetching in a par-
allel hardware (such as GPUs) the entities list must be sorted in
such a way that all entities on the same cells are grouped together.
This approach helps lowering the number of proximity queries but
is very sensible to the maximum number of entities that can fit in
a single cell. In this paper instead of using a similar approach,

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

29



we propose a novel simulation architecture that maintains entities
into another kind of proximity based data structure, which we call
“neighborhood grid”. In this data structure, each cell now fits only
one entity and does not directly represent a discrete spatial subdi-
vision. The “neighborhood grid” is an approximate representation
of the system of neighborhoods of the environment that maps the
N-dimensional environment to a discrete map (lattice) with N di-
mensions, so that entities that are close in a neighborhood sense,
appear close to each other in the map. Another approach is to think
of it as a multi-dimensional compression of the environment that
still keeps the original position information of all entities.

The entities are simulated and sorted as Cellular Automata with Ex-
tended Moore Neighborhood [Sarkar 2000] over the neighborhood
grid, which is an ideal case for the memory model of GPUs. We
argue and show that this approximate simulation technique brings
a new bound to crowd simulation performance, maintainning the
believability for entertainment contexts. The high performance and
scalability are achieved by a very low parallel complexity of the
model.

To keep the “neighborhood grid” aligned this work shows a previ-
ous implementation of a partial sorting mechanism, a partial odd-
even sort, and a new sorting scheme, a bitonic sort, that can keep a
much better visual experience with similar performance.

To illustrate and evaluate the “neighborhood grid”, we implement
a traditional emergent behavior model of flocking boids [Reynolds
1987] that has a minimum speedup of 2.94 over the tradition spa-
tial hashing methods [Reynolds 2000; Reynolds 1999], with similar
visual experience. The architecture can be further extended to any
other simulation model that rely on dynamic autonomous entities
and neighborhood information.

Summaryzing, this work is an extension of the work [Passos et al.
2008], with the following enhancements, which are the main con-
tributions of these paper:

• Extension of the data structure for 3D environments;

• Presentation of a new sorting scheme that keeps a better visual
experience with similar performance;

• Comparison of performance between our method and the
tradition spatial hashing method [Reynolds 2000; Reynolds
1999] which was also implemented by this work.

The paper is organized as follows: Section 2 discusses related work
on crowd simulation. Sections 3 explain the proposed “neighbor-
hood grid”, the data structures, the simulation steps in 3D and a
simplification of the “neighborhood grid” for 2D systems. Section
4 describes the particular behavior model used to validate the pro-
posed architecture. Section 5 brings the experimental results and
analysis of the implemented simulation model. Finally, section 6
concludes the paper with a discussion on future work.

2 Related Work

The first known agent-based simulation for groups of interacting
animals is the work proposed by Craig Reynolds [Reynolds 1987],
in which he presented a distributed behavioral model to perform this
task. His model is similar to a particle system where each individual
is independently simulated and acts accordantly to its observation
of the environment, including physical rules such as gravity, and in-
fluences by the other individuals perceived in the surroundings. The
main drawback of the proposed approach is the O(n2) complexity
of the traversal algorithm needed to perform the proximity tests for
each pair of individuals. This was such an issue at the time that
the simulation had to be run as an offline batch process, even for a
limited number of individuals. In order to cope with this limitation,
the author suggested the use of spatial hashing. This work also in-
troduced the term boid (abbreviation for birdoid) that has been used
to designate generic simulated flocking creatures ever since.

Musse and Thalmman [Musse and Thalmann 1997] propose a
more complex modeling of human motion based on internal goal-
oriented parameters and the group interactions that emerge from
the simulation, taking into account sociological aspects of human

relations. Others include psychological effects [Pelechano et al.
2007], social forces [Cordeiro et al. 2005] or even knowledge and
learning aspects [Funge et al. 1999]. Shao and Terzopoulos [Shao
and Terzopoulos 2005] extend the latter including path planning
and visibility for pedestrians. It is important to mention that these
proposals are mainly focused on the correctness aspects of behavior
modeling. The data structures and algorithms used by these works
are not suitable for real-time simulation of very large crowds, which
is one of the goals of this work.

Reynolds further enhanced his behavioral model to include more
complex rules and to achieve the desired interactive performance
by the use of spatial hashing [Reynolds 2000; Reynolds 1999].
This implementation could simulate up to 280 boids at 60 fps in
a Playstation 2 hardware. By using the spatial hash to classify the
boids into a grid, the proximity query algorithm could be performed
against a reduced number of pairs. For each boid, only those inside
the same grid cell and at adjacent ones, depending on its position,
were considered. This strategy leads to a sequential complexity that
is closer to O(n). This complexity, however, is highly dependent
on the maximum density of each grid cell, which can be very high
if the simulated environment is large and dense. We remark that the
complexity of our neighborhood grid is not affected by the size of
the environment or the distribution of the boids over it.

Quinn et al. [Quinn et al. 2003] used distributed multiprocessors
to simulate evacuation scenarios up to 10,000 individuals at 45 fps
on a cluster connected by a gigabit switch. More recently, a simi-
lar spatial hashing data-structure was used by Reynolds [Reynolds
2006] to render up to 15,000 boids in Playstation 3 hardware at in-
teractive framerates, but with a reduced simulation frame rate of
around 10 fps. Due to the distributed memory of both architec-
tures, it is necessary to copy compact versions of the buckets/cells
of boids to the individual parallel processors before the simulation
step could run, copying them back at the end of it to perform the
rendering, which leads to a potential performance bottleneck for
larger sets of boids. This issue is evidenced in [Steed and Abou-
Haidar 2003], where the authors span the crowd simulation over
several network servers and conclude that moving individuals be-
tween servers is an expensive operation.

The use of the parallel power of GPUs in massive crowd simulation
is very promising but brings another issue, related to its intrinsic de-
pendency on data-locality to achieve high performance in this kind
of hardware. For agent-based simulations that rely on spatial hash-
ing, it is desired that the individuals should be sorted through the
data-structure based on their cell indexes. The work by Chiara et.
al. [Chiara et al. 2004] makes use of the CPU to perform this sort-
ing. To avoid the performance penalty, this sorting task is triggered
only when a boid departs from its group, which is detected by the
use of a scattering matrix. This system could simulate 1,600 boids
at 60 fps including the rendering of animated 2D models. Also the
work by Silva et al. [Silva et al. 2008] implement a similar work,
but it focus on the optimization of the algorithm by doing occlusion
based on the vision of the boids. The FastCrowd system [Courty
and Musse 2005] was also implemented with a mix of CPU and
GPU computation to simulate and render a crowd of 10,000 indi-
viduals at 20 fps as simple 2D discs. Using this simple rendering
primitive, the GPU was also capable of simultaneously computing
the flow of gases on an evacuation scenario. A more recent work
in the GPGPU field by Shopf et. al. [Shopf et al. 2008] presents
an implementation that runs entirely on the GPU and can simulate
and render 3,000 high detailed animated models or 65,000 simple
primitives at real-time frame rates. Our implementation also runs
entirely on the GPU and makes use of the fact that groups tend to
move as blocks and uses a parallel sorting algorithm on the GPU to
achieve even higher performance, as explained in the next sections.

The simulation architecture and data-structures proposed by
[Treuille et al. 2006] depart from the agent-based models presented
so far. These authors uses a 2D dynamic field to represent both
the crowd density and the obstacles of the environment. The in-
dividuals navigate through and according to this continuum field.
Treuille et al argue that locally controlled agents, while provid-
ing for complex emergent behavior, are not an appropriate model
for goal-driven individuals, such as human pedestrians. The im-

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

30



plemented system could simulate up to 10,000 humans at 5 fps
(without graphics) even with the inclusion of a dynamic environ-
ment such as traffic lights. The continuum field is an interesting
approach but limits the environment to a predetermined size.

In the work [Passos et al. 2008], which this work extends, is imple-
mented a crowd simulation system on the GPU where each boid is
modeled as a cellular automaton [Sarkar 2000] in a 2D data struc-
ture. This work could achieve the simulation and renderization of
up to 1 millions boids at interactive frame rates. The present paper
extends that previous work to 3D environments keeping the same
performance. As far as we are aware, no other work in the litera-
ture presents such a high performance.

This cellular automata model matches perfectly with the ideal local-
ity for data fetching on graphics hardware but imposes that boids in-
formation have to be kept reasonably sorted over this data structure
during simulation. Our proposal, such as most of the above work,
is based on distributed agents to yield emergent behaviour, but the
novel data-structures are suitable for unlimited environment size
and better scalability over both the number of entities and neigh-
bourhood reach.

3 Simulation Architecture

Individual entities in crowd behavior simulations depend on ob-
servations of their surrounding neighbors to decide which actions
to take. The straightforward implementation of the neighborhood
finding algorithm has a complexity of O(n2), for n entities, since
it performs at least one proximity query for each entity pair in
the crowd. Individuals are autonomous and can move during each
frame, which leads to a very computationally intesive task.

Techniques of spatial subdivision have been used to group and sort
these entities in order to accelerate the neighborhood finding task.
Current implementations are usually based on variations of rela-
tively coarse subdivisions techniques, such as a grid over the con-
sidered environment. After each update, all entities have their grid
cell index calculated based on their latest locations. For GPU based
solutions, some kind of sorting based on this index has to be per-
formed in order to benefit from the read-ahead and caching mech-
anisms of such hardware. This way, neighbor entities in geometric
space are stored near each other over the data structure. However,
static subdivisions have some limitations when simulating large ge-
ometric spaces, where the size of each grid cell may fit a large num-
ber of entities. This issue limits the neighborhood finding problem
by a hidden O(n2 ) complexity factor in the worst case scenario.

In this work we propose another approach for the neighborhood
finding problem. This approach uses a grid data structure, which
we call “neighborhood grid” that is used to store information about
all the entities. In this “neighborhood grid”, each entity is mapped
in a individual cell (1:1 mapping) accordingly to its spatial location,
so that entities that are close in a neighborhood sense, appear close
to each other in the grid. In order to keep the “neighborhood grid”
mapped accordingly to the spatial location, a sorting mechanism is
needed. To fulfill that need, we present two sorting mechanism, one
partial odd-even sort and one bitonic sort.

This simulation architecture can be described as a continuous loop
with the following steps:

• Sorting pass (re-organizes the neighborhood grid);

• Simulation pass (updates position and orientation);

• Rendering pass (draws visible entities).

The following subsections describe the architecture. In the next
subsection the “neighborhood grid” is explained. The role of sort-
ing and the types of simulation algorithms suitable to the proposed
architecture are also explained in following subsections. Also in
the last part of this section we show a simplified version of the data
structures for 2D simulations.

3.1 3D Proximity Data Structure: The Neighbor-
hood Grid

The proposed architecture was developed with CUDA technology
[NVidia 2009], and, in order to keep the processing entirely at the
GPU, all information about entities is mapped as textures for the
display-list and vertex shader rendering. The minimum information
required for each entity are: position (a vector, representing the
position of the entity), speed (a vector for storing the orientation
and velocity in a single structure) and type (an integer that can be
used to differentiate entity classes).

This information is stored in 3D arrays (grid), where each position
holds the entire data for an individual entity. In this case two grids
are required, one for the 3D position and another for the orientation
with the entity type variable kept at a fourth value in one of these
grids. The grid that contains the position vector for the entities is
then used as a sorting structure. In this data structure, each cell fits
only one entity. Figure 2 illustrates how a randomly distributed set
of entities would be arranged in the “neighborhood grid” when cor-
rectly sorted. The smaller circles represent entities that are further
away from the viewpoint.

Figure 2: An example of a distribution of entities in the neighbor-
hood grid. Entities that are further away from the viewpoint are
illustrated by small circles.

In this work we use a form of neighborhood gathering that is known
as Extended Moore Neighborhood [Sarkar 2000] in the Cellular
Automata theory. Figure 3 illustrates this structure with a 2D matrix
holding arbitrary information for 36 individual entities. To reduce
the cost of proximity queries, each entity will only gather infor-
mation about the entities surrounding its cell, based on a constant
radius. In the example of Figure 3, this radius is 2, so the entity
represented at cell (2,2) (in gray) would have access to the 24 high-
lighted surrounding cells/entities (in green) only.

Boid

Extended Moore Neighborhood
Radius = 2

Figure 3: Example of the Structure of the Extended Moore Neigh-
borhood with 36 entities and radius = 2.

Our work extends this matrix example to a 3D grid maintaining the
same form of information gathering, only adding the extra dimen-
sion. Figure 4 illustrates our neighborhood grid with a neighbor-
hood radius of 1.

This kind of spatial data structure and extremely regular informa-
tion gathering enables a good prediction of the performance, since
the number of proximity queries will always be constant over the
simulation. This happens because instead of making these proxim-
ity queries over all entities inside a coarse grid bucket/cell (variable
quantity), such as in traditional implementations, each entity would
query only a fixed number of surrounding individual neighbors.
However, this matrix has to be sorted continually in such a way that

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

31



Figure 4: Example of the neighborhood grid with radius = 1.

those entities which are neighbors in geometric space are stored in
individual cells that are close to each other. This guarantees that
each entity should gather information about its closest neighbors.
Depending on the simulation (and the sorting step), some misalign-
ment may occur over the data structure, causing that some of the
neighbor entities are missed by the gathering step. However, the
larger the Moore radius is, less likely it is to happen such issue,
which we could observe during the experiments.

3.2 Sorting Pass

The position information of each entity is used to perform a lexi-
cographical sort based on the three dimensions of this vector. The
goal is to store in the closer-bottom-leftmost cell of the grid the
entity with the smaller values for Z, Y and X, and in the far-top-
rightmost cell the entity with highest values of Z, Y and X respec-
tively. Using these three values to sort the matrix, the farthest lines
will be filled with the entities with the higher values of Z while the
top lines will be filled with the entities with higher values of Y and
the right columns will store those with higher values for X and so
on. This kind of sorting provides for the approximate neighborhood
query that is optimal in terms of data locality.

When performing a sorting over an one dimension array of float
point values, the goal is that given an array A, the following rule
must apply at the end:

• ∀A[i] ∈ A, i > 0⇒ A[i-1] ≤ A[i].

Extending this rule to a grid G where each cell has three float point
values X, Y and Z:

1. ∀G[i][j][k] ∈ G, k > 0, G[i][j][k].Z ≤ G[i][j][k-1].Z;

2. ∀G[i][j][k] ∈ G, k > 0, G[i][j][k − 1].Z = G[i][j][k].Z ⇒
G[i][j][k].X ≤ G[i][j][k-1].X;

3. ∀G[i][j][k] ∈ G, k > 0, G[i][j][k − 1].Z =
G[i][j][k].Z AND G[i][j][k].X ≤ G[i][j][k − 1].X ⇒
G[i][j][k].Y ≤ G[i][j][k-1].Y;

4. ∀G[i][j][k] ∈ G, j > 0, G[i][j][k].Y ≤ G[i][j-1][k].Y;;

5. ∀G[i][j][k] ∈ G, j > 0, G[i][j − 1][k].Y = G[i][j][k].Y ⇒
G[i][j][k].Z ≤ G[i][j-1][k].Z;;

6. ∀G[i][j][k] ∈ G, j > 0, G[i][j − 1][k].Y =
G[i][j][k].Y AND G[i][j − 1][k].Z ≤ G[i][j][k].Z ⇒
G[i][j][k].X ≤ G[i][j][k-1].X;

7. ∀G[i][j][k] ∈ G, i > 0, G[i][j][k].X ≤ G[i-1][j][k].X;

8. ∀G[i][j][k] ∈ G, i > 0, G[i− 1][j][k].X = G[i][j][k].X ⇒
G[i][j][k].Y ≤ G[i-1][j][k].Y;

9. ∀G[i][j][k] ∈ G, i > 0, G[i − 1][j][k].X =
G[i][j][k].X AND G[i][j][k].Y ≤ G[i − 1][j][k].Y ⇒
G[i][j][k].Z ≤ G[i-1][j][k].Z;

The architecture is independent of the sorting algorithm used, as
long as the rules above are always, eventually or even partially
achieved during simulation, depending on the desired neighbor-
hood precision. In this work we show a partial odd-even sort, which
makes a partial sort in each dimension and a bitonic sort [Batcher
1968], which make a full sort in each dimension.

3.2.1 Partial Odd-Even Sorting

Here we present an inherently parallel (but not optimal) partial sort
strategy: an odd-even transposition sort, with only one odd-even
pass per update. The odd-even transposition sort is similar to the
bubble sort algorithm and it is possible to complete a partial pass,
traversing the whole data structure, in O(n) sequential time or O(1)
parallel complexity when running on n CUDA threads (if available
on the GPU). Because there are two steps, one for odd and other for
even elements (for each axis), this algorithm is suitable for parallel
execution.

This sorting pass must be spread into six steps, one for odd and
one for even elements for each axis. The first step runs the sorting
between each entity position vector of the even columns against
its immediate neighbor in the subsequent odd column. If the rules
described by Eq.1, Eq. 2 or Eq.3 are violated, the entities switch
cells in the grids. The other six sorting steps perform the same
operation for the odd column of the Z and the similar steps over the
Y and X axis.

From tests we have seen that with this partial sort more than 10%
of entities are in the wrong place on the “neighborhood grid” when
comparing with a full sort on the entire grid. So this sorting mech-
anism only seems viable on simulation that does not need a lot of
precision, or that the entities does not change position very often.
Otherwise the use of the bitonic sort is advised, which is present
next.

3.2.2 Bitonic Sorting

The bitonic sort [Batcher 1968] is simple parallel sorting algorithm
that is very efficient when sorting small number of elements [Blel-
loch et al. 1998], which is our case since our sort strategy is divided
by dimensions. Our implementation is an optimized and adapted
version based on a demo from nVidia [nVidia 2008]. This sort is
divided in 3 passes, one for each dimension (X,Y and Z).

The complexity of this algorithm is O(nlog(n)2) being n the num-
ber of elements to sort in sequential time. This comparisons are di-
vided in n CUDA threads making the algorithm in this parallel im-
plementation with a complexity of O(log(n)2), if there is n stream
processors on the GPU.

This sorting does not make a full sort on the “neighborhood grid”
only a full sort on each dimension (X,Y and Z) of the grid. So, for
example, if a change in one entity position on the Y pass, another
pass for the X would be needed in order to keep the “neighborhood
grid” with an full sort. But from tests we have seen that this mis-
aligned is very small, less than 1% of the entities changes place in
one step of the simulation, and in the next step this error will be
fixed, and the use of a full sort on the “neighborhood grid” would
impose some lost in performance without visible gain in the simu-
lation.

3.3 Simulation Pass

The simulation pass can perform any kind of emergent crowd be-
havior for entities that are constrained to the knowledge of data
in their surrounds, such as flocking boids, swarms or pedestrian
groups. This pass must be implemented as a CUDA kernel func-
tion that receives as arguments at least the position and orientation
of each entity (double buffered as input and output) and the time
elapsed since the last step. This kernel function is then executed
in parallel with one CUDA thread for each entity. This function
uses the data from the previous step for the respective entity and its
neighbors and calculates new values for its entity only, which must
be written to the same cell in the output grid.

In Section 4, an example of a flocking boids simulation pass is de-
scribed. The implementation of such simulation in our architecture
is evaluated in Section 5. The following subsection is dedicated to
explain the 2D version of the presented data structures.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

32



3.4 Simulation Architecture with 2D Proximity:
The Neighborhood Matrix

The 2D proximity is a simplification of the 3D proximity with only
the X and Y (or Z) dimension. In this case, the proximity data
structure used is a “neighborhood matrix” instead of the 3D “neigh-
borhood grid”, but with similar extended Moore neighborhood as
showed in figure 3. The sorting pass is a simplified one with just
the X and Y passes.

We remark that the term 2D mentioned refers only to the spatial
nature of the data structure, which is still suitable for a simple 3D
simulation where the entities do not traverse the third dimension too
much such as a pedestrian crowd. For more complex simulations
where entities move freely over the third axis, such as swarm of
bees, we recommend using the 3D version of the proximity data
structure.

4 Case-Study: Flocking Boids

For the purpose of validating the proposed technique, we choose
to implement a well known distributed simulation algorithm called
flocking boids [Reynolds 1987]. This is a good algorithm to use
because of its good visual results, proximity to real world behavior
observation of animals and understandability. The implementation
of the flocking boids model using our “neighborhood grid” enables
real time simulation with up to one million animals of several types,
with a corresponding visual feedback as shown in the experiments
described the next section.

Our model simulates a crowd of animals interacting with each other
and avoiding random obstacles around the continuous 3D space.
This simulation can be used to represent from small bird flocks to
huge and complex terrestrial animal groups. Boids from the same
type (representing species) try to form groups and avoid staying
close to the other types. The number of simulated entities/boids
and types is limited only by technology but, as demonstrated in the
next section, our method scales very well due to the data structures
used. In this section we focus on the extension of the concepts
of cellular automata in the simulation step, in order to represent
emergent animal behavior.

To achieve a believable simulation we try to mimic what is observ-
able in nature: many animal behaviors resemble that of cellular au-
tomata, where a combination of internal and external factors (from
neighbor cells) defines which actions are taken and how they are
done. With this approach, internal state is represented by position,
speed (also orientation) and the boid type, and external information
reffers to visible neighbors, depending on where the boid is looking
at (orientation), and their relative distances.

Our simulation algorithm computes these influences for each boid:
flocking (grouping, repulsion, and direction following); leader fol-
lowing; and repulsion from other types of boids (that can be used
also for obstacle avoidance). Additionally, there are constant multi-
plier factors which dictate how each influence type may get blended
with another. In order to enable a richer simulation, these factors are
stored independently for each type of boid in separate arrays. More
information about the behavior used in this work refer to [Passos
et al. 2008].

5 Performance and Analysis

In this work, we implemented and tested the flocking boids case-
study using the “neighborhood grid” and also evaluated the render-
ing of all boids. The rendering consists of a simple display list that
is repeated for each entity/boid using the position and orientation
information gathered from a texture that is bound from the output
VBO of the CUDA simulation in a vertex shader as can be seen on
Figure 5.

All tests in this work were performed on an Intel Core 2 Quad
2.4GHz CPU with 3GB of RAM and equipped with an NVidia 8800
GTS GPU (that has 96 stream processors) and the operating system
is Windows Vista. Each instance of the test ran for 300 seconds.
The average time to compute a frame (and subsequent frames per

Figure 5: Simulation with 32K boids.

second) was recorded for each experiment. To assure the results
are consistent, each test was repeated 10 times and the standard de-
viation of the average times confirmed to be within 3%. All tests
results includes the simulation calculation and also the renderiza-
tion to the screen.

To evaluate the scalability of the architecture, we varied the number
of entities/boids being simulated (from 1 thousand to 1 million) and
the Moore neighborhood radius (from 1 to 4). At preliminary tests,
we observed that the number of different boid types had no observ-
able influence on the performance, so a fixed number of 4 types
was used for all experiments. In order to fully evaluate the speedup
of this architecture for crowd simulation over the traditional spa-
tial hashing method based on [Reynolds 2000; Reynolds 1999], we
have implemented the spatial hasing scheme in GPU with the use
of CUDA. This implementation has the same flocking behavior as
the one implemented in our architecure.

Table 1 shows the results of the simulation in frames per second,
for all experiments in 3D with the partial odd-even sort compared
with the traditional spatial hashing. We can notice that the sim-
ulation runs at interactive frame-rates even with 1 million boids.
With the use of the partial odd-even sort, we see the best visual
performance with radius 4, but we can still see some strange behav-
ior some times, i.e, collision and behaviors that should not happen.
With this radius we have a minimum speedup of 1.86 when com-
pared with the traditional spatial hash method.

Table 2 shows the results of the simulation in frames per second,
for all experiments in 3D with the bitonic sort compared with the
traditional spatial hashing. With the use of the bitonic sort, we see
the best visual performance with radius 2. With this radius we have
a minimum speedup of 2.94 when compared with the traditional
spatial hash method.

From this results we can see that the bitonic sort is faster than the
partial odd-even sort when there are less than 32,768 entities. This
happens mainly because the bitonic sort does 1 pass for each di-
mension while the partial odd-even sort does 2 passes for each di-
mension. Also using the best radius for visual experience (radius 2
for the bitonic sort and radius 4 for the partial odd-even sort), we
can see that the bitonic sort have minimum speedup of 1.16 over the
partial odd-even sort. We suggest that for the best visual and per-
formance crowd simulation, to use the presented architecture with
bitonic sort and the radius 2.

Table 3 shows how much memory for the presented architecture,
which is the same for both sorting mechanisms and different neigh-
borhood radius, and for the spatial hash. From this results we can
see that this architecture spends much less memory since it does not
needs a lot of memory to keep the data structure having consuming
memory in a linear form, while the spatial hash does needs at least
2 MB for keeping the data structure.

Figure 6 shows how the time are spent in % with each step of the
simulation (with the data structure, the behavior and the memory
copy) during the simulation with 32,769 boids for the bitonic sort
(with radius 2), odd-even sort (with radius 4) and spatial hash. This
shows that the spatial hash uses 35 % of its time processing the its
data structure while the bitonic sort spends 25% and the odd-even

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

33



Table 1: Numerical results of the architecture running with a partial odd-even sort compared with the spatial hash.

Partial Odd-Even Sort
# Spatial Hash Radius=1 Radius=2 Radius=3 Radius=4

Boids Fps FPS Speedup FPS Speedup FPS Speedup FPS Speedup
1,024 370 860 2.35 710 1.92 695 1.87 688 1.86

32,768 72 222 3.08 200 2.78 185 2.57 166 2.30
131,072 18 68 3.78 63 3.50 57 3.17 51 2.83
524,288 4.00 19 4.75 17 4.25 15 3.75 12 3.00

1,048,576 0.50 9.72 19.55 8.60 17.20 7.41 14.84 6.25 12.50

Table 2: Numerical results of the architecture running with a bitonic sort compared with the spatial Hash.

Bitonic Sort
# Spatial Hash Radius=1 Radius=2 Radius=3 Radius=4

Boids Fps FPS Speedup FPS Speedup FPS Speedup FPS Speedup
1,024 370 1,155 3.12 1,118 3.02 1,109 3.00 1,099 2.97
32,768 72 212 2.94 197 2.74 178 2.47 164 2.28

131,072 18 62 4.50 58 3.22 53 2.94 48 2.67
524,288 4.00 18 4.50 16 4.00 14 3.50 12 3.00

1,048,576 0.50 8.45 16.90 7.49 14.98 6.64 13.28 6.20 12.40

Table 3: Use of the memory when using the Spatial Hash and this
architecture.

# Use of Memory
Boids Spatial Hash Neighborhood Grid
1,024 2.1 MB 5.6 KB

32,768 2.3MB 180 KB
131,072 3 MB 721 KB
524,288 5.5 MB 2.9 MB

1,048,576 9 MB 5.8 MB

only 14%.

Figure 6: Comparison of the % of use between the Bitonic Sort,
Odd-even partial sort and Spatial Hash.

Figure 7 shows comparison between the spatial hashing and the two
sorting schemes, showing how the time to compute and render each
frame grows with the number of boids using the the same radius 2
for the bitonic sort and radius 4 for the partial odd-even sort. These
plot uses a logarithmic scale in both axis (due to the growth on the
number of boids in the experiments) which shows that there is a
linear (and not quadratic) relation between the number of boids and
the computing cost, for our architecture.

Also we have tested the architecture with the simplified data struc-
ture for 2D simulations (the “neighborhood matrix”). The results
show gains from 10 to 20 % in speedup when compared with the
3D simulation. The reason for this performance difference is not
related to the simulation itself, but to the fact that in 3D the num-
ber of candidate neighbors is higher, leading to more memory reads

for each boid. For instance, with a radius of 1 each boid agent in
2D reads its 8 immediate neighbors, while in 3D this number (with
the same radius) grows to 26. The architecture is also implemented
in the CPU so it can be used in computers that does not have GPU
with CUDA. In this case it can only simulate and render up to 8,000
boids in real time.

6 Conclusion

In this paper we have shown an extension of a novel technique for
simulating emergent behavior of dynamic entities in a densely pop-
ulated environment. We have extended all of our data structure to
higher dimension (3D) in order to deal with 3D scenes. We also
have implemented and compared two sorting techniques to be used
with the architecture, one partial odd-even sort and one bitonic sort.
We have seen, from visual experience and numerical test, that for
simulating flocking boids the partial odd-even sort is not the best
approach when precision is needed, since it keeps a high error in
the “neighborhood matrix” of more than 10 % on the grid and this
error can be perceved visualy in the simulation by the boids’ be-
havior and collisions. With the best radius for visual experience,
radius 2 for the bitonic sort and radius 4 for the partial odd-even
sort, we have a speedup of 1.16 with the use of the bitonic sort over
the partial odd-even sort.

This architecture is capable of interactively simulating and render-
ing up to 1 million of individual flocking boids in real time, while
the traditional spatial hashing methods expends 2 seconds for exe-
cuting each frame. And with the use of our architecture with bitonic
sort and a radius 2, we experience a similar visual simulation as
with the spatial hashing method with expressive speedup. The au-
thors of this work suggest using this configuration, the presented
architecture with bitonic sort and the radius 2, to achieve best vi-
sual and performance crowd simulation.

The data structures developed for 3D and 2D approximate neigh-
borhood queries lead to very low parallel complexity and are suit-
able for several different simulation algorithms, as long as they can
be modeled as cellular automata with Extended Moore Neighbor-
hood.

As future work we plan to extend this architecture to enable the
representation of more complex geometric obstacles such as build-
ings, terrains or mazes. These augmented data structures and more
complex algorithms are being designed in order to achieve more
realistic simulations, and consequently providing for a even more
believable virtual environment. This project is being developed as
a crowd simulation framework where programmers can plug in their
chosen sorting and simulation strategies.

While our performance evaluations do not render a complex geome-
try for each entity, we argue that the performance penalty for adding

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

34



 2

 10
 20
 50

 100
 200
 300

 2000

1K 32K 131K 524K 1M

Ti
m

e 
pe

r F
ra

m
e 

(m
s)

Number of Bodies

Average frame simulation time

Spatial Hash
Partial Odd-Even Sort

Bitonic Sort

Figure 7: Comparison of the evolution between the spatial hash and the bitonic and partial odd-even sort.

such rendering at the end of the simulation can be easily predicted.
To do so, we suggest to add the provided computational cost of
the sorting and simulation passes (time spent in mili-seconds, with
variable numbers of entities and neighborhood radius) to that of a
VBO + vertex shader transforming and pixel shader lighting of sev-
eral copies of the same display list, with more complex geometries,
which can be found in published literature.

References

AMD, 2007. Amd stream computing. Avali-
ble at: http://ati.amd.com/technology/
streamcomputing/firestream-sdk-whitepaper
.pdf. Acessed in 20/02/2009.

BATCHER, K. E. 1968. Sorting networks and their applications. In
AFIPS ’68 (Spring): Proceedings of the April 30–May 2, 1968,
spring joint computer conference, ACM, New York, NY, USA,
AFIPS, 307–314.

BLELLOCH, G. E., PLAXTON, C. G., LEISERSON, C. E., SMITH,
S. J., MAGGS, B. M., AND ZAGHA, M., 1998. An experimental
analysis of parallel sorting algorithms.

CHIARA, R. D., ERRA, U., SCARANO, V., AND TATAFIORE, M.
2004. Massive simulation using gpu of a distributed behavioral
model of a flock with obstacle avoidance. In Vision, Modeling,
and Visualization (VMV), VMV, 233–240.

CORDEIRO, O. C., BRAUN, A., SILVEIRA, C. B., AND MUSSE,
S. R. 2005. Concurrency on social forces simulation model.
In Proceedings of the First International Workshop on Crowd
Simulation (V-CROWDS), V-CROWDS.

COURTY, N., AND MUSSE, S. R. 2005. Simulation of large crowds
in emergency situations including gaseous phenomena. In CGI
’05: Proceedings of the Computer Graphics International 2005,
IEEE Computer Society, Washington, DC, USA, CGI, 206–212.

FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cognitive
modeling: Knowledge, reasoning and planning for intelligent
characters. In Siggraph 1999, Computer Graphics Proceedings,
Addison Wesley Longman, Los Angeles, A. Rockwood, Ed.,
Siggraph, 29–38.

GROUP, K., 2009. Opencl - the open standard for paral-
lel programming of heterogeneous systems. Avalible at:
http://www.khronos.org/opencl/.

JOSELLI, M., ZAMITH, M., VALENTE, L., CLUA, E. W. G.,
MONTENEGRO, A., CONCI, A., AND FEIJÓ, PAGLIOSA, P.

2008. An adaptative game loop architecture with automatic dis-
tribution of tasks between cpu and gpu. Proceedings of the VII
Brazilian Symposium on Computer Games and Digital Enter-
tainment, 115–120.

MUSSE, S. R., AND THALMANN, D. 1997. A model of human
crowd behavior: Group inter-relationship and collision detection
analysis. In Workshop Computer Animation and Simulation of
Eurographics, Eurographics, 39–52.

NVIDIA, 2008. Bitonic sort demo. Avalible at:
http://www.nvidia.com/content/cudazone/
cuda sdk/Data-Parallel Algorithms.html#
bitonic.

NVIDIA, 2009. Cuda technology. http://www.nvidia.com/cuda.
Acessed in 20/02/2009.

PASSOS, E., JOSELLI, M., ZAMITH, M., ROCHA, J., MONTENE-
GRO, A., CLUA, E., CONCI, A., AND FEIJÓ, B. 2008. Su-
permassive crowd simulation on gpu based on emergent behav-
ior. In Proceedings of the VII Brazilian Symposium on Computer
Games and Digital Entertainment, SBC, 81–86.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2007.
Controlling individual agents in high-density crowd simula-
tion. In SCA 07: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
SCA, 99–108.

QUINN, M. J., METOYER, R. A., AND HUNTER-ZAWORSKI, K.
2003. Parallel implementation of the social forces model. In
Proceedings of the Second International Conference in Pedes-
trian and Evacuation Dynamics, PED, 63–74.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. In SIGGRAPH ’87: Proceedings of the 14th
annual conference on Computer graphics and interactive tech-
niques, ACM, New York, NY, USA, SIGGRAPH, 25–34.

REYNOLDS, C. 1999. Steering behaviors for autonomous charac-
ters. In Game Developers Conference 1999, GDC.

REYNOLDS, C. 2000. Interaction with groups of autonomous char-
acters. In Game Developers Conference 2000, GDC.

REYNOLDS, C. 2006. Big fast crowds on ps3. In Sandbox
’06: Proceedings of the 2006 ACM SIGGRAPH symposium on
Videogames, ACM, New York, NY, USA, Sandbox, 113–121.

SARKAR, P. 2000. A brief history of cellular automata. ACM
Comput. Surv. 32, 1, 80–107.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

35



SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous
pedestrians. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM, New York, NY, USA, SCA, 19–28.

SHOPF, J., BARCZAK, J., OAT, C., AND TATARCHUK, N. 2008.
March of the froblins: simulation and rendering massive crowds
of intelligent and detailed creatures on gpu. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 classes, ACM, New York, NY, USA,
SIGGRAPH, 52–101.

SILVA, A. R., LAGES, W. S., AND CHAIMOWICZ, L. 2008. Im-
proving boids algorithm in gpu using estimated self occlusion. In
Proceedings of SBGames’08 - VII Brazilian Symposium on Com-
puter Games and Digital Entertainment, Sociedade Brasileira de
Computação, SBC, SBC, 41–46.

STEED, A., AND ABOU-HAIDAR, R. 2003. Partitioning crowded
virtual environments. In VRST ’03: Proceedings of the ACM
symposium on Virtual reality software and technology, ACM,
New York, NY, USA, VRST, 7–14.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Continuum
crowds. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,
ACM, New York, NY, USA, SIGGRAPH, 1160–1168.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

36



A Novel Algorithm to Verify the Solution of Geometric Puzzle Games 
 

Manoel Siqueira Júnior       Rafael Alves       Esteban Clua       Erick Passos 
Clayton da Silva       Anselmo Montenegro       Júlio Cesar Oliveira* 

 
UFF, Media Lab, Brazil  *UFRJ Co., Brazil 

 

 
Figure 1: Example of a Tangram game, showing the algorithm verification of the player´s progress with a thermometer. 

 
Abstract 
 

In this paper, we present a novel algorithm to solve 
the problem of correctly verifying the solution for 
geometric puzzles. When compared with others, this 
approach covers a satisfactory amount of cases. The 
method comprises the use of sixteen possible relations 
between polygon edges, which are classified to 
eliminate those that are not necessarily part of the final 
figure. This method provides for a precise verification 
of an arranged set of polygons that must form the same 
image as the desired solution, without the need of extra 
meta-data. Only the vertexes themselves (also the edge 
concavity and center position, when circumference arcs 
are present) are used the algorithm. 
 
Keywords: geometric puzzles, polygon contour, 
Tangram 
 
Authors’ contact: 
manoeljr88@gmail.com 
rafamachadoalves@yahoo.com.br 
{creis,anselmo,epassos,esteban}@ic.uff.br 
juliooceano@gmail.com 
 
1. Introduction 
 

Many games are related to puzzles and geometric 
piece arrangements. For this kind of games, it is 
necessary that algorithms validate the correctness of 
the arrangement and also give a feedback to the player, 
telling how close he is from the correct solution. Figure 
1 shows the player’s progress in a geometric jigsaw 
puzzle by the algorithm proposed in this work. All 
geometric jigsaw puzzles presented in this paper are 
based on the games proposed in Kaleff et al. [2002]. 

  
The algorithm that will be discussed in this paper is 

an alternative approach to the problem of identification 
if a determinate geometric jigsaw puzzle assembly 
represents the intended figure. This work is an 
extension of the algorithm presented by Scarlatos 
[1999], which is not suitable for jigsaw puzzle that 
have more than one possibility for a correct assembly. 

This work is also an extension of a preliminary work 
made by Siqueira et al. [2008]. 

 
The proposed algorithm use a different approach 

than that presented by Scarlatos [1999], in order to 
verify different arrangements of parts that lead to the 
same figure, considering just the outline formed by the 
pieces together and not how they are arranged within 
the contour. The presented approach also analyses that 
the final assembly has no holes. 

 
When compared with pixel by pixel approaches, the 

proposed algorithm has the advantage of being easier 
to get the partial solution and to solve the problem with 
parts that have any rotations. 

 
It is important to note that the pieces of the 

geometric jigsaw puzzle and any assembly composed 
with them can be represented by a polygon, as well as 
the solution figure (which indicates the solution to be 
achieved in the game). For this work, the possible 
outline of the polygons can be defined by edges 
composed of circular arcs and/or straight segments. If a 
puzzle is composed of figures that are not polygons, a 
bounding polygon will be required for algorithm usage. 
 

The remainder of this paper is organized as follows: 
section 2 presents some works related to the design and 
implementation of methods for the verification of 
relations between edges on polygonal figures. Section 
3 carries out an analysis of the problems to be handled, 
while section 4 explains the proposed algorithm.  
Nevertheless, section 5 talks about some special cases 
where the algorithm does not correctly detect the 
contour of the assembly made by the player. Finally, 
the conclusion and future work associated with the 
proposal are presented in section 6. 
 
2. Related Work 
 

In this section, we attempt to compare the proposed 
technique with other implementations of mathematical 
jigsaw puzzle, specifically in relation to recognition of 
the solution, and works about generic methods for the 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

37



recognition of figures through the classification of 
relations between edges. 

  
There are few games of geometric jigsaw puzzle 

that make the recognition of solution, in other words 
the games indicate to the player if he succeeded or not 
in completing the assembly. Most implementations 
found, for example, shown by Jacob [2002], Martins 
[2002] and Lankin [2001], only allow a passive visual 
comparison by the player. 

 
The Tangram (geometric jigsaw puzzle) presented 

by Ztor [2005] makes the recognition of a solution, but 
this approach does not allow assembly with rotating 
alternatives. Moreover, the previews work does not 
make the partial recognition of a solution, an important 
feature for showing the player how far or close he is 
from the final solution. The solution presented in this 
paper allows both arbitrary rotation and the estimation 
of partial solution, besides allowing the use of pieces 
with edges composed of circumference arcs. 

 
In Flashkit [1999], it is possible to find a great 

repository of source code, tutorials and other materials 
for developing games in Flash, including many 
examples of Tangrans, as those available in Lankin 
[2001], Jacob [2002], Martins [2002], Kunovi [2001] 
and Texas [2000]. However, none of these examples 
presents algorithms for verification of solution, serving 
only as a reference for implementation of the basic 
mechanics. 

 
In Scarlatos [1999], it is shown a method to 

recognize a figure formed by several polygons 
juxtaposed through exact relations formed by their 
edges. This solution, however, supports only edges 
composed of straight segments and only recognize 
individually each possible solution. A figure that can 
be formed by more than one combination of parts may 
have multiple representations, making it impossible to 
use for puzzles that may have thousands of possible 
solutions even for simple instances. Although not 
satisfactory, the work referenced served as the basis for 
the method developed.  

 
A situation in which different arrangements of 

pieces form the same figure is illustrated in Figure 2. In 
this example, the square figure formed by the union of 
polygons 2 and 3 may be attached to the polygon 1 in 
different rotations. While the method referenced by 
Scarlatos [1999] generates two different 
representations, the mechanism that is proposed in this 
paper recognizes both figures as equals, and therefore 
is more appropriate to the problem of verification of 
solutions of geometric jigsaw puzzle. 

 
Figure 2: Two different arrangements that represent the same 

figure. 
 

The authors did not found any other works that, at 
least using polygons with edges composed of straight 
segments, provide a general method for the recognition 
of solution of geometric jigsaw puzzle from the 
comparison with the figure solution.  
 
3. Problem Considerations 
 

For the arrangement of the pieces during the game 
to be verified, relations between the edges of different 
polygons, proposed in the work of Scarlatos (1999), 
are considered to assist in identifying the contours of 
the current figure mounted by the player. Besides the 
basic relations between edges, adjustments are made so 
that the final result of this assembly is adequately 
compared with the figure solution. 
 

Both the representation of the solution and the 
assembly made by the player are composed of circular 
lists of edges, which describe appropriately the final 
design of each. It is important to note that the polygons 
formed during the game may contain holes and it does 
not interfere in the analysis of the solution proposed by 
the player. 

 
For a correct usage of the algorithm it is necessary that: 

 
• There is no overlap between the pieces of the 

geometric jigsaw puzzle, since the elimination 
of edges can not happen in some cases it was 
necessary 

• Each of the pieces and the solution figure has 
to be designed either in a clockwise or anti-
clockwise direction; in other words, all must 
be designed in the same direction at the 
definition of its vertices constituents. Thus, 
comparison of the assembly by the player 
with the correct solution is made with the 
same sense of  drawing 

• It must be kept in memory the coordinates of 
the vertices that form the polygons, and if the 
representation of edges is composed of 
circumference arcs, it is also necessary the 
center of the circumference arc and its 
concavity (concave or convex). Such as it is 
illustrated on Figure 3, the vertices A, B, C 
and D; the center and the concavity of 
circumference arc BC and DA should be 
stored in memory 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

38



 
Figure 3: Example of a polygon with edges composed 

of straight segments and circumference arcs. 
. 

• The solution polygon can not have holes, 
since it is not taken into consideration by the 
algorithm the position in the figure that the 
hole is located. The presence of holes will 
only be checked by the player itself. A 
solution polygon with a hole is shown in 
Figure 4 

 

 
Figure 4: The solution can not contain holes, such as it is 

represented by the white rectangle. 
 

• The game must be composed only of closed 
polygons without holes, and formed only by 
borders consisting of straight segments and 
circumference arcs, not supporting other types 
of curves  

 
Despite these restrictions, infinity of forms of pieces is 
permitted so that the proposed algorithm properly 
analyzes the solution set by the player during the 
assembly of geometric jigsaw puzzle. 
 
4. Heuristic for Verification 
 

This heuristic for the verification of the solution of 
a geometric jigsaw puzzle uses the relations described 
in Scarlatos [1999]. Thus, it is added the verification of 
edges composed of circumference arcs, besides 
interpreting relations separately, removing the edges 
that are not part of the contour of the result obtained by 
the relations, so that only the edges of the contour 
remain. The edges of the contours are then rearranged 
so that the figure is represented in a unique way. 
 
4.1 Relations 
 

Only the relations between edges of different 
polygons will be considered. What characterizes each 
relation between a pair of edges is the verification of 
the vertices of each edge, checking if it belongs or not 
to the other analyzed edge. 

Initially, it is supposed that only edges composed of 
straight segments are analyzed and that one of the 
edges is formed by the points a1 and a2 and the other by 
b1 and b2. For each of the four corners, if it belongs to 
the other edge, it will be assigned value 1, otherwise, 
value 0. Concatenated values of a1, a2, b1 and b2, in that 
order, has the representation of the relationship 
between two edges expressed in a binary system, 
converted into a decimal system. 
 

Table 1 (attached at end of paper) shows the 
possible relations between edges, where the polygons 
were drawn in a clockwise direction. The arrows of 
one vertex to another indicate the direction of the edge 
they represent. The relations are presented in decimal 
form and are located just below the figure to which 
they belong. 

 
To deal with edges composed of arcs, in addition to 

the vertices, it is also necessary the center of the 
circumference and its concavity (concave or convex) 
information. Therefore, different data structures are 
generated to be associated with two types of edges 
(straight segments and circumference arcs). Thus, 
relations are established for identifying the type of 
edge that each one has. 

 
There are three groups of relations: those that split 

an edge, those that are null and those that totally or 
partially eliminate the edges. When it includes edges 
which are circumference arcs in the verification of 
relations, the interpretation obtained can be more 
comprehensive. Therefore, to simplify the algorithm, 
the relations are considered void, in cases where there 
are not explained in subsections 4.1.1, 4.1.2 and 4.1.3, 
without even checking the number of the result. 

 
It is important to note that a relation may belong to 

different groups, since as it comes from the comparison 
between two edges. This can lead to an individually 
and differently treatment. For instance, the relation that 
has the number 12 in Table 1 has one of the edges 
eliminated completely and the other splitted. 

 
In all cases presented in subsections 4.1.1, 4.1.2 

and 4.1.3, the pair of edges can only be analyzed as 
follows: 

 
• Both edges are straight segments 
• Both edges are circumference arcs with equals 

radius and global center coordinate but with 
different concavities 

 
Table 2 (attached at end of article) shows the 

possible relations between edges represented by 
circumference arcs in the described case immediately 
above, in which the polygons were drawn clockwise. 
The arrows from one vertex to another indicate the 
direction of the edge they represent and the point "c" 
indicates the center of both edges. The relations are 
presented in decimal form and are located just below 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

39



the figure to which they relate. As can be noted, not all 
relations are possible. 
 
4.1.1 Split Relation  
 

This type of relations occurs either when only one 
vertex is tangential to the edge examined or when two 
vertices that belong to one edge are contained in 
another edge but not touching in the extreme points of 
this. These cases are illustrated in Table 1: the relation 
1 for the first case and the relation 12 for the second 
case. Table 2 illustrates the second case using the 
relation 12. 

 
Based on the points a1, a2, b1 and b2, below a 

description of the relations in that group can be: 
 
• Relation 1 (a1 = 0; a2 = 0; b1 = 0; b2 = 1): edge 

formed by the points a1 and a2 is subdivided to 
point b2 

• Relation 2 (a1 = 0; a2 = 0; b1 = 1; b2 = 0): edge  
formed by the points a1 and a2 is subdivided to 
point b1 

• Relation 3 (a1 = 0; a2 = 0; b1 = 1; b2 = 1): 
subdivides the edge formed by the points a1 
and a2 in two: one whose extreme points are a1 
and b2 and the other, b1 and a2, in this order, 
since that way the direction of edges is 
preserved 

• Relation 4 (a1 = 0; a2 = 1; b1 = 0; b2 = 0): edge  
formed by the points b1 e b2 is subdivided in 
point a2 

• Relation 8 (a1 = 1; a2 = 0; b1 = 0; b2 = 0): 
formed by the points b1 e b2 is subdivided in 
point a1 

• Relation 12 (a1 = 1; a2 = 1; b1 = 0; b2 = 0): 
subdivides the edge formed by the points b1 
and b2 in two: one whose extreme points are 
b1 e a2 and the other, a1 e b2, in this order, 
because that way the direction of edges is 
preserved 

 
4.1.2 Null Relation  
 

This type of relation occurs in the verified edge’s 
vertex either when the vertex do not touch the other, or 
the intersection between these two edges result only in 
a vertex in common. Both cases are illustrated in Table 
1. For example, the relation 0 for the first case and the 
relation 6 for the second case. Table 2 uses the relation 
0 to illustrate the first case.  
 

Similarly to the previous subsection, below there is 
a description of the relations contained in that group: 

 
• Relation 0 (a1 = 0; a2 = 0; b1 = 0; b2 = 0):  as 

they are disjoint edges, there is nothing to do 
• Relation 5 (a1 = 0; a2 = 1; b1 = 0; b2 = 1): as 

only the points a2 and b2 touch each other, 
there is no need to change the two edges, so 
there is nothing to do 

• Relation 6 (a1 = 0; a2 = 1; b1 = 1; b2 = 0): as 
only the points a2 and b1 touch each other, no 
need to change the two edges, so there is 
nothing to do 

• Relation 9 (a1 = 1; a2 = 0; b1 = 0; b2 = 1): as 
only the points a1 and b2 touch each other, no 
need to change the two edges, so there is 
nothing to do 

• Relation 10 (a1 = 1; a2 = 0; b1 = 1; b2 = 0): as 
only the points a1 and b1 touch each other, no 
need to change the two edges, so there is 
nothing to do  

• Relation 15 (a1 = 1; a2 = 1; b1 = 1; b2 = 1): If 
the vertex a1 has the same global coordinate as 
b1, a2 has the same global coordinate as b2 and 
both edges are circumference arcs with same 
radius and global coordinate center (Figure 5), 
there is nothing to do 

 

 
Figure 5: Case where relation 15 is null 

 
4.1.3 Elimination relation 
 
This type of relation occurs when the two vertexes of 
one edge touches the examined edge or when one of 
the vertices of each edge touches another, but these 
points do not have the same global coordinate. Both 
cases are also illustrated in Table 1 and Table 2. 
Relation 3 and 5 are examples for the first and second 
case, respectively. 
 
 

Similarly to the previous two subsections, 
following there is description of the relations contained 
in that group: 

 
• Relation 3 (a1 = 0; a2 = 0; b1 = 1; b2 = 1): 

eliminates the edge b1b2 
• Relation 5 (a1 = 0; a2 = 1; b1 = 0; b2 = 1): if a2 

and b2 have different coordinates, it is 
eliminated the parts that touch the two edges 
connected  

• Relation 7 (a1 = 0; a2 = 1; b1 = 1; b2 = 1): it is 
eliminated the edge b1b2 and the part of the 
edge a1a2 that has intersection with the edge 
b1b2 

• Relation 10 (a1 = 1; a2 = 0; b1 = 1; b2 = 0): if 
a1 e b1 have different coordinate, it is 
eliminated the parts that touch the two 
connected edges  

• Relation 11 (a1 = 1; a2 = 0; b1 = 1; b2 = 1): it is 
eliminated the edge b1b2 and the part of the 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

40



edge a1a2 that has intersection with the edge 
b1b2; 

• Relation 12 (a1 = 1; a2 = 1; b1 = 0; b2 = 0): it is 
eliminated the edge a1a2 

• Relation 13 (a1 = 1; a2 = 1; b1 = 0; b2 = 1): it is 
eliminated the edge a1a2 and the part of the 
edge b1b2 that has intersection with the edge 
a1a2; 

• Relation 14 (a1 = 1; a2 = 1; b1 = 1; b2 = 0): it is 
eliminated the edge a1a2 and the part of the 
edge b1b2 that has intersection with the edge 
a1a2; 

• Relation 15 (a1 = 1; a2 = 1; b1 = 1; b2 = 1): it is 
eliminated the two edges if they are straight 
segments. If both edges are circumference 
arcs with same radius and global coordinate 
center, but have different concavities they will 
only be partial or total removed if one of the 
following conditions are met: 
o The vertex a1 has the same global 

coordinate b2 and b1has the same 
global coordinate a2 (Table 2, relation 
15). In this case, there is a complete 
elimination of the edges; 

o The vertex a1 has the same global 
coordinate b1 and b2 has the same 
global coordinate a2 (Figure 6). In this 
case, there is an elimination of the 
edges parts which is between the 
vertexes b2 and a2; 
 

 
Figure 6: Relation 15 with elimination of the edges which are 

among the vertexes b2 and a2. 
 

o The vertex a1 has not the same global 
coordinate b1 and b2 has the same 
global coordinate a2 (Figure 7). In this 
case, there is elimination of the edges 
parts which is between the vertexes b1 
and a1;  
 

 
Figure 7: Relation 15 with elimination of the edges which are 

among the vertexes b1 and a1. 
 
 

o All vertexes have different global 
coordinates (Figure 8). In this case, 
there is elimination of the edges parts 
which are between the vertexes b1 and 
a1 and between b2 and a2. 
 

 
Figure 8: Relation 15 with elimination of the edges which are 

among the vertexes b1 and a1 and between b2 and a2. 
 

4.2 Adjusting Relation Outcomes 
 
Firstly, it’s important to know that there is a data 
structure that represents the list of final figures and 
each figure is represented by one edge circular list. The 
final figures are the contours obtained with the 
assembly of player pieces. 
 

After the relations were applied, contour edges are 
found, but it’s needed to adjust them. Thus one or more 
final figures are identified. This adjusting is done 
selecting an edge to be added in initial position of the 
circular list that represents any of the final figures. 
After, the next edge to be added in this data structure is 
selected. The chosen edge is that among those with a 
global coordinate of initial vertex equal to the end 
vertex of the last edge, added to the circular list and 
has the smallest angle with the last edge inserted in the 
circular list. This is done until a closed polygon is 
found. During this phase are also unified adjacent 
straight segments that form a 180° angle between them 
and adjacent circumference arcs having the same 
global coordinate center. These operations are repeated 
until all contours are identified. 

 
With this method, the contours are defined and it is 

possible to have representations of holes. For this, it is 
necessary that filled polygons have a direction 
(clockwise, for example) and holes have the opposite 
(in the case of Figure 9, counterclockwise). 

 

 
Figure 9: Differences between a filled polygon and a 

polygon with hole. 
 
To identify the direction of a contour, it is simply 

necessary to be used the formula of area found in 
Bourke [1998], which returns positive if the figure is 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

41



drawn counterclockwise, and negative if the figure is 
drawn in another direction. 

 
To verify if a filled polygon represents the solution, 

there is a circular list in which each element stored is 
represented by one of the following data structures: 
one containing the distance between the edge vertexes 
and the angle between this edge and the next on the 
list, while the other structure contains this information 
and the radius and the concavity of the circumference 
arc. These structures must follow the same order of the 
circular edge list that represents the solution submitted 
by the player. The same kind of list is made for 
solution figure of the game.  

 
Once these lists are ready with the previous 

structures, the game solution is compared with the 
player solution. If any filled polygon forms the solution 
figure, the next step consists on verifying the existence 
of a hole in this polygon. One strategy suggested for 
this is presented in solution 2 described by Bourke 
[1987], which shows how to verify if a point is in a 
polygon. To identify if a hole belongs to a filled 
polygon, it is necessary only to apply this solution in 
all vertexes of the candidate hole. 

 
If the filled polygon is equal to the solution figure 

and it doesn’t have holes, it is possible to conclude that 
the player set the correct solution. 
 
4.3 Completeness Level 
 

For the calculation of the completeness level, it 
obtained the minimum between the completeness of 
the polygon contour assembled by the player that has 
most proximity to the polygon solution and the filled 
area of this contour. This measurement of progress is 
more a motivation of usability than of accuracy, since 
it allows a progress perception of the player. 

 
5. Special Cases 
 
There is infinity of geometric forms that the verifying 
heuristic presented in subsection 4 treats correctly. 
Although there are special cases that the contour isn’t 
identified properly, depending on the manner that the 
pieces are designed, many of these cases are solved. 
 

A possible special case would be a geometric 
jigsaw puzzle that has a solution figure illustrated in 
Figure 10. This solution is drawn in clockwise and 
composed of edges AB, BC, CE, EB, BF and FA, 
being AB and BF convexes and centered in point G; 
BC and EB are convexes and centered in point D. 

 
Figure 10: Solution figure of a special case. 

 
It is supposed the available pieces for the solution 

assembly are two pieces shown in Figure 11. These 
two pieces were drawn clockwise. One of them is 
composed of edges AB, BA, being AB convex and 
centered in point C. The other is composed of edges 
DF, FD, being FD convex and centered in point E. 

 
Figure 11: Available pieces for the solution figure 

assembly. 
 

When the pieces of Figure 11 form the solution 
figure shown in Figure 10, the edges AB and FD won’t 
be subdivided because the resulting relation between 
them will be null. Consequently, the contour of the 
solution figure won’t be found. 

 
 Meanwhile, this problem can be solved, creating 
with a differently way the game pieces. Figure 12 
shows an alternative of creation pieces that allows the 
correct assembly of the solution figure. The pieces 
shown in Figure 12 were drawn clockwise. One of 
them is composed of edges AB, BC and CA, being AB 
and BC convexes and centered in point D. The other is 
composed of edges EG, GH and HE, being GH and HE 
convexes and centered in point F. 

 
Figure 12: Alternative set of available pieces to 

assembly the solution figure. 
 

 When the pieces of Figure 12 intersect the vertexes 
B and H, forming the solution figure shown in Figure 
10, the figure solution contour will be identified 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

42



because the responsible edges for the problem of the 
null relation of Figure 11 will already be subdivided. In 
other words, AC was subdivided in AB and BC and 
GE was subdivided in GH and HE. 

 
Another special case example, similar to previous 

one, is a geometric puzzle that has the solution figure 
illustrated in Figure 13. This solution is drawn 
clockwise and composed of edges AB, BC, CD, DE, 
EG, GD, DH and HA, being DE and GH convexes and 
centered in point F. 

 
Figure 13: Solution figure of a special case. 

 
Figure 14 shows a possible assembly for the pieces 

of this geometric puzzle. The pieces shown in this 
figure were drawn in clockwise. One of them is 
composed of edges AB, BC, CD and DA. The other is 
composed of edges EF and FE, being EF convex and 
centered in point G. 

 
 

 
Figure 14: Available pieces for the assembly of the 

solution figure. 
 

In this situation, the difference with the previous 
special case is the pair of edges that can originate the 
contour identification error. This pair is composed of a 
straight segment and a circumference arc. 

 
Similar to the previous special case, there is a way 

of creating available pieces on game that is illustrated 
in Figure 15. Thus the purposed algorithm detects the 
solution figure contour. The pieces shown in Figure 15 
were drawn clockwise. One of them is composed of 
edges AB, BC, CD, DE, EF and FA. The other is 
composed of edges GH, HI and IG, being GH and HI 
convexes and centered in point J. 

 

 
Figure 15: Alternative set of available pieces for the 

solution figure assembly. 
 
6. Conclusion and Future Works 
 
In this article, it was presented a new approach to the 
relations between the edges of adjacent polygons. Thus 
there are other ways of successfully verifying the 
solution of geometric puzzles other than the ones 
already established. 
 

This approach comes along to mend faults of other 
approaches that do not consider only the contour of the 
solution assembled by the player, but all the 
arrangement of the pieces. Also the algorithm 
presented considers edges represented by 
circumference arcs. 
 

In future, many adaptations must be made in this 
algorithm, such as:  

 
• Adapting pieces and solutions with edges 

represented by different kind of curves 
• Adding the calculation of intersection between 

edges to apply division relations of edges in 
special cases and thus giving more precision 
to this algorithm 

• Including pieces and solutions with holes 
• Adapting this algorithm for similar problem in 

three dimensions 
 
Acknowledgements 
 

This project is founded by the Brazilian ministery 
of Education and Science and Technology. Special 
thanks for professor Alexsandre Machado, who helped 
in the English review, and Ana Kaleff, who presented 
geometric puzzles to us. 
  
References 
 
LANKIN, A., 2001. Tangram Implementation.  

Available from: 
http://www.flashkit.com/movies/Games/Full_Game_Sou
rce/Tangram-Andrew_L-5966/index.php [Accessed 03 
August 2008]. 

 
JACOB, E., 2002. Tangram Implementation.  

Available from: 
http://www.flashkit.com/movies/Games/Full_Game_Sou
rce/Tangram-Eduardo_-8137/index.php [Accessed 03 
August 2008]. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

43



 
FLASHKIT, 1999. Section: Movies; Subsection: Games. 

Available from: http://www.flashkit.com [Acessed 03 
August 2008]. 

 
MARTINS, I. F., 2002. Tangram Implementation. Available 

from: http://www.flashkit.com/movies/Games/Tangram-
Ilclio_-6471/index.php [Acessed 03 August 2008]. 
 

KALEFF, A. M.; REI, D.M.; GARCIA S. S. Quebra-cabeças 
geométricos e formas planas. 3 ed. Niteroi: EdUFF, 
2002. 

 
DE KUNOVI, N., 2001. Tangram Implementation.  

Available from:  
http://www.flashkit.com/movies/Games/Full_Game_Sou
rce/Tangram-Nicola_d-3822/index.php [Acessed 03 
August 2008]. 

 
JASP, T., 2000. Tangram Implementation.  

Available from:  
http://www.flashkit.com/movies/Games/Full_Game_Sou
rce/Tangram-Texas_Ja-2061/index.php [Acessed 03 
August 2008]. 

 
 

 
ZTOR, 2005. Tangram Implementation.  

Available from: 
http://www.ztor.com/index.php4?ln=&g=game&d=tang  
[Acessed 03 August 2008]. 

 
SCARLATOS, L. L., 1999. Puzzle piece topology: detecting 

arrangements in smart objects interfaces. 
 
BOURKE, P., 1987. Determining if a point lies on the interior 
of a polygon.  

Available from: 
http://local.wasp.uwa.edu.au/~pbourke/geometry/insidep
oly/ [Acessed 21 June 2008]. 

 
BOURKE, P., Determining whether or not a polygon (2D) has 

its vertices ordered clockwise or counterclockwise, 1998. 
Available from: 
http://local.wasp.uwa.edu.au/~pbourke/geometry/clockwi
se/ [Acessed 21 June 2008]. 

 
SIQUEIRA, M. M. J.; MACHADO, R. A.; SANTOS, W. DOS; 

CARVALHO, C.; SILVA, C.; MONTENEGRO, A.; PASSOS, E.; 
CLUA, E. Algoritmo para Verificação da Solução de 
Quebra-cabeças Geométricos. In: SBGames, 2008, Belo 
Horizonte.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

44



 
Representation of relations considering only straight segments 

 
0 1 2 3 

 
4 5 6 7 

 
8 9 10 11 

12 13 14 15 
Table 1: Possible representations of straight segment relations, adapted of Scarlatos [1999, p. 4]. 

 
Representation of possible relations considering only circumference arcs 

   

0 3 5 7 

 
  

10 11 12 13 

 
15 14 

Table 2: Possible representations of circumference arc relations. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

45



A Novel Multithreaded Rendering System based on a Deferred 
Approach 

 
Jorge Alejandro Lorenzon 

Universidad Austral, Argentina 
jorgelorenzon@gmail.com  

 

Esteban Walter Gonzalez Clua 
Media Lab – UFF, Brazil 

esteban@ic.uff.br 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Mix of the final illuminated picture, the diffuse color buffer and the normal buffer 
 
Abstract 
 
This paper presents the architecture of a rendering 
system designed for multithreaded rendering. The 
implementation of the architecture following a deferred 
rendering approach shows gains of 65% on a dual core 
machine. 
  
Keywords: multithreaded rendering, deferred 
rendering, DirectX 11, command buffer, thread pool 
 
1. Introduction 
 
Game engines and 3D software are constantly 
changing as the underlying hardware and low level 
APIs evolve. The main driving force of change is the 
pursuit of greater performance for 3D software, which 
means, pushing more polygons with more realistic 
models of illumination and shading techniques to the 
screen. The problem then becomes how to design 3D 
software in order to use the hardware to its maximum 
potential.  

 
Central processing unit (CPU) manufactures are 

evolving the hardware to multi-core solutions. 
Currently dual core CPUs have become the common 
denominator while quad cores, like the recently 
released Intel Core i7 Extreme Edition processor, with 
the capability of running 8 processing threads, are 
slowly filling the high end market. In order for 
software to use all the capabilities and potential of the 
hardware it is now imperative that it divides its 
execution tasks among the different cores.  

 

Therefore, the architecture of newer game engines 
must include fine-grained multithreaded algorithms 
and systems. Fortunately for some systems like physics 
and AI this can be done. However, when it comes to 
rendering there is one big issue: All draw and state 
calls must go to the graphics processing unit (GPU) in 
a serialized manner1. This limits game engines as only 
one thread can actually execute draw calls to the 
graphics card. Adding to the problem, draw calls and 
state management of the graphics pipeline are 
expensive for the CPU as there is a considerable 
overhead created by the API and driver. For this 
reason, most games and 3D applications are CPU 
bound and rely on batching 3D models to feed the 
GPU. 

 
Microsoft, aware of this problem, is pushing 

forward a new multithreaded graphics API for the PC, 
Direct3D11. Direct3D11 was designed to remove the 
current restriction of single threaded rendering. It 
allows this by: 

• Providing the ability to record command 
buffers in different threads 

• Free threaded creation of resources and 
states 

Command buffers are basically lists of functions to 
execute. There are two types of command buffers: 

                                                 
1 This holds true for multi-GPU solutions, such as 
those that use SLI. The actual speedup with these 
setups (using alternate frame rendering) is 
accomplished by having the graphics API buffer 
commands for multiple frames so that each GPU can 
work on one. For this to happen effectively the 
application must not be limited by the CPU. 

 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

46



those that are part of an API and those that are not. The 
common benefit that both provide is that by deferring 
the communication with the GPU to a later stage, they 
allow the application to simulate multiple devices and 
divide its rendering work across multiple threads 
Natively supported command buffers can provide an 
additional performance benefit: Usually part of the 
graphic APIs’ functions have a part that needs to be 
executed in the CPU like the validation of the data 
passed to them. So if the command buffers are 
designed to only hold commands ready to be executed 
by the GPU, the CPU load of the graphic APIs’ 
functions can be processed at the time of their building, 
thus benefiting from the use of all the CPU cores. The 
execution of these buffers is then easier on the CPU 
leading to increased performance in CPU bound 
applications.  

 
This paper proposes a new architecture of a 

multithreaded rendering system and shows the 
performance gains in different scenarios with an 
implementation based on DirectX11. 
 
2. Related Work 
 
Games traditionally use a game loop that execute 
update and render logic serially. The first approach in 
game engines to increase performance in multi-core 
hardware was to execute natural independent systems 
in parallel. The problem with this approach is that very 
few systems are independent from each other. For 
example: a particle system is independent from the AI 
system, however, the AI system is not independent 
from the physics engine as it needs to have the latest 
state of the world objects to compute the behavior of 
AI driven entities. The rendering and sound system 
need to have all the final data for the frame to present 
to the user so they depend on all of the systems. Thus, 
just multithreading independent systems is not an 
adequate enough solution for current hardware. 
 

An engine has to be designed from the ground up 
with multiprocessing in mind to fully utilize 
multiprocessor hardware. There are two classic ways to 
approach this task: multiprocessor pipelining and 
parallel processing [Akenine-Moller et al. 2008]. 
Multiprocessor pipelining consists in dividing the 
execution in different stages so that each processor 
works on a different pipeline stage. For example: if the 
pipeline is divided into stages APP, CULL, and 
DRAW. For a given frame N, Core 0 would work on 
APP on frame N + 2, Core 1 would work on CULL on 
frame N + 1 and Core 2 would work on frame N. This 
architecture increases the throughput with the negative 
effect of increased latency. Parallel processing, on the 
other hand, consists in dividing up the work into small 
independent packages. This approach provides a 
theoretical linear speedup but requires for the 
algorithm to be naturally parallel.  

 

Multithreaded engines have adopted different 
combinations of the techniques of multiprocessor 
pipelining and parallel processing. One approach has 
been to let each system of an engine run in a thread of 
its own [Gabb and Lake 2005]. In this solution systems 
use the latest available data for them, many times, like 
in multiprocessor pipelining, the data has been 
processed in a previous frame by a different system. 
The data independent systems benefit from the parallel 
processing speedup. Data sharing between systems is 
the biggest challenge in this type of architecture. Usage 
of synch primitives around shared data can be very 
expensive, so a buffering scheme is usually used to 
make it possible to for a system to write to a buffer 
while another system reads from a previously written 
buffer, thus avoiding heavy use of synch primitives. 
However, there are two problems with buffering 
schemes; firstly they utilize more memory, a scarce 
resource in some platforms. Secondly, copying of 
memory between buffers2 might be expensive in terms 
of processing time [Lewis 2007]. In conclusion, this 
type of architecture is adequate while the number of 
systems is greater or equal to the number of cores. 
However, to scale further the game engine systems 
need to be designed to be internally multithreaded.  
 

The system that this paper focuses on is the 
graphics system. The internal multithreaded 
architecture relies on the use of command buffers. The 
next paragraph gives an overview of the current 
support of command buffers under different platforms. 

 
Microsoft’s XBOX 360 DirectX and DirectX 11 

support native command buffers [Lee 2008]. For other 
platforms, non-native command buffers can be used. 
The development team of Gamebryo has created an 
open source command buffer recording library for 
older versions of DirectX [Scheib 2008]. Their 
implementation currently only supports DirectX 9 but 
they are currently working on the implementation for 
DirectX 10. The multithreaded architecture of the 
rendering system is discussed in section 3, but before 
jumping to that section, it is important to read about the 
pipeline that will follow the rendering system. 
 

A deferred rendering pipeline is used in the 
graphics system treated in this paper. This type of 
pipeline was chosen as many modern games, like 
S.T.A.L.K.E.R [Pharr 2005] and Tabula Rasa [Nguyen 
2007] among others, have adopted this technique. Its 
main benefit is the decoupling of the geometry stage 
from the light stage [Deering et al. 1988]. This 
decoupling allows rendering to have a linear N + L 
complexity instead of the greater N * L complexity of 
the forward rendering approach, where N is the total 
number of objects and L is the total number of lights. 

                                                 
2 Memory copying is necessary so that a system that 
reads, processes, and writes to buffer 1 is able to utilize 
the data written in buffer 1 in the next frame when it 
will need to do the same process using buffer 2. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

47



Older games did not use this technique, as it requires 
the support of multiple render targets, extra video 
memory, and a higher memory bandwidth. However, 
with current hardware these requirements are no longer 
prohibitive. 
 
3. Multithreaded Rendering System 
 
Games usually have a 25% to 40% of the frame time 
used by the D3D runtime and driver [Davies 2008]. 
The overhead would not be such a problem if the 
engine could work on something else while the scene is 
being rendered. However, because the graphics system 
needs for the shared data to remain unmodified while it 
is doing its work the other engine systems become 
stalled. So if the graphics system is single threaded, the 
application wastes much of the CPU power. Therefore, 
the system architecture discussed in this paper is 
designed to utilize all of the CPU cores to create 
command buffers to give back to the other systems the 
ownership of the shared data as soon as possible. Once 
the buffers are created the “update” systems can run 
again while only one graphics thread remains 
submitting the command buffers to GPU. Figure 2 
illustrates the flow described.  
 

 
Figure 2: Top level application flow 

 
The next sub section explains the approach and 

design used to build such a rendering system. 
 
3.1 API abstraction layer 
  
The first step in the design of the system is to abstract 
it from the API that will be used. This allows the 
software products that will later be constructed on top 
of the engine to be able to target more platforms.  

 
Engines commonly grouped the creation of state 

and resources objects with the draw and state calls 
under a single rendering interface. The first design 
decision was to divide the responsibilities in two 
different interfaces: Device and Context. Device is in 
charge of the creation of resources and state objects 
while Context is responsible for the actual rendering. 
The Device is expected to be only instantiated once, 
while from Context many instances may be created; 
one for each thread that will submit rendering work. 

Having a mapping of one to one between contexts and 
threads is a necessary limitation to avoid the 
performance penalty that would appear from the need 
of synch primitives to maintain a rendering 
consistency. The Device, on the other hand, may be 
called from any thread. The best alternative, though, is 
to have an independent thread that manages the 
creation of resources. This could allow an application 
to go through a continuous world without needing to 
stop with loading screens.   

  
The second step in creating the low level 

abstraction was to abstract resource and state objects. 
An abstract data type was declared for each of these. 
Adapter classes were created to extend from these 
abstract data types to make the adaptation necessary to 
communicate with the various graphic APIs. Figure 3 
shows the UML class diagram for the depth stencil 
state. 

 

 
Figure 3: Depth stencil state abstraction 

  
3.2 Rendering in different contexts 
 
The instances of Context are the “renderers”. As such, 
they are the ones that receive the messages to draw or 
change states. Having a number of them allows the 
application to submit geometry in parallel.  

 
However, not all of them are equal, since there is 

one context with a special privilege: The Immediate 
Context. This is the only one that can effectively 
communicate with the GPU. The other contexts called 
Deferred Contexts submit state and draw calls to 
command buffers. Each of the deferred contexts then 
contains a command buffer ready to be executed by 
either another deferred context or by the immediate 
context. Therefore, the creation of command buffers 
becomes multithreaded while the submission of them is 
single threaded. The distinction of contexts is made 
because the nature of the CPU-GPU hardware allows 
only one CPU thread to send content to the GPU. The 
benefit in speed comes reducing the time that other 
systems remain stalled and from using idle CPU cores 
to help in the task of converting the state/draw calls 
from the API into a list of low level calls ready to be 
executed by the GPU. The immediate context can then 
execute the command buffers at a faster rate than the 
equivalent content via direct calls.  

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

48



 
3.3 Graphics manager and render processes 
 
In the previous section the low level abstraction layer 
was presented. Its designed was influenced greatly by 
the Direct3D11 API. In this section the next layer of 
the architecture will be presented. This layer will be 
responsible for the load balancing of rendering work.  

 
Context and thread creation is not a lightweight 

task and so creating them to render every frame is not 
an option if we want to keep a high performance. The 
knowledge of how many contexts to create is part of 
the application design. Therefore, when initializing this 
layer that information will need to be communicated to 
it so it can allocate the resources needed at startup. 
 

The Graphics Manager, represented in figure 4, is 
the central class of this layer. It is responsible for 
initializing a pool of threads and subsequently feeding 
them with the work that comes from the application. 
For each of the threads created a context is instanced 
and assigned to it. This ownership extends throughout 
the thread’s life. Changing the ownership of the 
context is not possible because different threads may 
never make calls to the same context. 

 
These threads remain asleep as long as no work is 

assigned to them. This prevents the Graphics Manager 
from consuming CPU cycles when the application is 
not rendering.  

 
By making the number of possible worker threads 

variable the application developer has the freedom to 
choose as many threads as cores are available or any 
other number that the developer feels that it will 
provide a better performance.  

 

 
Figure 4: Graphics Manager Diagram 

 
Because the developer should be limited as little as 

possible by the engine, the type of work that can be 
submitted to the pool can be as fine grained as 
executing a single draw call or as coarse as rendering a 
shadow map. The only limitation is that all work tasks 
need to be of the type Render Process. 

 

The Render Process abstract class is the second 
most important class of this layer. Its importance is due 
to the ability that this class provides to application 
specific rendering work to be executed by the Graphics 
Manager through polymorphism.  

 
The applications can define their rendering 

pipelines by creating and implementing subclasses of 
Render Process. The Graphics Manager commences 
the execution of the rendering work by calling the 
virtual method Execute() of Render Process from one 
of the pool threads.  

 
The Render Process and the derived classes receive 

the context in which they can submit work as a 
parameter of Execute(). This frees the Graphics 
Manager from needing to keep a record of which 
context was used for each render process and allows it 
to do an optimal load balancing. 
 
4. Multithreaded Deferred rendering 
 
In the previous section we have discussed the 
architecture of the rendering system. In this section we 
will discuss how a deferred rendering pipeline fits on 
top and benefits from the multithreading rendering. A 
pipeline of this nature includes: a geometry buffer, 
lighting, transparency and post processing effects 
stages [Policarpo and Fonseca 2005]. The latter two 
were not implemented for the testing of the 
architecture. The following sub sections describe what 
the stages do and how they were encapsulated to be 
multithreaded rendered.  
 
4.1 Geometry buffer 
 
The geometry buffer (G-Buffer) creation is the first 
step in a deferred rendering pipeline. The purpose of 
the creation of the G-Buffer is to store the information 
necessary for the shading of each pixel during the 
lighting stage [Policarpo and Fonseca 2005]. The 
values that get stored depend on what illumination 
model the application will use. For the purpose of 
testing the performance of the architecture by keeping 
the application CPU bound a simple G-Buffer was 
used. The values stored are depths, normals and diffuse 
color. 
 
 The flow of data to the G-Buffer for every pixel is 
what consumes a lot of bandwidth. This is why before 
starting to create the G-Buffer itself it is better to have 
a rendering pass that just calculates the vertices’ 
positions in order to set the Z-buffer. This pass, 
however, was not implemented for the test setup. 
 
 The steps to create the G-Buffer were all 
encapsulated in a class called Geometry Buffer 
Creator, which, extends from Render Process. The 
steps that it goes through are: 

 
1. Set viewport 
2. Set render targets 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

49



3. Set depth stencil state (read 
and write depth enabled) 

4. Set rasterizer state (cull 
back, solid fill) 

5. Clear the depth texture 
6. Render each of the objects 
7. Finish the command buffer 

  
4.2 Lighting 
 
Next is the lighting stage, where the application sends 
to the pipeline the lights that affect the scene. The 
effect that each light has on the pixels is calculated 
with the stored information in the geometry buffer and 
added to the final frame buffer. 
 
4.2.1 Non-shadow casting lights 
 
There are different alternatives to render non-shadow 
casting lights. The most efficient is to use geometry to 
represent lights [Calver 2003]. With this approach a 
spotlight is represented as a cone, a point light as a 
sphere and a directional light as a screen aligned quad. 
The benefit of using geometry is that the Z-Buffer 
rejects pixels more effectively than using scissors 
rectangles.  
  
 For the pixels that are not rejected by the scissor 
test or Z-Buffer a pixel shader that calculates how the 
light is influencing it is executed.  
 

The process of rendering the non-shadow casting 
lights is isolated in another render process called Non 
Shadow Casting Lighting. The steps that this process 
goes through are: 

 
1. Set viewport 
2. Set final buffer as the render 

target 
3. Set depth stencil state (depth 

test enabled, write disabled) 
4. Set rasterizer state (fill solid) 
5. Set the G buffer as shader 

resources 
6. Render each light 
7. Finish the command buffer 

 
4.2.2 Shadow casting lights 
 
The difference between non-shadow and shadow 
casting lights is that the latter have to calculate the 
obstruction of light due to the scene’s geometry. One 
effective way to calculate this obstruction is through a 
technique called shadow mapping [Akenine-Moller et 
al. 2008]. Rendering the scene from the light’s point of 
view while having writes and reads on the depth buffer 
enabled creates a shadow map. The shadow map 
contains depth information where the light is 
obstructed by geometry.  
 
 The shadowing lights’ pixel shader, before shading, 
checks if the pixel is affected by the light or if it is in 
shadow.  
 

 The test application uses one shadowing light. It is 
a hemispherical light and the shadow map algorithm 
used was parabolic mapping. The process to create the 
shadow map and light the pixels was encapsulated in 
the Shadow Renderer class. The steps that it goes 
through are: 

 
1. Set viewport 
2. Set depth buffer 
3. Set depth stencil state (read and 

write depth enabled) 
4. Set rasterizer state (cull back, 

solid fill) 
5. Clear depth buffer 
6. Render all objects that casts 

shadows from the point of view of 
the light 

7. Set the shadow map (depth buffer 
recently set) as a shader resource 

8. Render light 
9. Finish command buffer 

 
5. Discussion 
 
When designing the graphics system it was assumed 
that the application would give to it the total ownership 
of the CPU and data. With this in mind it, the 
architecture was built to fulfill two major objectives: 
stall the other application systems the less time 
possible, and provide transparent scalability throughout 
different platforms, current and future ones.  
 

To make the system flexible enough it was 
designed to follow a producer-consumer model. The 
work products (encapsulated in render processes) are 
produced by the application and are consumed by the 
available threads. The means of distribution of the 
render processes is the Graphics Manager’s 
responsibility. This decision was made to encapsulate 
the necessary platform dependent code that creates and 
manages threads. Clean encapsulation of platform 
dependent code makes not only porting, but also 
optimizations for different platforms easier. 
 

It is important to note that if the number of cores 
increases beyond the number of stages that the 
rendering pipeline has, a further splitting will be 
needed. The split can occur at the application data 
level. For example, the Geometry Buffer Creator can 
be instanced twice so that each instance works on a 
subset of the application data. The split would be best 
done by object’s material, this way the shader 
swapping in the GPU is kept to a minimum. Another 
possible split is to calculate the shadow maps for 
different shadow casting lights in parallel. 

 
With a further increase in cores it will become 

harder to divide rendering work in an efficient way, as 
there are a limited number of materials used by objects 
or shadow casting lights at a given frame. So an option 
for the job-based architecture could be to start handling 
some real time raytracing for some effects like 
reflections and refractions. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

50



6. Results  
 
The tests were made on a Core 2 Duo E7200 CPU with 
an ATI Radeon HD4750 GPU. Microsoft’s DirectX 
March 2009 SDK was used. Note that the DirectX11 
version in this SDK is a tech preview. The hardware 
and drivers used are DirectX 10 level. DirectX 11 level 
GPUs are not yet available in the market.  
 

The test application did not do any update to the 
objects in the scene so that the frame time was 
completely used by the rendering system. Even though, 
the objects did not move or update they were treated as 
dynamic. The application sent to the rendering system 
the objects that compose the scene shown in Figure 5. 
 

 
Figure 5: Test scene 

 
Two scenarios were created to compare the system 

to the traditional ones. The first scenario consisted of 
using a single thread while the second one consisted in 
using the multithreaded solution.  

 
In the first scenario the render processes that 

represent the deferred shading pipeline were executed 
in a sequential way in the main rendering thread with 
straight communication to the immediate context. This 
way is how traditionally games submit rendering work 
to the GPU. 

 
In the second scenario, the Graphics Manager was 

initialized to work with 3 threads. At the start of each 
frame the render processes were queued in the 
Graphics Manager, which in this particular case used a 
Win32 thread pool as part of its implementation. When 
all of them were finished building their respective 
command buffers the main thread would submit these 
to the GPU through the immediate context. 

 
The experiment was repeated with five variations. 

These variations were related to scene complexity. By 
scene complexity we mean the number of objects 
drawn. The tests were done with: 7, 16, 106, 1006 and 
2006 objects. It is worth mentioning that the final 
image of the scene did not vary in the different tests as 
the added objects had the same position and mesh that 
the original ones. This way the Z-rejection hardware of 
the GPU would cull the objects before they reached the 
more processing intensive pixel shader stage. Doing 

this allowed our application to be CPU bound in the 
tests 1006 and 2006 objects.  

 
The following chart (figure 6) shows the frames per 

second obtained by the rendering engine with the use 
of the multithreaded graphics manager versus the 
common single threaded solution. The single threaded 
results are shown by the green bar titled ST. The 
multithreaded ones are represented by the red bar titled 
MT. 

 

 
Figure 6: FPS variation with scene complexity. 

 
The first 3 scenarios with 7, 16 and 106 objects 

show that the multithreaded design does not provide an 
improvement over the common single threaded one. 
The multithreaded solution was slightly worse than the 
traditional one. This is because the multithreaded 
solution does add a little overhead. Profiling showed 
that the CPU only used 15% of its capacity. The 
bottleneck in these tests, therefore, was created by the 
inability of the GPU to render the polygons faster. 

 
The CPU starts to work harder when the number of 

objects increases, as it has to issue more draw calls, 
which take up CPU time. With 1006 objects, the CPU 
work created by the draw calls becomes sufficiently 
heavy to shift the bottleneck from the GPU to the CPU. 
Profiling of the single threaded scenario showed that 
one the cores was working 4 times more than the other, 
which was only running other program’s processes in 
the back. The frames per second were in this scenario 
were 71 in average.  

 
When switching to the multithreaded solution, the 

profiler showed a more even load among the cores and 
the frames per second rose around 65% to 119. The 
explanation to this is that, because the command 
buffers used were native to the graphics API, the load 
that each API call adds to the CPU was now being 
distributed along two cores.  

 
With 2006 objects the ratio of frames per second 

between the two models only rose 2%. This evidenced 
that the two cores had hit their limit.  
 
7. Conclusion 

 
In a low scene complexity scenario the benefits of 
distributing the load of graphic API calls among 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

51



multiple cores is very low compared to the added 
overhead of running a more complex multithreaded 
system. Also, without other systems running there is no 
stall caused to them by the single threaded graphics 
system. So in this scenario the multithreaded solution 
has a clear disadvantage. With the test results showing 
a very slight decrease in performance for the 
multithreaded system. It is promising that with other 
systems running the application will have a better 
performance using a multithreaded graphics system 
than single threaded one.  
 

 In the high scene complexity scenario the results 
show the multithreaded design as clear winner with a 
65% increase in speed. This lead would certainly 
increase with in an application that utilized other 
systems. The speedup shown by the results is 
significant considering that the API is still immature 
and that hardware and drivers were not the optimal for 
the multithreaded solution.   

 
The speedup of the proposed graphics system will 

never be linear as there is still a part of the process that 
is single threaded, however, it is clear by analyzing the 
results that it is faster and more scalable than 
traditional ones. 

 
In conclusion the multithreaded rendering solution 

based on a deferred rendering approach provides a 
promising solution for applications that need high 
performance and quality graphics.  
 
Acknowledgements 
 
The authors would like to thank André Luiz Brandão 
for providing scene geometry to test the architecture. 
 
References 
 
DEERING MICHAEL, STEPHANIE WINNER, BIC SCHEDIWY, 

CHRIS DUFFY, NEIL HUNT. "The triangle processor and 
normal vector shader: a VLSI system for high 
performance graphics". ACM SIGGRAPH Computer 
Graphics (ACM Press) 22 (4): 21–30. 1988. 

 
PHARR MATT, FERNANDO RANDIMA . GPU Gems 2. Addison-

Wesley Professional.  2005. 
 
NGUYEN HUBERT. GPU Gems 3. Addison-Wesley 

Professional.  2007. 
 
SCHEIB V INCENT. Practical Parallel rendering with DirectX 

9 and 10. GameFest 2008. [online]. Available from: 
http://www.emergent.net/Global/Downloads/GameFest2
008-ParallelRendering.pdf [Accessed July 23, 2009]. 

 
POLICARPO FABIO, FONSECA FRANCISCO. Deferred Shading 

Tutorial. SBGAMES 2005. [online]. 
http://www710.univ-
lyon1.fr/~jciehl/Public/educ/GAMA/2007/Deferred_Sha
ding_Tutorial_SBGAMES2005.pdf [Accessed July 23, 
2009] 

 

AKENINE-MOLLER TOMAS, HAINES ERIC, HOFFMAN NATY . 
Real-Time Rendering. Third edition. AK Peters.  2008. 

 
 
HEIRICH ALAN , BAVOIL LOUIS. Deferred Pixel Shading on the 

PLAYSTATION 3. [online] 
http://research.scea.com/ps3_deferred_shading.pdf 
[Accessed July 23, 2009] 

 
BRABEC STEFAN, ANNEN THOMAS, SEIDEL HANS-PETER. 

Shadow Mapping for Hemispherical and 
Omnidirectional Light Sources. [online] http://www.mpi-
inf.mpg.de/~brabec/doc/brabec_cgi02.pdf [Accessed July 
23, 2009] 

 
GABB HENRY, LAKE ADAM . Threading 3D Game Engine 

Basics. November 17, 2005.  [online] 
http://www.gamasutra.com/features/20051117/gabb_01.s
html [Accessed 3 September 2009] 

 
ANDREWS JEFF. Designing the Framework of a Parallel 

Game Engine. February 25, 2009.  [online] 
http://software.intel.com/en-us/articles/designing-the-
framework-of-a-parallel-game-engine/ [Accessed 3 
September 2009] 

 
LEE MATT. Multi-Threaded Rendering for Games. GameFest 

2008. [online] 
http://www.microsoft.com/downloads/details.aspx?Famil
yID=DA8816C2-CFBE-4208-8DD8-
9DEEA0C2E2B5&displaylang=en [Accessed 3 
September 2009] 

 
 LEWIS IAN. Multicore Programming Two Years Later. 

GameFest 2007. [online] 
http://www.microsoft.com/downloads/details.aspx?Famil
yID=DA8816C2-CFBE-4208-8DD8-
9DEEA0C2E2B5&displaylang=en [Accessed 3 
September 2009] 

 
DAVIES LEIGH. Optimizing DirectX on Multi-core 

architectures. Game Developers Conference 2008. 
[online] http://software.intel.com/en-
us/videos/optimizing-directx-on-multi-core-architecture-
part-1/ [Accessed 4 September 2009] 

 
CALVER DEAN. Photo-realistic Deferred Lighting. July 31, 

2003. [online] 
http://www.beyond3d.com/content/articles/19/1 
[Accessed 5 September 2009] 

 

 
  
 
 
 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

52



A Serious Game for Exploring and Training in Participatory 
Management of National Parks for Biodiversity Conservation: Design 

and Experience  
 

Eurico Vasconcelos1       Gustavo Melo2       Jean-Pierre Briot3       Vinícius Sebba Patto3       
Alessandro Sordoni3       Marta Irving2       Isabelle Alvarez3       Carlos Lucena1 

 
1 Pontifícia Universidade Católica (PUC-Rio), Computer Science Department, RJ, Brazil 

2 Universidade Federal do Rio de Janeiro (UFRJ), EICOS Program, RJ, Brazil         
3 Universitè Pierre et Marie Curie, Laboratoire d'Informatique de Paris 6 (LIP6), CNRS, France 

 
 
 
Abstract 
 
In this paper, we discuss the experience in the design, 
use and evaluation of a serious game about 
participatory management of national parks for 
biodiversity conservation and social inclusion. Our 
objective is to help various stakeholders (e.g., 
environmentalist NGOs, communities, tourism 
operators, public agencies, and so on) to collectively 
understand conflict dynamics for natural resources 
management and to exercise negotiation management 
strategies for protected areas, one of the key issues 
linked to biodiversity conservation in national parks. 
Our serious game prototype combines, techniques such 
as: distributed role-playing games, support for 
negotiation between players, and insertion of various 
types of artificial agents (decision making agents, 
virtual players, assistant agents). After a general 
introduction to the project, we will present project’s 
current prototype architecture and results from game 
sessions, as well as some prospects for the future, 
namely: the design of assistant artificial agents and of 
virtual players and the integration of a viability-based 
simulation engine. 
 
Keywords: Serious games, Simulation, Participatory 
management of Parks 
 
1. Introduction 
 

Serious Games [Michael and Chen 2006] are getting 
increased attention as a novel and effective approach 
for training and exploring possibilities, in context but 
without high costs or risks. Indeed, games are a good 
substitute for direct experience from real world or real 
infrastructures because they can generate learning 
experiences in a relatively fast and safe manner 
[Warmerdan et al. 2006]. 
 

In this paper, we will discuss our experience in the 
design of a serious game about participatory 
management of national parks for biodiversity 
conservation and social inclusion. Its main objective is 
to serve as an epistemic/educational tool. In this game, 
humans play some role and discuss, negotiate and take 
decisions about a common domain, in our case 

environment management decisions. More precisely, 
the idea is to help park managers, stakeholders and all 
researchers involved in park management, to explore 
and train about conflict identification, negotiation and 
decision strategies for management of parks, with the 
various perspectives involved, such as: biodiversity 
conservation, social inclusion and sustained 
development. This research project, named SimParc 
(which stands in French for “Simulation Participative 

de Parcs”), was started in 2006 in order to investigate 
the use of advanced computer techniques and 
methodologies (such as serious games) for 
participatory management of protected areas, more 
specifically national parks. The current SimParc 
serious game prototype is based on a role-playing 
game and computer techniques such as: distributed 
role-playing interfaces, negotiation support and 
artificial decision makers. Although intended, primary, 
to serve as epistemic tool, SimParc also has as 
ingredients the playfulness and the challenge of a 
game, presenting funny and interactive maps, 
negotiations and decision making in different and 
challenging phases. 
 
2. The SimParc Project 
 
2.1 Project Motivation 
 

A significant challenge involved in biodiversity 
management is the management of protected areas 
(e.g., national parks), which usually undergo various 
pressures on resources, use and access, which results in 
many conflicts. This makes the issue of conflict 
resolution a key issue for the participatory management 
of protected areas [Irving 2006]. Methodologies 
intending to facilitate this process are being addressed 
via bottom-up approaches that emphasize the role of 
local actors. Examples of social actors involved in 
these conflicts are: park managers, local communities 
at the border area, tourism operators, public agencies 
and NGOs. Examples of inherent conflicts connected 
with biodiversity protection in the area are: irregular 
occupation, inadequate tourism exploration, water 
pollution, environmental degradation and illegal use of 
natural resources. 
 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

53



Our SimParc project focuses on participatory parks 
management. It is based on the observation of several 
case studies in Brazil. However, we chose not to 
reproduce exactly a real case, in order to leave the door 
open for broader game possibilities. Our project aim is 
to help various stakeholders at collectively understand 
conflicts and negotiate strategies for handling them. 
 
2.2 Related Work 
 
Our initial inspiration was the ComMod approach 
about participatory methods to support negotiation and 
decision-making for participatory management of 
renewable resources [Barreteau 2003]. They pioneer 
method, called MAS/RPG, consists in coupling multi-
agent simulation (MAS) of the environment resources 
and role-playing games (RPG) by the stakeholders 
[Barreteau 2003]. The RPG acts like a “social 
laboratory”, because players of the game can try many 
possibilities, without real consequences.  
 

Recent works proposed further integration of role-
playing into simulation, and the insertion of artificial 
agents, as players or as assistants. Participatory 
simulation and its standard bearer, the Simulación 
framework [Guyot and Honiden 2006], focused on a 
distributed support for role-playing and negotiation 
between human players. All interactions are recorded 
for further analysis (thus opening the way to automated 
acquisition of behavioral models) and assistant agents 
are provided to assist and suggest strategies to the 
players. The Games and Multi-Agent-based Simulation 
(GMABS) methodology focused on the integration of 
the game cycle with the simulation cycle [Adamatti et 
al. 2007]. It also innovated in the possible replacement 
of human players by artificial players. One of our 
objectives is to try to combine their respective merits 
and to further explore possibilities of computer 
support. 
 
3. The SimParc Role-Playing Game 
 
3.1 Game Objectives 
 

Current SimParc game has an epistemic objective: to 
help each participant discover and understand in a 
playful way the various factors, conflicts and the 
importance of dialogue for a more effective 
management of parks. Note that this game is not (or at 
least not yet) aimed at decision support (i.e., we do not 
expect the resulting decisions to be directly applied to a 
specific park).  

 
The game is based on a negotiation process that 

takes place within the park council. This council, of a 
consultative nature, includes representatives of various 
stakeholders (e.g., community, tourism operator, 
environmentalist, nongovernmental association, water 
public agency). The actual game focuses on a 
discussion within the council about the “zoning” of the 
park, i.e. the decision about a desired level of 

conservation (and therefore, use) for every sub-area 
(also named “landscape unit”) of the park. We consider 
nine pre-defined potential levels (that we will consider 
as types) of conservation/use, from more restricted to 
more flexible use of natural resources, as defined by 
the (Brazilian) federal bureau of environment 
management. Examples are: Intangible, the most 
conservative use, Primitive and Recuperation.  

 
The game considers a certain number of players’ 

roles, each one representing a certain stakeholder. 
Depending on its profile and the elements of concerns 
in each of the landscape units (e.g., tourism spot, 
people, endangered species…), each player, as in a 
RPG has to embody the designed/selected role with its 
respective postures and objectives. To facilitate the 
incorporation of the role by the player, SimParc offers 
a set of personas to represent him/her during the game 
(Figure 1). Based on the role, the player will try to 
influence the decision about the type of conservation 
for each landscape unit. It is clear that conflicts of 
interest will quickly emerge, leading to various 
strategies of negotiation (e.g., coalition formation, 
trading mutual support for respective objectives, etc).  

 

 
 

 
 

Figure 1: Some examples of personas offered in SimParc. 
 

A special role in the game is the park manager. He 
is a participant of the game, but as an arbiter and 
decision maker, and not as a direct player during 
negotiation and interaction phase. He observes the 
negotiation taking place between players and takes the 
final decision about the types of conservation for each 
landscape unit. His decision is based on the legal 
framework, on the negotiation process between the 
players, and on his personal profile (e.g., more 
conservationist or more open to social concerns) 
[Irving 2006]. He may also have to explain his 
decision, closing the game cycle. The park manager 
may be played by a human or by an artificial agent (see 
Section 6). 
 
3.2 Game Cycle 
 
The game is structured along six steps, as illustrated in 
Figure 2. At the beginning (step 1), each participant is 
associated to a role (randomly selected, selected by the 
administrator or by the participant him/herself.). Then, 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

54



an initial scenario is presented to each player, including 
the setting of the landscape units, the possible types of 
use and the general objective associated to his role. 
This information is present on a map of a fictitious 
park that should be “traveled” by the players, by 
clicking in the elements presented in the map. Then 
(step 2), each player decides a first proposal of types of 
use for each landscape unit, based on his/her 
understanding of the objective of his/her role and on 
the initial setting. Once all players have done so, each 
player’s proposal is made public.  

In step 3, players start to interact and to negotiate 
on their proposals. This step is, in our opinion, the 
most important one, where players collectively build 
their knowledge by means of an argumentation 
process. In step 4, they revise their proposals and 
commit themselves to a final proposal for each 
landscape unit. In step 5, the park manager makes the 
final decision, considering the negotiation process, the 
final proposals and also his personal profile (e.g., more 
conservationist or more sensitive to social issues). 
Each player can then consult various indicators of 
his/her performance (e.g., closeness to his initial 
objective, degree of consensus, etc.). He can also ask 
for an explanation about the park manager decision 
rationales.  

 
The last step (step 6) “closes” the epistemic cycle 

by considering the possible effects of the decision. In 
the current game, the players provide a simple 
feedback on the decision by indicating their level of 
acceptance of the decision.1 

 A new negotiation cycle may then start, thus 
creating a kind of learning cycle [Kolb 1984]. The 

                                                 
1 A future plan is to introduce some evaluation of the quality 
of the decision. See Section 7.3. 

main objectives are indeed for participants: to 
understand the various factors and perspectives 
involved and how they are interrelated; to negotiate; to 
try to reach a group consensus; and to understand 
cause-effect relations based on the decisions. 
 
4. The SimParc Game Support 
Architecture 
 

Our current prototype benefited from our previous 
experiences (game sessions and a first prototype) and 
has been based on a detailed design process. Based on 
the system requirements, we adopted Web-based 
technologies (more precisely J2EE and JSF) that 
support the distributed and interactive character of the 
game as well as an easy deployment. 

 Figure 3 shows the general architecture and 
communication structure of SimParc prototype 
version 2. In this second prototype, distributed users 
(the players and the park manager) interact with the 
system mediated internally by communication broker 
agents (CBA). The function of a CBA is to abstract the 
fact that each role may be played by a human or by an 
artificial agent. For each human player, there is also an 
assistant agent offering assistance during the game 
session.  
 

During the negotiation phase, players (human or 
artificial) negotiate among themselves to try to reach 
an agreement about the type of use for each landscape 
unit (sub-area) of the park. We include below two 
screen dumps to provide a quick idea about current 
interface support and their look and feel. The interface 
for negotiation is shown at Figure 4. It includes 
advanced support for negotiation (rhetorical markers 
and dialogue filtering/structuring mechanisms, see 
details in [Vasconcelos et al. 2009]), access to different  

 
Figure 2: The six steps of the SimParc game. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

55



 
Figure 5: Current prototype’s decision graphical user interface. 

  

 

 
Figure 4: Current prototype’s negotiation graphical user interface. 

  

 
Figure 3: SimParc version 2 general architecture. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

56



 
kinds of information about other players, land, law 

and the help of the personal assistant. The negotiation 
and its interface are detailed in [Vasconcelos et al. 
2009]. The interface for players’ decision about the 
types of use is shown at Figure 5. In the interface, the 
players can analyze the area based in its different 
layers (e.g. land, hydrography, vegetation…). 

A Geographical Information System (GIS) offers to 
users different layers of information (such as flora, 
fauna and land characteristics) about the park 
geographical area. All the information exchanged 
during negotiation phase, namely users’ logs, game 
configurations, game results and general management 
information are recorded and read from a PostgreSql 
database. Report functionality also allows the game 
manager to get structured information about each game 
session. 
  
5. Preliminary Evaluation 
 
The current computer prototype has been tested 
through two game sessions by domain expert players 
(including a professional park manager) in January 
2009 (see Figure 6). The 9 roles of the game and the 
park manager were played by humans. Among these 10 
human players, 8 were experts in park management 
(researchers and professionals, one being a 
professional park manager in Brazil). The two 
remaining players were not knowledgeable in park 
management. One was experienced in games (serious 
games and video games) and the other one a complete 
beginner in all aspects. 
 

 
Figure 6: SimParc current prototype game session (2009). 

 
Two aspects of the game were positively evaluated 

by the participants of the game session: the structure, 
(script, rules and set tasks) and content (scenes, 
conflicts, environmental management). Through 
successful integration of structure and content, 
SimParc was evaluated as a game that reached the goal 
of creating, in fact, a "virtual arena" of management. 
Although the game does not constitute a tool for 
decision-making directly applicable to real parks, but 
only a support for epistemic and pedagogical goals, it 

was highlighted as a positive aspect the proximity of 
SimParc as a virtual scenario with the reality of park 
management, making it more attractive for those 
people working directly in real parks.  

 
In the analysis of the test, two key aspects to the 

improvement of the game play were highlighted: 
information and interaction. About information, were 
considered the conditions for access to content, form, 
data quality, the quantity of information available, 
among others. Regarding interaction, were mainly 
considered the resources and tools available to help 
players negotiate.  

 
The information is certainly the key to support the 

SimParc game. Mainly because the game is structured 
through the use of different terminologies, that in the 
background are the basis for negotiation between the 
players. The large volume, complexity of information 
and conflicts illustrated, that require an understanding 
by each player, were one of the main problems 
identified by participants of the test. 

 
In conceptual terms, the biggest difficulty 

encountered by participants was the understanding of 
all the different types of zoning (9 types: Intangible, 
Primitive…). Therefore, it was highlighted the 
importance of improving access to information for 
each player, especially those that explain the different 
types of zoning. The proposal is to make the players 
consult with more comfort and efficiency information 
about the game. For example, it was considered 
essential that the proposed zoning of each other 
possible player could always be viewed with the 
changes visible in "real time" in order to stimulate 
diversity of strategies for one player, since, that way, 
each player will be able to see how others players are 
defending their interests. 

 
The interaction between the players is also a key 

element in improving SimParc. Considering that the 
game requires a continuous and dynamic interaction 
between players, it has been highlighted the 
importance of the use of flexible systems with 
additional features such as hyperlinks to send messages 
directly to a player and use of tools that allow the 
creation of parallel trading rooms. According to 
participants, this may facilitate and enhance the 
negotiation process, an important process in the game. 

 
Aiming to investigate whether SimParc is 

approaching its epistemic and pedagogical goals, 
participants were asked about what would be the main 
goal of the game. The responses were related to the 
following themes: management practice involving 
negotiation between different social actors, 
understanding and experience of different roles that 
facilitate the learning of the practice of dialogue and 
negotiation, illustrating the dynamics of conflict, 
learning environmental expertise and park 
management, and dissemination of the importance of 
environmental preservation. In the interpretation of the 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

57



players about if the game had reached such objectives, 
the players felt that yes, the game was a great exercise 
for negotiation, with active interaction and interest of 
players, further encouraged by the possible exchange 
of roles. 

 
Participants also reported that the main knowledge 

gained after the game was related to the territorial 
zoning process of parks, mainly for the players who 
did not have advanced knowledge on the subject of 
environmental management. Even those players, who 
work directly in environmental management, or 
research related to the subject, explained that they 
acquired more knowledge about the specific 
characteristics of each type of zoning commonly used 
in parks. It was also mentioned that the game could be 
considered as an exercise on process and techniques of 
negotiation, although the game does not suggest any 
technique to the players.  

 
Another point was mentioned in relation to 

recognition of the diversity of interests in the 
management of a park. Even though most players knew 
many of the conflicts illustrated by the game (political, 
environmental degradation, misuse, etc.), they 
mentioned that it was possible to improve their 
analysis based on different roles and groups of social 
actors that the game presented. Besides the importance 
of conducting further tests, it was considered an 
important aspect of the game, the fact that the game is 
hosted using the Internet, instead of the requirement to 
install a program on computers, which means greater 
mobility for applications and larger dissemination of 
this game. 
 
6. Park Management Artificial Agent 

 

As explained in Section 3.1, the park manager acts as 
an arbitrator in the game, making a final decision for 
types of conservation for each landscape unit and 
explains its decision to all players. He may be played 
by a human or by an artificial agent. The game 
manager decides when creating and configuring a new 
game session about the park manager, see Figure 7.   

 
The artificial agent’s architecture is structured in 

two phases. The first decision step concerns agent’s 
individual decision-making process: the agent 
deliberates about the types of conservation for each 
landscape unit. Broadly speaking, the park manager 
agent builds its preference preorder over allowed levels 
of conservation. An argumentation-based framework 
(see, e.g. [Dung 1995]) has been implemented to 
support the decision making. The key idea is to use the 
argumentation system to select the desires the agent is 
going to pursue: natural park stakes and dynamics are 
considered in order to define objectives for which to 
aim. Hence, decision-making process applies to 
actions, i.e. levels of conservation, which best satisfy 
selected objectives. The second step consists in taking 
account of players’ preferences, with the possibility to 

adjust the profile of the park managers, from autocratic 
to democratic, and therefore the influence of players’ 
votes. (See details of the complete architecture in 
[Briot et al. 2009]). 

 

 
Figure 7: New game configuration interface. 

 
Further details about architecture formal 

background and implementation are reported in [Briot 
et al. 2009]. The architecture has been implemented 
and tested offline and its outputs (decision and 
arguments) have been validated by our project domain 
experts. Next step is to organize a new series of game 
sessions, with an online test of the artificial park 
manager architecture. Some possible future work is 
also to use the traces of arguments produced for the 
decision as a basis for the explanation of the decision 
to players. 
 
7. Ongoing Work and Future 
Prospects 
 
We are currently planning on inserting other types of 
artificial agents into the prototype. 
 
7.1 Artificial Players 
 

Artificial players represent an ongoing research based 
on previous experience on virtual players in a 
computer-supported role-playing game, JogoMan-ViP 
[Adamatti et al. 2007]. The idea is to possibly replace 
some of the human players by artificial agents. The 
two main motivations are: (1) the possible absence of 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

58



sufficient number of human players for a game session 
and (2) the need for testing in a systematic way 
specific configurations of players’ profiles. The 
artificial players will be developed along artificial park 
manager existing architecture (see previous section), 
with the addition of negotiation and interaction 
modules. We plan to use the argumentation capabilities 
to generate and control the negotiation process. In a 
next stage, we plan to use automated analysis of 
recorded traces of interaction between human players 
in order to infer models of artificial players. In some 
previous work [Guyot and Honiden 2006], genetic 
programming had been used as a technique to infer 
interaction models, but we also plan to explore 
alternative induction and machine learning techniques, 
e.g., inductive logic programming. 
 
7.2 Assistant Agents 
 
The assistant agents are being designed to assist 
players through the game. It is important to emphasize 
that the user has total control over his assistant, 
enabling or disabling it at anytime. The basic initial 
function of these agents is to present and explain each 
step of the game. During the negotiation step, assistant 
agents may also propose to participants some helpful 
information, in order to improve their analysis 
concerning the negotiation. For instance, they may 
provide each player with an ordered list of the players 
taking into account criteria such as the compatibility or 
incompatibility of proposals of other players with the 
proposals of the assisted player. Since we decided to 
favor a bottom-up approach, we decided to avoid 
intrusive assistant agents through the game. We believe 
that intrusive assistant agents could interfere in the 
players’ cognitive processes. That is why our assistant 
agents cannot suggest players a decision. A first 
implementation has already been completed and we 
will soon start to test it through small game sessions. 
 
7.3 Expert Agents 
 
Last, we are starting to work on expert agents which 
will provide the human players (including the park 
manager if played by a human) with some technical 
evaluation of the quality and viability of a given park 
management decision (e.g., considering the survival of 
an endangered species). Therefore, we plan to identify 
cases of usage conflicts (e.g., between tourism and 
conservation of an endemic species) and model the 
dynamics of the system (in an individual-based/multi-
agent model or/and in an aggregated model). We 
would then like to explore the use of viability theory 
[Aubin 1992] to evaluate possible effects of the 
decision. These technical evaluations would be 
encapsulated into expert agents, technical assistants for 
the players. Another considered type of expert agent 
will be based on decision theory analysis, for instance 
to evaluate the dominance relations or equity properties 
among players votes. 
 

8. Conclusions 
 
In this paper, we have presented the SimParc project, a 
serious game aimed at participatory management of 
protected areas. We have also summarized the 
architecture of an artificial decision maker park 
manager. The first game sessions conducted with 
domain experts have been successful. It is important to 
emphasize that the game SimParc was developed based 
on the recovery of initiatives for the construction of 
methodologies which help to consolidate democratic 
spaces of decision in cases of protection of nature. In 
this sense, the game intends to be a tool capable of 
contributing to the dialogue on consolidation of 
commitments to conservation, particularly 
management of national parks and other protected 
areas. Although this is an innovative proposal, with 
wide application in the present context, the experience 
has shown that quick and simple solutions to modeling 
the complexity of this process can become a great risk 
of loss of meaning of the game. Considering that the 
game could be played too by real managers, it is 
important to reflect how far the game, that is fun and 
educational, should be closer to reality and what are 
the necessary representations/abstractions to achieve 
the required goals. For example, how the process of 
negotiating social pacts and democratic management of 
protected areas can be promoted without losing the 
focus on respect to real problems and operational by 
the tax legislation and guidelines for management?  
Similarly, how to balance technical and scientific 
expertise in the social participation in the management 
of nature?  Although more evaluation is needed, we 
believe the initial game session tests are encouraging 
for the future and we are welcoming any feedback and 
input from similar or related projects. 
 
Acknowledgements 
 
The authors would like to thank to all the members of 
SimParc team and all the participants of game sessions 
for their help.   
  

This research has been initially funded by the 
ARCUS Program (French Ministry of Foreign Affairs, 
Région Ile-de-France and Brazil) and is currently being 
funded in Brazil by the MCT/CNPq/CT-INFO Grandes 
Desafios Program (Project No 550865/2007-1) and in 
France by the Ingénierie Ecologique Program of CNRS 
& Cemagref (Project Viabilité SimParc). Some 
additional individual support is provided by French 
Ministry of Research (France), AlBan (Europe), 
CAPES and CNPq (Brazil) PhD fellowship programs. 
 
References 
 
ADAMATTI, D., SICHMAN, J., and COELHO, H. 2007. Virtual 

players: From manual to semi-autonomous RPG. In 
Barros, F., Frydman, C., Giambiasi, N., and Ziegler, B., 
editors, International Modeling and Simulation 
Multiconference (IMSM’07), Buenos Aires, Argentina, 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

59



The Society for Modeling Simulation International 
(SCS), February, p. 159-164. 

 
AUBIN, J.-P. 1992. Viability theory. Modern Birkhäuser 

Classics. 
 
BARRETEAU, O. 2003. The joint use of role-playing games 

and models regarding negotiation processes: 
characterization of associations. Journal of Artificial 
Societies and Social Simulation, Vol. 6, No 2. 

 
BRIOT, JP., SORDONI, A., VASCONCELOS, E., MELO, GUSTAVO 

AND IRVING, M., AND ALVAREZ, I. 2009. Design of a 
decision maker agent for a distributed role playing game 
– Experience of the SimParc project. In Dignum, F., 
Bradshaw, J., Silverman, B., and van Doesburg, W., 
editors, Proceedings of the AAMAS Workshop on 
Agents for Games and Simulations (AGS’09), Budapest, 
Hungary, AAMAS, May, p. 16-30. 

 
DUNG, P. M. 1995. On the acceptability of arguments and its 

fundamental role in non-monotonic reasoning, logic 
programming and n-person games. Artificial Intelligence, 
77(2):321–357. 

 
GUYOT, P. and HONIDEN, S. 2006. Agent-based participatory 

simulations: Merging multiagent systems and role-
playing games. Journal of Artificial Societies and Social 
Simulation, 9(4). 

 
IRVING, M. (Org.).  2006. Áreas Protegidas e Inclusão Social: 

Construindo Novos Significados. Rio de Janeiro: 
Aquarius. 

 
KOLB, D.A. 1984. Experimental learning: Experience as the 

source of learning and development. Prentice Hall. 
 
MICHAEL, D. and CHEN, S. 2006. Serious Games – Games 

that Educate, Train and Inform. Thomson Course 
Technology.  

 
VASCONCELOS, E., BRIOT JP., IRVING, M., BARBOSA, S., 

FURTADO, V. 2009. A user interface to support dialogue 
and negotiation in participatory simulations. In Nuno 
David and Jaime Simão Sichman, eds, Multi-Agent-
Based Simulation IX - International Workshop, MABS 
2008, Estoril, Portugal, May 12-13, 2008, Revised and 
Invited Papers, LNAI, No 5269, Springer-Verlag, p. 127-
140. 

 
WARMERDAM J., KNEPFLÉ M., BIDARRA R., BEKEBREDE G. 

AND MAYER I. 2006. Sim-Port: a multiplayer 
management game framework. In Proceedings of the 9th 
International Conference on Computer Games 
(CGAMES’06), Dublin, Ireland. 

 
 
 
 
 
 
 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

60



An Integrated Development Model for Character-based games  
 

Marconi E. Madruga Filho, Allan J. S. Souza, Patrícia C. A. R. Tedesco, Danielle R. D. Silva, 

Geber L. Ramalho  
 

Universidade Federal de Pernambuco, Centro de Informática, Brazil  
 

 

 

Abstract 
 

Character-based games are strongly dependent on the 

quality of their Non Player Characters’ behavior. 

Developing games of this nature usually requires a 

high investment of time and money on Artificial 

Intelligence techniques, in order to provide better 

credibility to the characters. For the independent game 

developers’ community, affording this kind of extra 

complexity may be highly expensive. Therefore, this 

article proposes a way of developing character-based 

games while maintaining high quality and low-cost. 

This is done by using a modular Artificial Intelligence 

technique called Rule-Based Systems, integrated with a 

game development support tool, XNA. Since Java is 

better provided with Rule-based System tools, the 

IKVM application is used to allow this integration. All 

mechanisms and tools used are free. A comparison of 

free Rule-based Systems is presented, as well as an 

application of the proposed model on a real game 

project. 

 

Keywords: virtual characters, artificial intelligence, 

character-based games, game development process 

 

Authors’ contact: 
{memf,ajss,pcart,drds,glr}@cin.ufpe.br 

 

1. Introduction 
 

The development cost of a commercial game has been 

steadily increasing. More and more, predictions come 

up stating that developing for the next-generation 

consoles will cost more than double the current-

generation value [Morris 2009]. Furthermore, the 

demand for more realistic games also increases. This 

realism is not only about good-looking scenarios and 

game environments, but also about game characters' 

behavior and intelligence. This is the case of character-

based games, like the The Sims [Maxis 2000] series or 

even Role-playing games, which are games that rely 

mainly on their characters' illusion of life shown to the 

player. This search for behavioral realism normally 

entails a demand for a more sophisticated game AI to 

define the characters. Furthermore, the AI 

sophistication creates new challenges for the game 

development, as well as a higher game development 

cost.  

 

For independent game developers, this extra cost 

may cause the development of good character-based 

games to be too expensive. These developers always 

look for ways to produce games while executing the 

hard task to maintain the balance between high quality 

and low monetary and time cost. One way of doing so 

is to use less expensive AI techniques that still have 

great power to simulate characters' behavior, as is the 

case of Rule-based Systems (RBS). In this case, RBS 

need to have good performance, documentation and 

tool support, and easy integration, in order to give a 

better support to character-based game development. 

 

Therefore, this article shows a comparative study of 

various available RBS tools, based on the requirements 

related to character-based game development. By using 

the results of this study, the article proposes a process 

that supports the modeling of characters with rich 

behavior. This is done by using free platforms and 

tools. This approach is also base for a character-based 

training game, VTEAM [VTEAM 2009], whose goal is 

to improve the players' capacity of managing human 

resources. Then, the characters are modeled richly 

using true personalities which are commonly found on 

working teams, in order to create conflicts and 

situations to be surpassed by the player. 

 

This paper is organized as follows. Section 2 

illustrates the use of Artificial Intelligence in character-

based games, especially Rule-based systems. Section 3 

discusses choosing an adequate RBS and game 

development technology. The character-based game 

development model is proposed on section 4. The 

study on applying it on a real case is presented on 

Section 5 and section 6 shows conclusions about the 

research and possible future works. 

 

2. Character-based games and 
Independent Development 
 

Character-based games are the type of game that rely 

strongly on the behavior of its non-player characters 

(NPCs). These are games like Black & White 

[Lionhead 2001], by Lionhead Studios, where the 

player interacts with an autonomous character which 

may behave differently, depending on the player's 

actions. The illusion of life and intelligence passed by 

the game's autonomous characters captivates the player 

and makes the game more interesting. However, to 

achieve this effect it is necessary to reach a certain 

level of realism on the character's behavior. Thus, 

character-based games require a strong focus on their 

character's modeling and on thinking about how these 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

61



characters are going to make the player feel like 

dealing with a living being.  

 

This credibility is shown when the character's 

behavior is adaptable. Some attempts have been done 

to develop this kind of behavior in games. In the 

beginning this was done using simple AI techniques 

such as Finite-state Machines (FSM) [Millington 

2006], as done in classic games such as Pacman 

[Namco 1980].  However, the amount of work required 

to model character behavior using FSM depends on the 

size of the problem. As the demand for believability 

increased, modeling behavior using FSMs became 

more complicated.  

 

Therefore came up the need to incorporate more 

sophisticated AI techniques such as Bayesian 

Networks, machine learning, fuzzy logic, rule-based 

systems and others. Among the available approaches, 

rule-based systems are, probably, the most used [Bourg 

and Seemann, 2004]. One of their main advantages is 

that they model the way how people usually think, 

since the rules are written in declarative language. For 

this reason, they are easy to work with, as well as 

flexible and powerful to solve problems of various 

natures.  Rule-based systems have been used in many 

games [Cavazza 2000], such as Civilization: Call to 

Power [Activision 1999] and Rainbow Six [Red Storm 

1998]. 

 

On the other hand, investing in RBS or any other 

artificial intelligence technique might add an extra cost 

to game development. This goes against the demand 

from independent developers’ community for low-cost 

solutions and mechanisms to develop character-based 

games. For this reason, even when choosing RBS for 

their technical advantages, it is necessary to consider 

how much one has to spend in order to include this 

approach in one’s project. 

 

2.1 Rule-based Inference Engines 
 

Rule-based systems (RBS), also known as Production 

Systems, are already a very popular AI technique, due 

to being easy to implement and powerful. The control 

of the RBS rules is made by an inference engine, the 

heart of the system. The rules are, in general, 

condition-action pairs; the inference engine checks the 

rule conditions and, if they are true, the rule is fired, 

which means the rule actions are executed. One can opt 

to implement an inference engine from scratch to use 

in one's game, but there is also already a great variety 

of implementations available, such as Drools [JBOSS, 

2009] and Microsoft's BizTalk [Microsoft 2009], even 

though they are not directed specifically to game 

development. When choosing an inference engine, the 

developer must keep in mind the character’s demand 

for realism and believability. 

 

 Based on our previous development experience,  on 

character-based games,  we have elicited some 

requirements for choosing RBS in Character-Based 

games. They are: 

 

• Embeddability: The language in which the 
rules are written must be easy to comprehend. 

It may be close to natural language or to a 

standard programming language. This rule 

language should be implemented integrating 

concepts of object orientation and production 

rules, a reusable and easily integrated 

approach known as Embedded Object 

Oriented Production Systems (EOOPS) 

[Pachet 1995]. On EOOPS, due to their 

integrated behavior, objects from the 

programming language might be used on the 

rule conditions and actions, preserving and 

dealing with the aspects of object-oriented 

language (encapsulation, inheritance, and so 

on). For instance, object's fields can be 

checked on the rule conditions and object's 

functions can be called on the rule actions. 

This facilitates rule writing and reuse.  

• Performance: Since the goal is to develop 

games, performance seems to be RBS's main 

issue. It is not useful for a game to have great 

character behavior realism if it will sacrifice 

the game's performance. The RETE algorithm 

is the pattern matching method most 

commonly used and has already been shown 

to be efficient [Forgy 1982].  

• Development support: Even when there is 

good performance, readability and integration, 

a fine support for developers is essential. This 

includes precise documentation, additional 

tools, development support features such as 

rule debugging.  In addition, integrated 

environments and support tools are also 

helpful and should be taken into account. 

Besides that, it is preferable to choose active 

RBS projects, for they have more intense 

updating, bug correction and community 

support.  

• License cost: A free engine is vital to avoid 

adding additional costs associated with the 

rule engine. This is fundamental when 

development is independent or academic. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

62



 

Besides the above criteria, the choice of the 

inference engine is also associated with the 

development platform on which the game will be 

developed. The choices of an adequate RBS as well as 

of the development platform are discussed on the next 

section.  

 

3. Developing a Character-based game 
 

Character-based game development clearly stands for a 

hybrid of game and intelligent system development. 

Hence, requirements come from both sides. From 

games, comes the need to use a proper game 

development platform, with support to audio and input 

control, as well as other game development features. 

Besides, from intelligent systems, comes the need for 

choosing an appropriate AI technique to implement, on 

this case, Rule-based systems. The selected RBS and 

game development platform must be decided, in order 

to develop an idea of development process for this kind 

of games. 

 

3.1 Choosing an RBS 
 

There are many RBS available. A great number of 

them, though, are proprietary, like Microsoft's 

Business Rule Framework [Microsoft 2009], ILOG 

Rules for .NET [ILOG 2009], and Jinni [BinNet 

Corporation, 2005] and do not conform to the 

requirements of independent or academic development. 

Among the free rule-based inference engines available, 

seven were selected and they are described in the list 

below. These RBS were evaluated using the 

requirements listed on section 2.1; the result is detailed 

below and compiled in the Table 1. 

 

• Drools.�ET (.�ET): Drools.NET 

[Drools.NET 2006] is an open-source .NET 

implementation of a java inference engine 

named Drools. It is out-of-date, compared to 

its java companion, has poor unfinished 

documentation and does not have tool 

support. Its strong point is the embeddability, 

since it is an EOOPS and hence has high 

integration with code. Its rule language is a 

clean union of C# and predicate logic. Drools 

aims to have good performance by 

implementing the RETE algorithm. It has not 

been updated since 2007.  

• �XBRE (.�ET): NXBRE [NxBRE 2009] is 

an inactive rule-based inference engine for 

.NET. Unlike Drools.NET it is well 

documented and its rule language is XML-

based, but it has no tool support either. 

Objects referenced by the rules must be 

written in XML, which means the developer 

cannot make a direct integration between the 

objects used inside the code and the objects 

used by the rules. Hence, NXBRE is not an 

EOOPS, an essential feature when regarding 

embeddability. It is open-source too, but   its 

matching algorithm is not known. 

• Simple Rule Engine (.�ET): Simple Rule 

Engine (SRE) [Sierra digital solutions 2005] 

is another open-source rule-based inference 

engine written in .NET. It is, like NXBRE, 

based on xml, but its objects may come from 

C# code, making it easier to embed. This 

project claims to be better in performance 

than NxBRE. SRE is another case of nearly 

abandoned project with extremely poor 

documentation and tool support.  

• Drools Expert (Java): Drools Expert [JBoss 

2009] is an object-oriented rule engine which 

is also open-source. It uses the RETE-OO 

algorithm - an optimization of Forgy's original 

algorithm using Object Oriented 

Programming concepts, intending to have 

high performance. It has the option of writing 

rules in XML as well as in the "native" rule 

language DRL (Drools Resource Language). 

It also allows the user to create DSLs 

(Domain Specific Languages) and is fully 

integrable with Java code. Drools has great 

development support, with rule debugging 

and rule authoring tools and an extensive 

documentation. It is possibly the most 

complete option available. 

• JEOPS (Java): JEOPS [Figueira and 

Ramalho 2000] is an embedded object 

production system, whose rule language 

syntax is Java-based. Unlike the other rule 

engines, in JEOPS, the rule base file is 

compiled to a Java file to be used in the 

application. It is also open source and well 

 Platform Embeddability Performance Docs & 

Tools 

License 

Drools.NET .NET High +(RETEOO) None Open-source 

NxBRE .NET Poor Unknown Medium Open-source 

Simple Rule 

Engine 

.NET Medium Unknown Poor  

Drools Expert Java High +(RETEOO) High Open-source 

JEOPS Java High +(RETE) Medium Open-source 

Jess Java Poor +(enhanced-RETE) High Academic use 

Soar Independent Poor +(RETE) High Open-source 

Table 1: Comparison between free rule-based systems 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

63



documented, but it has no tool support. It 

implements the classic version of the RETE 

algorithm.  

• Jess (Java): Jess [Friedman-Hill 2008] uses 

an enhanced version of the RETE algorithm to 

process rules, claiming to have better 

performance than most engines. It also 

manipulates and reasons about Java objects, 

which demonstrates high embeddability. The 

rules can be expressed in XML-like or Lisp-

like languages, both designed for the Jess 

engine. It has extensive documentation and 

some additional tools such as IDE integration. 

Although it is not free, Jess was included in 

this evaluation since it is available at no cost 

for academic use.  

• Soar: Soar [Laird et al. 1987] Soar is a 

cognitive architecture for applications with 

intelligent behavior, in general. It has tool 

support and is extensively documented. 

Besides, it is platform independent, working 

as service that can be accessed by any system. 

However, this broadness makes it necessary to 

develop a protocol of communication between 

Soar and the application, which raises 

integration work significantly. 

 

Regarding documentation and tools, Drools Expert 

and Jess stand out, while the .NET counterpart of 

Drools stays in the last position. Most of the verified 

engines implement the RETE algorithm or enhanced 

versions of it, making performance comparisons 

harder. In addition, Drools and JEOPS are the engines 

that can be easily classified as EOOPS. Although Soar 

has tool support and documentation, it has some 

integration issues. Thus, it is not hard to notice that 

Java inference engines are the ones that better fit the 

elicited requirements for developing a character-based 

game with low cost. This is natural, given the existence 

of a great variety of open-source consolidated 

inference engines in Java [Stamper 2008]. However, to 

choose an inference engine it is still necessary to define 

which game development technology will be used. 

 

3.2 The game development platform 
 

There are many game development platforms available 

today, but none of them is specifically directed to 

character-based game development. Hence it is 

necessary to choose, from the general purpose 

development options, one that is free, easy to use and 

integratable with the inference engine. Among the 

various options, Microsoft’s XNA has attracted 

attention of the independent game developers’ 

community, even though it is not a game development 

industry standard. This is due to XNA's good learning 

curve (coming from C#.NET's ease of use), game 

development support as well as to it being free. In 

addition to this, the XNA creators club [XNA 2009], 

the official community of XNA game developers, has 

over 300 published games and 100,000 users.  

 

XNA is a set of managed code development 

libraries that intends to make it possible for game 

developers to be more productive when creating games 

for Windows and the Xbox 360. It encapsulates low-

level technological components involved in coding a 

game, allowing developers to focus on the content and 

gaming experience. The XNA Framework is part of 

XNA Game Studio toolset, which works with Visual 

C# Express and Directx SDK, all free tools provided 

by Microsoft [MSDN 2009].  

 

The best-fitting inference engines, though, are not 

written in .NET. But using the .NET inference engines, 

which are less adequate, in order to match XNA may 

compromise the main characteristic of character-based 

games, which is the credibility of the NPCs' behavior. 

Soon comes up the need to integrate XNA's pro-game 

technology and the simulation capabilities of the Java 

inference engines. 
 

4. The proposed model 
 

When designing a development model proposal that 

matches character-based games, it is necessary, as 

pointed out previously, to integrate Java inference 

engines and XNA game development framework. The 

latter is responsible for supporting game development 

and the former for assuring the quality of the character-

based game development main requirement: character 

behavior credibility. In order to achieve this 

integration, IKVM.NET [Frijters 2008] toolset was 

used. It can compile Java packages (JARs) to .NET 

libraries and also allows .NET code to access the Java 

API, promoting the communication between both 

sides. 

 

In the proposed approach, hereafter referred to as 

Cross-platform Reasoning Support Model, the 

compiler is used to convert the Java inference engine 

and its related classes (packed in a JAR file) to a .NET 

library (as described in Figure 1), which can be 

accessed in the .NET environment. Thus, the code 

written in C# over the XNA platform can communicate 

directly with the inference engine. Hence, the 

developer can benefit from the strong points of both 

sides, being able to fulfill the requirements of 

character-based games. 

 

 
Figure 1: Compiling a Java Engine to .NET 

 

 This approach has weak spots, though. It may 

sacrifice one of the criteria used to evaluate de quality 

of inference engines: the tool support. This occurs 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

64



because the Java engine-related tools only work in the 

Java environment. By compiling the engine to .NET, 

all game components stay in .NET, becoming unable to 

access the Java toolset. And during the development 

phase it is extremely important to have features such as 

rule debugging, rule logging, authoring tools and so on.  

  

In order to bypass this problem and be able to use 

all the engine advantages, a specific model directed to 

the development phase of the game is also proposed. 

 

4.1 Cross-Platform Solution 
 

For the purpose of using the tools provided by the Java 

engines to help the development, it is necessary to run 

parallelly the Java and .NET environments. Therefore, 

specifically during the game development stage, the 

already mentioned approach is not appropriate, since it 

focuses on fully developing in the .NET environment. 

 

 The solution to avoid this is a new approach that 

keeps the .NET and Java components apart and 

implements communication between them using the 

Java Remote Method Invocation (RMI) [Sun 2006]. It 

is a way of communication that makes it possible for 

two objects in different virtual machines to contact 

each other, locally or remotely. By doing so, through 

the use of RMI service provided by IKVM, the 

components in .NET are able to communicate with the 

Java engine, and the two environments can work 

simultaneously and individually. This can be done 

simply by using a remote engine interface in .NET that 

will work as a communication protocol. The process is 

described in Figure 2. 

 

 
Figure 2: Communication between Java and .NET 

environments 

 

By using this process, it is possible, for instance, to 

debug rules, and thus raise the chance of bug resolution 

during the development phase of the game. However, 

since communication using RMI may have a negative 

impact on the game performance, it is recommended to 

use this model only during the development phase. At 

the release phase, compiling the engine to .NET 

maintains the necessary functionality and attenuates 

the effects of adding the inference engine to the game. 

 

Next section presents Virtual Team, a game 

prototype where the proposed approach was 

successfully applied.  

 

5. VTEAM 
 

 
Figure 3:  Main game screen of VTEAM 

 

Virtual Team [VTEAM 2009] (Figure 3), a.k.a. 

VTEAM, is a serious game prototype created to assist 

software project managers’ training. During the game, 

the player incorporates a project manager whose goal 

is to finish a project while trying to deal with personal 

issues of the development team. The player has to 

assign tasks, help the team when needed, promote 

outstanding members, and arrange meetings, among 

other actions, in order to finish the project successfully.  

 

It focuses on improving the manager's ability to 

deal with problems related to Human Resources 

Management. VTEAM's goal is to provide for the 

manager being trained a greater experience of 

organizational, methodological, cultural and personal 

processes that are generally characteristic to software 

development teams. This mechanism offers to both 

trainer and trainee a richer experimentation scenario 

when compared to traditional methods and simulators 

used to teach those concepts.  

 

VTEAM is also a character-based game, since the 

interaction between player and virtual characters is its 

main feature. In this game, the characters are 

represented by Synthetic Actors - intelligent agents 

with special features, such as emotions, personality and 

beliefs [Silva 2009]. As in any character-based game, 

the NPCs (team members) need to have behavior 

credibility, especially when this will have great impact 

on the player learning curve. Hence the need for a 

strong focus on the character’s AI.  

 

RBS were chosen to model the characters’ 

behavior, mainly due to the ease of representing 

character knowledge using rules. Moreover, RBS 

usually do not require the developers to be experts on 

the subject, because declarative language is easy to 

understand. For the purpose of guiding the game 

development, the approach proposed in this game was 

applied.  

 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

65



5.1 Cross-platform Reasoning Support Model 
on VTEAM 
 

In order to apply the proposed approach to VTEAM's 

prototype, it was necessary to look for an adequate 

inference engine. At the first version of the game, 

developed in C++, the Soar engine was used to model 

the character’s behavior. Soar works like a black box, 

completely separated from the game code, and in order 

to use it properly components of communication were 

implemented. Besides that, the Soar rule language is 

not very readable, since it uses its own concepts 

regarding operators and automatic state generation. 

 

 Thus, on this version of the project, a different 

engine was chosen, Drools Expert. Drools rule 

language is a hybrid between Java and declarative 

programming, making it easy for developers to 

understand it. Besides that, Drools can be used via an 

integrated eclipse environment, which adds important 

features such as on-line working memory viewing and 

rule debugging - the latter is important, since VTEAM 

deals with a large number of variables and has an 

intense need for game balance. Figure 4 illustrates the 

implementation of the proposed approach on VTEAM. 

  

VTEAM's prototype was developed on the .NET 

framework using the Visual C# Express IDE, due to 

the game development support provided by XNA. In 

order to integrate XNA technology and the Drools 

engine, the proposed process was used. During the 

development phase, Drools is executed from eclipse, 

while the game code is in Visual C# Express. For 

deploying, Drools is compiled into a .DLL, used by the 

C# code. So far, it is possible to say that the application 

of this article’s proposal to VTEAM was successful. 

 

One of the main concerns when working with an RBS 

is its impact on game performance. In order to 

investigate this issue, the prototype FPS rate was 

measured using the proposed approach. There were no 

changes in FPS (Frames per second) rate when using 

the release phase model. And, as expected, the use of 

RMI caused the FPS to fall during the development 

phase. But to bypass this problem, the game and the 

inference engine interface were implemented in two 

different threads, running in parallel. 

 

6. Conclusion 
 

As the demand for high quality and innovative games 

increases, so does the game development cost. Due to 

this state of affairs, independent game developers look 

for low-cost ways to produce high quality games. In 

the case of character-based games, this quality is 

deeply associated with the characters realism. Not only 

visual details, but also, and more importantly, 

believable behavior transmitted by the characters, 

provided by Artificial Intelligence. Thus, it is 

necessary to find ways of including this extra 

complexity avoiding a negative impact on financial 

cost. 

  
The proposed approach allows the creation of a 

character-based game, based on a powerful AI 

mechanism: Rule-based systems. This is done using 

only free tools in a cross-platform way, bypassing the 

need for additional cost on development. However, this 

approach does have some drawbacks. In order to 

implement a cross-platform approach, it is necessary 

for the development team to know both languages 

involved, a demand that might be a problem. In this 

research's case, Java and C# are very similar languages 

[MSDN 2009], which attenuates this problem 

 

As future work, it is important to test the study with 

a complete game and a large amount of rules 

implemented, so that the real impact on performance 

might be verified. Besides, it is also important to run 

tests with various magnitudes of games, which have 

different requirements on AI. Character-based games 

that call for interaction between virtual characters, like 

The Sims, for instance, might have different needs 

compared to those where the character only interacts 

with the player and the scenario, like Black & White 

and Nintendogs [Nintendo 2005].  

 

This article study might also be used on developing 

games that have a rule module, but not necessarily 

associated to intelligent agents, such as The Distributor 

Game [van Houten et al 2005],  which uses rule-based 

                 
Figure 4: VTEAM’s communication with Drools on development phase (left) and release phase (right) 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

66



scenarios. Besides, the model that used RMI, might 

also allow that one Java inference engine works as a 

server for many XNA game clients. These approaches 

have yet to be tested, though.  

 

Acknowledgements 
 

First of all the authors would like to thank the VTeam 

development team and project coordinators for all the 

effort and support. Also thanks to the project partners 

and sponsors:  FINEP, Jynx playware, Valença & 

Associados, Qualiti, CNPq and CIn-UFPE. 

 

References 
 

MORRIS, C., 2009. The �ext Generation of Gaming Consoles 

[online] CNBC. Available from: 

http://www.cnbc.com/id/31331241 [Accessed in 24 July 

2009]  

 

MAXIS, 2000. The Sims. [computer game]. Redwood City, 

USA: Electronic Arts. 

 
LIONHEAD, 2001. Black & White. [computer game]. Redwood 

City, USA: Electronic Arts. 

 

NAMCO, 1980. Pac-man. [computer game]. Tokyo, Japan: 

Namco. 

 

MILLINGTON, I. 2006. Artificial intelligence for games. San 

Francisco: Morgan Kaufmann. 

 
BOURG, D. M. AND SEEMANN G., 2004.  AI for game 

Developers. Sebastopol, USA: O'Reilly. 

 

ACTIVISION, 1999. Civilization: Call to Power [computer 

game] Santa Monica, USA: Activision. 

 

RED STORM ENTERTAINMENT, 1998. Tom Clancy’s Rainbow 

Six [computer game] Morrisville, USA: Red Storm 

Entertainment. 

 

CAVAZZA, M., 2000. AI in computer games: Survey and 

perspective. Virtual Reality 5 (4), 223-235. 

 

 

PACHET, F., 1995. On the embeddability of production rules 

in object-oriented languages. Journal of Object-Oriented 

Programming, 8 (4), 19-24. 

 

FORGY, C. L., 1982. Rete: A fast algorithm for the many 

pattern/many object pattern match problem. Artificial 

Intelligence, 19 (1), 17-37. 

 

MICROSOFT,  2009. Microsoft Biztalk Server 2009: Business 

Rule Framework [online]. Available from: 

http://www.microsoft.com/biztalk/en/us/business-rule-

framework.aspx/ [Accessed in 24 July 2009]. 

 

ILOG, 2009. ILOG rules for .�ET [online]. Available from: 

http://www.ilog.com/products/rulesnet/ [Accessed in 24 

July 2009]. 

 

BINNET CORPORATION, 2005. Jinni: Java I�ference Engine 

and �etworked Interactor [online]. Available from: 

http://www.binnetcorp.com/Jinni/ [Accessed in 24 July 

2009]. 

 

DROOLS.NET, 2006. Drools.�ET home [online]. Available 

from: http://droolsdotnet.codehaus.org/ [Accessed in 24 

July 2009]. 

 

NXBRE, 2009. �xBRE home [online]. Available from: 

http://nxbre.org/ [Accessed in 24 July 2009]. 

 

SIERRA DIGITAL SOLUTIONS, 2005. Simple Rule Engine 

[online]. Available from: 

http://sourceforge.net/projects/sdsre/ [Accessed in 24 

July 2009]. 

 

JBOSS, 2009. Drools: Business Logic Integration Platform 

[online]. Available from: http://www.jboss.org/drools 

[Accessed in 24 July 2009]. 

 

FIGUEIRA FILHO, C. AND RAMALHO, G., 2000. JEOPS - The 

Java Embedded Object Production System. In: Monard 

M. and Sichman J., eds. Advances in Artificial 

Intelligence, 1952. London: Springer-Verlag, 52-61. 

 

FRIEDMAN-HILL, E., 2008. Jess, the Rule Engine for the 

JavaTM Platform [online]. Available from: 

http://www.jessrules.com/ [Accessed in 24 July 2009]. 

 

CARNIEL, M., 2006. JRuleEngine – OpenSource Java Engine 

[online].  Available from: 

http://jruleengine.sourceforge.net/ [Accessed in 24 July 

2009]. 

 

STAMPER, J., 29 July 2008. The 10 Best Open Source Rules 

Engines. Jason Stamper's Blog [online]. Available from: 

http://www.businessreviewonline.com/os/archives/2008/

07/10_best_open_so.html [Accessed in 24 July 2009]. 

 

XNA, 2009. X�A Creators Club [online]. Available from: 

http://creators.xna.com/en-US/ [Accessed 23 June 2009]. 

 

MSDN, 2009. X�A Developers Center [online]. Available 

from: http://msdn.microsoft.com/en-us/xna/default.aspx 

[Accessed 23 June 2009]. 

 

SUN, 2006. Java Remote Method Invocation [online]. 

Available from: 

http://java.sun.com/javase/technologies/core/basic/rmi/in

dex.jsp. [Accessed 24 July 2009] 

 

VTEAM, 2009. Projeto VTEAM [online]. Available from: 

http://vteam.cin.ufpe.br. [Accessed 24 July 2009]. 

 

SILVA, D. R., 2009 Atores Sintéticos em Jogos Sérios: Uma 

abordagem baseada em Psicologia Organizacional. PhD 

Thesis. Universidade Federal de Pernambuco. 

 

MSDN, 2009. The C# Programming Language for Java 

Developers [online]. Available from: 

http://msdn.microsoft.com/en-us/library/ms228602.aspx 

[Accessed 24 July 2009] 

 

NINTENDO, 2005. �intendogs. [computer game]. Kyoto, 

Japan: Nintendo. 

 

FRIJTERS, J.., 2008. IKVM.�ET [online]. Available from: 

http://www.ikvm.net/ [Accessed 24 July 2009] 

 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

67



LAIRD, J., E., NEWELL, A. AND ROSENBLOOM, P.S., 1987. 

Soar: An architecture for general intelligence. Artificial 

Intelligence, 33(1), 1-64. 

 

VAN HOUTEN, S.P.A., VERBRAECK, A., BOYSON, S., AND 

CORSI, T., 2005. Training for Today’s Supply Chains: An 

Introduction to the Distributor Game. In: Proceedings of 

the 2005 Winter Simulation Conference, 04-07 December 

2005 Orlando. 2338-2345. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

68



An open-source framework for air guitar games
Lucas S. Figueiredo João Marcelo X. N. Teixeira Aline S. Cavalcanti Veronica Teichrieb Judith Kelner

Universidade Federal de Pernambuco
Centro de Informática

Grupo de Pesquisa em Realidade Virtual e Multimı́dia

Figure 1: Left: example application being controlled with two yellow gloves. Right: scratch of a game using the platform.

Abstract

This paper presents an open-source framework for developing
guitar-based games using gesture interaction. The goal of this work
was to develop a robust platform capable of providing seamless real
time interaction, intuitive playability and coherent sound output.
Each part of the proposed architecture is detailed and a case study
is performed to exemplify its easiness of use. Some tests are also
performed in order to validate the proposed platform. The results
showed to be successful: all tested subjects could reach the objec-
tive of playing a simple song during a small amount of time and the
most important, they were satisfied with the experience.

Keywords:: air guitar, music game interaction

Author’s Contact:

{lsf, jmxnt, vt, jk}@cin.ufpe.br, aline@gprt.ufpe.br

1 Introduction

Over the past few years, game industry has added peripheral tools
to games enhancing gameplay experience. These peripherals have
also increased levels of active engagement with games and widened
the appeal of games to audiences who may never have played them
before. Examples of such tools include the Eye Toy [Entertainment
2007], Dance Mats [Byrne 2004], the Wii motion controller [Nin-
tendo 2006], shown in Figure 2, among others. One of the most
successful examples is the evolution of game interaction with the
advent of music games.

Figure 2: Console peripherals, from left to right: PS3 Eye Toy,
Dance Mat and Wii basic controllers.

The concept of music games refers to video games in which the
gameplay is meaningful and often almost entirely oriented toward
the player’s interactions with a musical score or individual songs.
In the last decade, they have conquered a significant space on game
market, and in consequence, game industry is now focusing its ef-

forts on musical instruments and simplified devices that favor user
interaction.

Video game interaction represents a research area in constant evolu-
tion. It has started with game-specific, few functional controllers, to
more sophisticated ones, including features such as motion sensors
and adaptable design formats, as shown in Figure 3. Recently, Mi-
crosoft presented Project Natal [Microsoft 2009], a system contain-
ing depth-sensors, a camera and a microphone (shown in Figure 4),
which claims to be capable of replacing conventional controllers.
Such technology would allow a person to use his/her own arms and
legs to directly interact with the game.

Figure 3: Controller evolution example, from the Atari controller
(left) to the sophisticated Wii Wheel and Wii Zapper ones (right).

Figure 4: Project Natal sensors.

This “controller-less” approach may be applied to games similar
to Guitar Hero or Rock Band. The idea of playing an “air guitar”
refers to imitate rock guitar gestures along music without the actual
physical instrument. It is more showmanship than musical perfor-
mance and does not require real musical skills. Instead of just acting
along with the imaginary guitar, the user could control an actually
playable “virtual” instrument, capable of emitting sounds according
to his/her movements.

Concerning the project of an “Air Guitar game”, it is possible to
emphasize some requirements in order to obtain a robust and usable
application:

• Interaction has to occur in real time. Since the user is playing
music, the time constraint is very strict and implies that the
delays on visual and audio responses are minimum. This may
be obtained by using simple image processing techniques, ca-
pable of executing on most computer configurations.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

69



• User actions may mimic the act of playing a real guitar. There
is no meaning to create an “air guitar” application if users
must press buttons instead of holding an instrument and actu-
ally playing it.

• Realistic sound response is required. The sound output may
reflect what should happen in case the user was playing a real
guitar. Simplifications can be used, in order to make the in-
teraction easier, but the sensation of immersion may only be
reached by correct action-reaction correspondence.

In this context, an open-source framework for developing guitar-
based games using gesture interaction is proposed. The goal is
to develop a robust platform capable of satisfying the previously
mentioned requirements that can be easily extended and usable in
order to allow integration in interactive applications such as music
games. The main contribution is the framework itself, since no sim-
ilar open-source tool was found in the literature. Making available
such tool should drive the gaming community to develop more and
better music games using the “controller-less” approach.

This paper is organized as follows. The next section presents some
related work regarding music games, specifically about guitar-
based applications. Section 3 describes the proposed framework
architecture, the main technologies and the techniques used. Sec-
tion 4 shows as case study an example application and the results
obtained performing user tests. Finally, some final remarks are pre-
sented in Section 5 and future works are pointed in order to improve
the proposed framework.

2 Related Work

Many works share their piece of contribution to the air guitar frame-
work’s idea. Among them, music games play their role as the main
motivator of this work. Due to the increased popularity of this type
of games in the last few years, it has been conquering space in the
current game market [Wixon 2007]. Adagio [Games 2007], Gui-
tarFreaks [Konami 1998], FreQuency [Systems 2001] and DJ Hero
[Europe 2009] are some games that can be cited, varying from sim-
ple flash-based web implementations to more sophisticated ones
made for the latest console generations.

The games cited before served as a starting point for the evolution
that was going to happen. Frets on Fire (an open-source music game
for PC) [Voodoo 2006] suggested a different use for the keyboard,
in which the player should hold it using both hands, simulating
an electric guitar. Games such as Guitar Hero [RedOctane 2005]
and Rock Band [MTV Games 2007] improved user interaction by
adopting simplified musical instruments for game input. Conse-
quently, they remained for a long time on the top of sold games,
and still are a fever among players scattered all over the world.

Starting with plastic guitars, the use of specific input devices sim-
ulating musical instruments for game control has been popular-
ized. Nowadays, it is possible to form an entire band by the use
of drums, microphones and guitars (see Figure 5), all played by dif-
ferent users. As a way of improving or evolving the current user
interaction available on games, especially on music games, a new
type of interaction was necessary. The concept of the proposed
framework was influenced by a great number of input devices and
user interaction methods, such as Dance Mats, Wiimotes and the
recently announced Project Natal (presented at the E3 conference
in June 2009 and not yet available). From those three aforemen-
tioned, Project Natal is the one with closest relation to the proposed
work, since it also deals with the recognition of player’s movements
without using wires or buttons for interaction. Another example of
body motion capture is found in [Camurri et al. 1999]. They pro-
posed a system that recognizes some user intentions into a dancing
performance and uses this information as input for some tasks, i.e.
sound generation.

The Virtual Air Guitar [Mäki-Patola et al. 2005], [Karjalainen
2006] project is the related work that mostly approximates to this
work. In fact, it implements basically the same features that are
available on the proposed framework, and also uses the same image
processing methods. However, since The Virtual Air Guitar project

Figure 5: Input devices for music games. Electric guitars joysticks
made based on a Gibson SG on the left, and on the right a simplified
drums joystick.

happens to be a proprietary solution, there is no code neither an ex-
ecutable demo application available to the community. The same
occurs with the Virtual Slide Guitar project [Pakarinen et al. 2008],
a similar work that differs basically by the capture method, using
infra-red sensors. There is no downloadable source code or a demo
application of it. So, some of the major contributions of this frame-
work is the fact that it is open-source, makes use of a simple but
robust color tracking algorithm (which favors application perfor-
mance), interprets movements like a virtual guitar being played, and
provides developers with a hands-on demo application, that can be
modified and used as a start point for more complex simulations.

Besides applications similar to guitar games, the air guitar [Tur-
oque 2006] practice was analyzed as well. It is important to notice
that Air Guitar is a consolidated activity, even with championships
disputed all over the world (the oldest one is in its 14th edition).
The performance of Air Guitar players was observed and evaluated
regarding the movements that could be incorporated in the frame-
work. Some of them, such as fingered-ones, are not detected using
the color tracking method proposed in this paper; in spite of that,
the framework interaction is based on their hand movements. The
idea of moving a hand to play the strings and the other one to choose
the chords to be played has been focused on this research. Details
regarding framework’s implementation, example applications and
tests performed are detailed further.

3 The Framework

The proposed framework consists of a tool capable of enabling the
player to use his/her hands as an “input device” for games and other
entertainment applications. More specifically, it focuses on trans-
forming the “air guitar” performance in a way of interaction. The
idea is to provide the game developer with the basis for construct-
ing the interaction with the “imaginary guitar”, in a way that it is
possible to adjust the framework’s use according to the needs of the
project being developed.

The complete framework is modularized in order to be easily used,
altered and updated. The overall architecture is presented in Fig-
ure 6. It represents a pipeline of a generic application containing
all five major steps involved in the air guitar processing: input im-
age acquisition, image processing, guitar simulation, sound gener-
ation and rendering. It is important to notice that the framework
makes use of other libraries that provide support for each process-
ing phase. DSVideoLib [Pintaric 2005] was used for capturing we-
bcam’s image, FMOD Ex [Technologies 2005] was responsible for
playing the output sounds and all visual results were rendered with
OpenGL [Graphics 1992]. The entire code is written using the C++
language. Each pipeline step is better described in the next subsec-
tions.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

70



Figure 6: Framework pipeline architecture.

3.1 Camera

Tracking the player’s hands can be achieved by using many dif-
ferent techniques. Haptic gloves, Wiimotes or model-based hand
tracking [Nintendo 2006] are well-known alternatives for perform-
ing such task. The proposed framework adopts a color tracking
approach as it proved to be the best cost-benefit method to acquire
knowledge about the position of user’s hands in real time. This type
of tracking requires, besides the PC itself, a common webcam and
a pair of gloves to be worn by the user, with a color that contrasts
well with the surrounding environment.

This method presents many advantages, listed as follows. The first
one is the cost of required equipment, which is lower when com-
pared to the price of haptic gloves or even Wiimotes. The process-
ing load demanded by the algorithm is low, which makes possible
its real time execution. It is also robust to occlusions, rapid motions
and blur, being capable of recovering the tracking immediately after
such events.

The Camera module comprises all implementation regarding we-
bcam configuration and image capture. It has functions that pro-
vide access to different webcam information, such as the acquisi-
tion of data from the last frame (for further rendering). This module
communicates with the webcam attached to the computer using the
DSVideoLib library.

3.2 Image

Given the current frame, obtained by accessing Camera functions,
the color tracking is then initialized. The role of the Image module
is to find the two groups of pixels that represent both player’s hands
(assuming they are already wearing the gloves). This information
is used on the estimation of hands’ screen position. The processing
phase responsible for this task searches for all pixels inside the cur-
rent frame that are within a pre-defined range of color values and
then organizes the encountered groups as described next.

The search starts at the top left pixel and iterates over all subse-
quent ones. The first step attempts to create color groups based on
the searched color along all image. In order to recognize if a pixel
remains within the specified color range, the relationship between
its RGB components is analyzed. For example, in case the applica-
tion is looking for yellow gloves, the search takes into account that
both Red and Green components must present similar values and
that the Blue component value has to be considerably lower than
the other ones. This approach works well since the relationship
between RGB components is robust to most illumination changes.

A labeling algorithm [Suzuki et al. 2003] is a procedure for assign-
ing a unique label to each object (a group of connected components)

in an image. This type of algorithm is used for any subsequent
analysis procedure and for distinguishing and referencing labeled
objects. Labeling is an indispensable part of nearly all applications
in pattern recognition and computer vision. In this work, a specific
labeling algorithm was implemented in order to locate the regions
corresponding to the selected glove colors. It is described as fol-
lows.

Initially, an image map is created in order to store the pixels already
visited, and the ones marked with a valid label. For each pixel, a
verification is performed to check if its color matched the range of
the one searched. In case there is no match, the pixel is marked
as visited in the image map and the search continues on the next
adjacent pixel. If there is a match, then a pixel group object is
created and the search starts using the current pixel as origin. The
search considers a 4-connectivity neighborhood scheme (vertical
and horizontal - up, down, left and right directions) and takes as
radius size n a customizable value (the default value is 2). This
value guarantees that even if a pixel is separated from the origin
pixel by a small distance, according to the search radius, it still can
be included in the pixel group.

The labeling algorithm developed adopts a greedy approach, where
each successfully neighbor found (a pixel that is within the speci-
fied color range) is added to the initial pixel group and a new search
is initiated using this pixel as start point. It is important to high-
light that the search for pixel groups always marks the visited pix-
els in the image map and such pixels are not considered on further
searches. Since small image resolutions are used (320 x 240 pixels),
this guarantees an acceptable processing time for real time applica-
tions. When a pixel group search ends (there are no more successful
neighbors found), the algorithm continues to iterate across the im-
age, ignoring already marked pixels and creating new pixel groups,
until the entire image is visited.

Figure 7: Color groups composed by yellow sets of pixels. The
greater groups almost ever represent the player hands.

In sequence, after all pixel groups are already constructed, the two
with the majority of pixels are selected. In case the size of these
two groups is lower than a pre-defined threshold, the processing
stops and the current frame is considered as tracking failure. If this
is not the case, these two greater groups will represent the hands of
the player as shown in Figure 7. This is a guaranteed way of finding
the player hands, considering that the gloves’ color contrasts clearly
with the background environment.

In case there are other elements that match the color requisite, they
must be represented by smaller pixel groups, since the hands of the
player are located near the camera and in consequence they occupy
a larger area on the screen. For simplification reasons, only the
center of each hand is considered on further processing. The center
of a color group (also known as geometric center, or just centroid) is
obtained by summing all pixel coordinates (horizontal and vertical)
related to that pixel group and then dividing the result by the amount
of pixels of the group.

Once both centers are calculated, the one located on the leftmost
part of the screen refers to the left hand and the other the right one.
Considering that when playing the guitar a person rarely inverts the

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

71



side of his/her hands, this approach presents a good result. Be-
sides this functionality, the Image module provides developers with
functions to access the encountered color groups in a way that it is
possible for him/her to understand and alter some framework be-
haviors.

3.3 Guitar

Considering the hand points were obtained, the virtual guitar simu-
lation is initialized. The Guitar module task is to detect player’s in-
tentions when performing movements similar to the act of playing
a real guitar. The idea is to automatically interpret his/her move-
ments and give as return both visual and audio cues. The guitar
model available from the framework corresponds to a simplified
version of common electric guitars, since it has less frets and a sin-
gle string. This simplification is fundamental in order to make pos-
sible the player interaction. Playing with more strings would make
the interaction impracticable, since the hand movements should be
much more precise (as happens with a real guitar). The number of
frets is customizable, but it is highly recommendable to use only a
few (from 2 to 10 frets) instead of the number corresponding ex-
actly to a real guitar (about 22/23 in most cases), due to the same
problem described earlier (precision of interaction).

The guitar simulation process works as described next. The result
of this process is the correct placement of a virtual guitar based on
the position of the hands. Assuming that the left hand is positioned
over guitar’s arm (it is possible to change this configuration), the
following steps are executed in sequence:

1. The two points in red shown in Figure 8 are used as refer-
ence points, found based on the hands locations. According
to them, it is possible to make an approximate estimative of
guitar’s arm and body positions. Both arm and body possess
motion speeds, which are defined before the application is
running. Such speeds are used to make the guitar follow the
user hands, as if the player were holding it. Since the left hand
movements follow the guitar axis direction and the right hand
movements are perpendicular to this same axis, different mo-
tion speeds are applied to the reference points. Because of its
perpendicular amplitude of movement, the right hand presents
a higher motion speed than the left one.

2. Whenever the current frame represents the first successful
frame tracked (i.e. all previous frames were considered track-
ing failures or this was the first frame captured from the we-
bcam), the reference points will correspond exactly to the
hands points. If this is not the case, both guitar’s arm and
body will follow respectively left and right hand points, as
shown in Figure 8.

3. The guitar movement is described by the following algorithm.
The position of reference points is updated based on a fixed
percentage of the difference vector between reference and
hand point. Such percentage corresponds to the motion speed
of guitar’s arm or body. If the distance found is lower than
a customizable jitter threshold, then the reference point keeps
its position. This approach guarantees a soft displacement for
the guitar’s arm and body points, which favors visualization
and interaction experience.

4. The player interaction is defined as follows. Whenever he/she
crosses the “string line” (the same as the guitar axis), the
framework captures the intention of playing. The fact that the
guitar’s body moves slower than the arm helps the user pre-
venting non-intentional sounds. On the other hand, the speed
of guitar’s arm does not need to be small.

5. The framework makes use of other few mechanisms to guar-
antee that players’s interaction with the air guitar was cor-
rectly captured. The jitter threshold is one of them. Because
of it, the string line stops following the player’s hands when-
ever they are too close to the line. This way, the string line
will not cross the right hand point by its own. Another im-
portant policy is that only high intensity movements represent
the intention of playing. These are measured by the distance
between last and current right hand points. Finally, a single

Figure 8: Guitar points (arm and body) following the hands points.
Note that the arm point is much closer to its corresponding string
point than the body point. This occurs due to the motion speed of
each one.

cross direction is taken into consideration, down or up. In
case both were used, the sound would eventually be played
even if it was not user’s intention.

6. Simultaneously to the capture of player’s intention, two val-
ues are stored for further use by the Sound module. Such
values correspond to the captured intensity and distance be-
tween right and left hands at the moment the player crossed
the string line.

3.4 Sound

After gathering both distance and intensity values, as described ear-
lier, the sound processing starts. The module must be adequately
configured before running in order to work properly. At first, the
number of frets needs to be specified. Based on this information,
the virtual guitar arm is divided into different frets that play dis-
tinguishable sounds. The closer the fret is to the guitar’s body, the
higher is the frequency of the corresponding sound.

Every sound generated by the virtual guitar is related to a previ-
ously chosen base sample, which is recommended to be a played
single note stored in any format supported by FMOD Ex (.wav,
.mp3 among others). Such base sample will be played whenever the
user plays the guitar, what means that the intensity entry value has
surpassed the intensity threshold (pre-defined value of the Sound
module). The base sound will be played in a way that its frequency
will be modified according to the fret pointed by the user’s left hand.
In other words, the Sound module takes into consideration the in-
formation of the loaded standard frequency audio sample (sound
file) and increases its frequency whenever necessary. The first fret
of the guitar (the farthest to the guitar’s body) will correspond to
the base sound, while the next ones will increment the frequency
played as described next.

The Sound module uses the twelve-tone equal tempered scale as
base to perform frequency increments. It was chosen because of
its segmentation method, which is widely used in current music
panorama. Almost all fret-divided instruments use it, and it rep-
resents the division that most approximates the just intonation (a
segmentation which presents a not equal division but has perfect
consonant intervals) without adding a lot of additional notes. The
difference between the tempered scale and the reference case (the
just intonation) is not higher than 1%, as shown in Table 1. The
just intonation could also be used, but at the same time it presents
perfect intervals, in some combinations it does not perform well.
Others equal tempered scales could also be used, since the number
of divisions per octave (currently twelve) can be easily altered in
real time (e.g., some Indian musicians use 31 divisions).

This way, the initial frequency of the base sample is altered by mul-
tiplying its value by 21/12 (approximately 1.0595) as many times
as the number indicated by the current fret. The base sound is con-
sidered the matrix for all other sounds, even in case it is not a well

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

72



Table 1: Relation between the just intonation and the twelve-tone
equal tempered scale. Notice that the difference between the corre-
spondent increments is never larger than 1%.

Increments Just Intonation Equal Temp. Difference
0 1/1 = 1.000 20/12 = 1.000 0.0%
1 16/15 = 1.067 21/12 = 1.059 0.7%
2 9/8 = 1.125 22/12 = 1.122 0.2%
3 6/5 = 1.200 23/12 = 1.189 0.9%
4 5/4 = 1.250 24/12 = 1.260 0.8%
5 4/3 = 1.333 25/12 = 1.335 0.1%
6 7/5 = 1.400 26/12 = 1.414 1.0%
7 3/2 = 1.500 27/12 = 1.498 0.1%
8 8/5 = 1.600 28/12 = 1.587 0.8%
9 5/3 = 1.667 29/12 = 1.682 0.9%
10 9/5 = 1.800 210/12 = 1.782 1.0%
11 15/8 = 1.875 211/12 = 1.888 0.7%
12 2/1 = 2.000 212/12 = 2.000 0.0%

known note, only preserving the relative relationship between them;
i.e., the absolute tuning considering A4 as 440Hz is not taken into
account, since the objective is to guarantee that different frets per-
form coherent sounds, differing from each other.

Some improvements can be adopted in order to make the interac-
tion more attractive. To avoid undesired notes, it is possible to ex-
clude some sounds, thus limiting the playable tone notes set to a
few ones. Any of the twelve sounds and their corresponding dou-
bled frequencies (octaves) can be activated/deactivated at any time.
Consequently, in case the player wants to play a relative pentatonic
scale with the base sound as matrix, he/she just needs to turn off the
undesired notes as shown in Figure 9. The interface from the demo
application developed for testing the framework shows at the top all
enabled notes, from 1 to 12. In this case, for enabling/disabling any
of them, the user should press any of the Fn keyboard keys, with
n varying from 1 to 12. This feature also makes it possible to re-
strict the notes to a set of sounds necessary to play a specific song,
as detailed later on the Case Study section. When a note is deacti-
vated, the fret that would play its sound now plays the next activated
one. Then all frets remain valid; what changes is the notes that are
played.

Figure 9: Demo application interface. At the top of the image it is
possible to see that the tone is limited to a pentatonic scale using
the base sound as the first note. The current number of frets is
six and can be set at any time during the playing. In the guitar,
the frets division is represented by the green squares. Finally, the
sound index represents the current sound archive that is being used
as base sound and can also be dynamically altered.

Another implemented feature corresponds to the volume of the
played sound according to the intensity of the input. The faster
the right hand movement is, the higher will be the sound played.

The envelope of the played sound (which determines the volume of
the sound during a specific time) can also be altered by providing
an increased sustain effect to the played note. A fret-based slide
was also implemented, which makes the sound to change even in
case the player does not move the right hand, by only sliding the
left one after a played note, in a similar way to the slide technique
on real guitars. Finally, more sound channels can be added in order
to create more complex sound combinations, thus enhancing user’s
experience by simulating chords, for example. The Sound module,
together with FMOD Ex, provides functions capable of managing
all these parameters at any time, on the fly.

3.5 Render

This module is responsible for returning visual information to the
player, helping him/her to achieve the application objectives. Al-
though it is entirely possible to play without visual cues, interac-
tion becomes more interesting with the viewing of the virtual guitar
(and its frets divisions) according to the gloves’ positions. Besides
that, it can show other information such as text indications for ac-
tivated/deactivated notes, current played frequency, among others,
as shown in Figure 9.

The Render module also provides developers with some debugging
functions, like rendering guitar points (both arm and body). This
is useful for the application’s test phase, since debugging is one
of developers’ most time consuming activities. This module uses
OpenGL (and GLUT [Graphics 1996]) to perform such functions.
If necessary, the render engine can be changed by constructing an-
other render module (using OGRE3D [Team 2005], for example),
similar to the one provided by the framework, without modifying
the other framework modules.

4 Case Study

In this section will be described the case study, it is a simple ex-
ample application using the framework. The user interface was a
similar version of the interface shown in Figure 9. The framework
evaluation process is described next.

4.1 Evaluation Methodology

In this work, the proposed framework was evaluated using a demo
implementation of a simplified air guitar game. The tests were
performed on an AMD Athlon X2 4800+ CPU, 1 GB of RAM
equipped with an NVidia 8800 GTX GPU. The time necessary
in order to correctly play a pre-defined sequence of notes was
recorded. To assure the results were consistent, it was tried to ex-
pand the tested subjects to the highest number possible.

A total of 23 people were subject to the tests performed, varying on
their age (from 17 to 47 years old) and gaming experience. After
getting used to the demo application (playing freely during some
minutes), they were asked to play a version of the introduction of
the Smoke on the Water song (by Deep Purple), which is mainly
composed by 4 different notes, as shown in Figure 10.

The virtual guitar was previously configured to allow this specific
sequence to be performed. An electric guitar A3 played note with
some distortion was used as base sound, being the first note of the
introduction (differently from the B2 based power chord of the orig-
inal version of the song). Only four different sounds were enabled,
being the base sound (sound number 1) and the sounds 4, 6 and 7.
The number of frets were set to four, each one representing one of
the enabled notes, by this way, facilitating the players task.

Figure 10: Initial sequence from the “Smoke on the Water” song.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

73



The test environment was organized as follows. An A4Tech we-
bcam was placed at 1.30 meters above ground and about 1.5 me-
ters in front of the user. Due to the camera characteristics, this
placement showed to be a good choice for comfortably capturing
the user’s hands, allowing a good amplitude of movements. The
demo visualization was projected on the wall, about 2.5 meters
away from the spot where the subjects should stand. This should
improve user’s view and his/her immersion in the demo.

Preparation: the subjects put on the yellow rubber gloves and took
place standing in front of the webcam. After that, they were told
how to correctly position body and hands in order to enable the
viewing of the entire virtual guitar, as well as their hands, on screen,
as shown in Figure 1.

Familiarity with the application: before performing the test itself,
the subjects had up to 3 minutes to understand the interface and
check their performance by playing random notes.

Test: after understanding how the virtual guitar works, the sub-
jects were presented to the sequence of notes that should be played
(shown in Figure 10). They were told about the correspondence
between the numbers written on the paper and the notes on the gui-
tar, which varies according to the left hand’s position. The total
amount of time considered was the one spent performing correctly
the entire sequence, from the moment the subject played the first
note until the last correct one. In case of making some mistakes
while playing the notes, the subject was told to restart the sequence
from the beginning, without resetting or stopping the time count.

After performing the test, the subjects were oriented to answer a
small free-form questionnaire about their experience with the ap-
plication. The subjects were asked about difficulty in hands posi-
tioning, the application’s visual and audio feedback and their im-
pressions about the experience.

4.2 Results

The tests with the virtual guitar framework demo showed that the
application is functional, intuitive and interesting. All 23 subjects
submitted to the test were capable of performing the musical se-
quence correctly, without any problems. The mean execution time
was 33.6 seconds, varying from 11 to 80 seconds.

Figure 11 shows the age of subjects and the time spent doing the
test, indicating more density between the 20-30 year-old range,
which is a potential target for a product using the framework tech-
nology. Most of the subjects in that age range spent between 11 and
41 seconds. This time was considered very satisfactory, since these
people had never interacted with the application before.

Figure 11: Time spent × Age results.

Asked about the guitar feedback according to their hand interac-
tion, 100% of the subjects said not to have felt any delay or misin-
terpretation of their movements. That real time feedback capacity
is one of the framework’s main attributes, due to the fact that any
delay, even the smallest one, would compromise the usability of

the virtual guitar, making hard for the user to move his/her hands
spontaneously and intuitively.

Some of the subjects found difficulty while positioning their hands,
in part due to the complete unknowing of the interface, in part due
to the position of the webcam, which was fixed at the same height
in all tests. Variations in height and scale of the subjects were not
considered, and as a consequence some of them had to position
their hands too high, too low, too open or too closed. However,
most people managed to overcome this initial problem by finding
an adequate way to position their hands in order to play the music
sequence.

All tested subjects provided positive results regarding their expe-
rience. They seemed excited about the possibility of applying the
framework capabilities into a real scenario.

Many of the answers suggested developing a game based on the
demo application. Besides that, they pointed some improvements
and adaptations, such as: adding more strings to the virtual guitar,
in order to get a more realistically simulation; applying the technol-
ogy to other instruments, like bass and drums; possibility of chang-
ing the guitar settings using the gloves themselves instead of the
computer keyboard; implementation of other types of user inter-
action, like slide (by moving the left hand continuously along the
frets, the sound would change without moving the right hand).

4.3 Lessons Learned

The tests described before were performed using a simplified set
of the framework features. However, it proved to be possible to
play entire songs, using all the frets and notes possibilities. The
framework has several use possibilities, such as game development
(as shown on the right of Figure 1), or an educational artifact, which
could teach musical concepts, like notes, tones and rhythm to the
users.

Due to its features, it was possible to notice that the framework is
capable of providing both developers and users with all three re-
quirements previously listed: real time interaction, actions mimick-
ing a real guitar control and a realistic sound response. The satis-
faction of tested subjects showed that performing a known type of
interaction increases the application’s playability. It is possible to
have a simple but functional application only by using the frame-
work, while complex functionalities could be added taking as base
the demonstrated example application.

Taking a game as an application example, some features could be
added to make it more interesting, such as: player’s possibility to
choose between several guitar models to play (as shown in Figure
12); monetary rewards system, in exchange for the correct execu-
tion of the songs; possibility to play new songs, progressively un-
locked during the game; navigation through the game menus using
only the hands wearing gloves, instead of a mouse or keyboard, us-
ing the same color-tracking technology applied in the guitar frame-
work; support to guitar effects such as vibrato and slide (as shown in
Figure 13 and Figure 14); more attractive design to the game inter-
face, showing information of score and performance of the player
(besides the sequence to be played, of course).

Figure 12: “Choose your guitar” screen.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

74



Figure 13: Gameplay screen showing a “vibrato” indication.

Figure 14: Gameplay screen showing a “slide” indication.

5 Conclusion

In this work, an open-source framework for air guitar based ap-
plications has been detailed, showing that with a pair of colored
gloves and a webcam it is possible to recognize user’s intention of
playing a virtual guitar. It was also described a case study, where
an example application was used to validate the framework. This
application was tested and the results showed to be successful: all
tested subjects could reach the objective of playing a simple song
during a small amount of time and the most important, they were
satisfied with the experience.

As future work, a number of new features can be added to the
framework. Some effects such as guitar bend and vibrato simu-
lation can be implemented to make the player interaction more in-
teresting. A multi-player mode should also be possibly present in
the next versions, with the only restriction that the players must use
gloves with different colors.

The air guitar framework is available for download at
http://sourceforge.net/projects/airguitarframew.

References

BYRNE, M., 2004. Console players win on their points.
http://www.fyrne.com/Article pages/Console players win.html.

CAMURRI, A., RICCHETTI, M., AND TROCCA, R. 1999. Eye-
sweb - toward gesture and affect recognition in dance/music in-
teractive systems. In ICMCS ’99: Proceedings of the IEEE In-
ternational Conference on Multimedia Computing and Systems,
IEEE Computer Society, Washington, DC, USA, 9643.

ENTERTAINMENT, S. C., 2007. Ps3 eyetoy.
http://en.wikipedia.org/wiki/PlayStation Eye, October.

EUROPE, X. H. I., 2009. Dj hero coming this year.
http://xbox.hdtvinfo.eu/component/content/article/21-dj-hero-
coming-this-year.html, March.

GAMES, A., 2007. Adagio.
http://www.newgrounds.com/portal/view/388085.

GRAPHICS, S., 1992. Open graphics library (opengl).
http://www.opengl.org/.

GRAPHICS, S., 1996. The opengl utility toolkit (glut).
http://www.opengl.org/resources/libraries/glut/.

KARJALAINEN, MATTI; MKI-PATOLA, T. K. A. H. A. 2006. Ex-
periments with virtual reality instruments. In JAES Volume 54,
Audio Engineering Society, San Francisco, USA, 964–980.

KONAMI, K. D. E., 1998. Guitarfreaks.
http://en.wikipedia.org/wiki/GuitarFreaks.

MÄKI-PATOLA, T., LAITINEN, J., KANERVA, A., AND TAKALA,
T. 2005. Experiments with virtual reality instruments. In NIME
’05: Proceedings of the 2005 conference on New interfaces for
musical expression, National University of Singapore, Singa-
pore, Singapore, 11–16.

MICROSOFT, 2009. Xbox360 project natal.
http://www.xbox.com/en-US/live/projectnatal/.

MTV GAMES, E. A., 2007. Rock band.
http://www.rockband.com/, November.

NINTENDO, 2006. Wii remote controller.
http://en.wikipedia.org/wiki/Wii Remote, November.

PAKARINEN, J., PUPUTTI, T., AND VÄLIMÄKI, V. 2008. Virtual
slide guitar. Comput. Music J. 32, 3, 42–54.

PINTARIC, T., 2005. Dsvideolib.
http://www.ims.tuwien.ac.at/ thomas/dsvideolib.php, Octo-
ber.

REDOCTANE, A., 2005. Guitar hero.
http://hub.guitarhero.com/index uk.html, November.

SUZUKI, K., HORIBA, I., AND SUGIE, N. 2003. Linear-time
connected-component labeling based on sequential local opera-
tions. Comput. Vis. Image Underst. 89, 1, 1–23.

SYSTEMS, H. M., 2001. Frequency.
http://www.harmonixmusic.com/#games, November.

TEAM, T. O., 2005. Object-oriented graphics rendering engine
(ogre3d). http://www.ogre3d.org/, March.

TECHNOLOGIES, F., 2005. Fmod. http://www.fmod.org/, Decem-
ber.

TUROQUE, B. 2006. To Air is Human: One Man’s Quest to Become
the World’s Greatest Air Guitarist. Riverhead Trade.

VOODOO, U., 2006. Frets on fire.
http://fretsonfire.sourceforge.net/, August.

WIXON, D. 2007. Guitar hero: the inspirational story of an
”overnight” success. interactions 14, 3, 16–17.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

75



Automatic Sprite Shading
Djalma Bandeira and Marcelo Walter
Centro de Informática - UFPE, Brazil

{dbs, marcelow}@cin.ufpe.br

(a) (b) (c) (d) (e)

Figure 1: From the outlines (a) we consider the basic colors (b) that are taken as input to generate different shading distributions (c, d, e)
controlled by a local light source.

Abstract

Sprites have been present since the first arcade games and console
generations. Despite the advances in computer graphics and the
whole representation of virtual worlds on 3D environments, 2D-
based games still have their market, specially on portable consoles
and mobile devices. The visual quality of today’s games have incre-
ased as a result of hardware improvements in processing power, me-
mory, and a richer color gamut. However, most of the editing task
is still manual, using graphics editing tools. We present a method to
automatically generate shading distribution on sprites, one impor-
tant step during the editing process that is time demanding for most
manual works on art design today. Our method allows to control the
position of a local light source and to generate an approximation of
the shading distribution effect. Although our solution is not phy-
sically accurate, according to the shape of the represented object,
it can produce well usable results for 2D game systems in many
practical cases, when compared with handmade sprite shading.

Keywords:: Real-time processing, art design, programming tech-
niques, computer animation

1 Introduction

Two-dimensional games have a large impact on the entertainment
industry today. Even with the evolution of 3D graphics, these ga-
mes still assume an important role on the market. This is motivated
for several reasons, from availability and low cost of mobile devi-
ces, to a requirement of simple but “catchy” graphics on games for
kids. Besides, the development of native 2D games is generally less
complicated than 3D games, specially on art related stages. The
production is also widely explored by beginner game developers,
for learning and application of basic 2D fundamentals.

Inside the game development process there is the art design stage,
which is generally time consuming. For many projects, a team of
game artists share the task of designing the visual identity for a
game. In this stage, there are steps of graphics production and edi-
ting. This involves, among other things, art and effects on raster
graphics, texture manipulation and, as the focus of our work, sprite
editing.

The process of sprite generation and editing in game development
is still a manual artistic composition for most cases. In fact, most
of the literature describes the process as a time demanding proce-
dure. It is generally presented as tutorials on websites and pixel
art communities [Yu 2005; Tsugumo 2001; Sedgeman et al. 2004],
although some basic concepts can be found on references such as
[Feldman 2001]. Here we address the step of sprite editing related
to the manipulation of shading effects, used to increase details on
2D images and make them look more like a 3D object, lit by a local
light source.

Most of the solutions used nowadays rely on manual graphics

editing on the image considering one or more fixed light sour-
ces. Alternatively, some solutions build a 3D coarse representation
of the shape to better estimate and generate shading details, and
then synthesize and express this information as a 2D image. Both
methods have drawbacks when a new shading configuration is de-
sired, requiring more image editing or another retrieval of shading
information for the 3D representation in order to achieve the expec-
ted results.

We propose here an automatic solution to estimate and generate
shading distributions on sprites which allows to control the posi-
tion of a light source and experiment the results in real-time. Our
approach, although straightforward, generates a visually consistent
approximation of shading effects considering the light source. The
results presented show good visual quality when applied on basic
2D sprites, which by nature do not require a highly precise shading
distribution. Figure 1 shows the use of our method to automatically
synthesize shading distributions controlled by the position of a local
light source.

2 Related Work

To the best of our knowledge, there are no references involving sha-
ding manipulation directly related to sprites. However, more gene-
ral approaches were presented, particularly focused on animations.
One relevant work is [Johnston 2002] that presents a method to ap-
proximate and control the lighting distribution for 2D cel anima-
tion to aid the composition of cartoon live-action scenes. He uses a
multi-channel image information to correct and obtain what would
be a good approximation of normals, generating very convincing
results for the final composed shading. This inspired the later work
of Bezerra and colleagues [Bezerra et al. 2005], where they present
a pipeline for 2D animation that also uses estimated normals from
an outlined image to approximate and generate shading details, in
addition with some simplifications from the previous work. Ac-
cording to the authors, the technique they proposed was the only
method genuinely image-based so far and is easily applied to 2D
cel animation.

Another work that deserves attention is [Anjyo et al. 2006]. They
proposed a method to manipulate stylized light and shading anima-
tions in real-time, allowing the control of properties such as sca-
ling, rotation, translation and splitting on shaded areas. Although
flexible, their method still needs additional capabilities on tasks like
making shaded areas as stylized highlights more editable. The work
in [Todo et al. 2007] follows the same concept, presenting a set
of algorithms to manipulate local shading distribution for a bet-
ter consistence and enhancement on the final results. Although it
is possible to obtain very good shading approximations with these
methods, both approaches work based on 3D domain applications.

These related works present techniques on shading construction
relying on 3D information or normal reconstruction to work, and
while some may be suitable to be applied on sprites as well, they

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

76



generally demand several adjustments and/or layer constraints and
manipulation for a good result. Our technique, on the other hand,
provides a visual consistent shading approximation, exchanging the
not so required physical accuracy on sprite images for a more flexi-
ble and fast method aiming both artists and beginners users. A good
argument for our method is that what mainly differs a sprite shading
from conventional shading effects on animations, is the fact that the
former case generally considers an arbitrary light source not related
to the external environment.

3 Method

The method we propose is divided into the following four stages,
explained below:

1. Image Segmentation

2. Highlight Spots Approximation

3. Shading Distribution

4. Final Composition

3.1 Image Segmentation

We consider initially as input a sprite image containing only basic
colors. In this first stage, we segment the image and separate the
pixels that will be processed later. We first mark the background
pixels with an uniform color as invalid pixels. The outline pixels
themselves may or may not be also set as invalid pixels. This par-
ticular condition for outlines can alter the result drastically, as we
use the key idea that the outline pixels separate distinct regions of
the sprite and therefore determine basic shape and sections of the
object being represented. This affects directly the shading distri-
bution of separated small regions instead of considering the whole
image as a single object without interior outlines. The final shading
result will depend on the outlines distribution. On the other hand,
ignoring the interior outlines can be useful in cases where a global
shading distribution is desired.

The result of the image segmentation can be seen as a mask, where
all the other colors are interpreted as valid pixels and represent the
same region to be processed. Figure 2 below illustrates how the
presence of outlines affects the mask and the final result:

(a) (b)

Figure 2: Example of mask and the respective shading without (a)
and with (b) outline constraint.

3.2 Highlight Spots Approximation

Once the image is properly segmented, we now have to search for
possible highlight spots. These spots are the regions of the image
with the maximum exposure to the light source. First, we make
image sections in one of the two axis directions (x or y) by tracking
possible segments following the opposite axis. Considering initially
the y-direction sectioning, we scan the entire image for x-segments

as continuous lines of valid pixels. The segment ends when an inva-
lid pixel is found or the bound of the sprite image has been reached.
This may lead to several segments per line on the image. Since our
method allows to control the position of the light source, we define
the parameter lp as the local position of the light inside the range
[0.0, 1.0], by taking the [0.0, 0.0] position as the top-left corner of
the coordinate system. Suppose that the end of a certain segment
was found and p0 and p1 are the start and ending pixels positions,
we calculate the center pixel pc using a simple linear interpolation:

pc = p0 + lp(p1 − p0)

Since lp controls the light position, it consequently adjusts the cen-
ter pixel on both directions to a position that “follows” the light
source. We repeat this procedure for every single line of the sprite
image and once all center pixels were computed, we have a sectio-
ning on the y-direction. We restart this process by following now
the x-direction looking for y-segments. Figure 3 shows each sepa-
rated sections and the combination of both.

The next step is related to the shading weight of pixels. Now that
we computed the sections, we classify every pixel in three levels of
shading weight: weight 2 for those pixels inside the intersection of
both X and Y segments, weight 1 for those pixels that belong to
only one section and weight 0 for those out of any section. These
weights determine the exposition of every pixel from the current
light source, considering that those with weight 2 are the center of
a highlight spot.

3.3 Shading Distribution

After the shading weight is properly assigned for every pixel, we
now calculate the average shading distribution. We do this for all pi-
xels by averaging the weight of every pixel inside the neighborhood
of a certain regular window of size Sw. The window size is a para-
meter that varies according to the size of the sprite and the desired
shading diffusion of a pixel among its neighbors. We consider set-
ting the size Sw = 7 as a good value for examples around 100
pixels of resolution. Once the shading distribution in the whole
image is processed, we blur it to reduce some sharpness that may
affect the final result. We do this by averaging them again on a
neighborhood window of size Sb that may be different in size from
Sw. We set Sb = 3 for the case previously discussed, redefining
both windows sizes to vary according to the sprite image dimensi-
ons. We can adjust both window sizes Sd and Sw independently, to
better fit the resolution and desired shading effect. Figure 4 shows
how we can improve the computed 3D look of two basic forms by
adjusting the window size parameters.

(a)

(b) (c)

Figure 4: 3D shape approximation on shading of the input (a) can
be improved from (b) to (c) by resetting the window values Sw = 7
and Sb = 3 accordingly. The parameters were reset to Sw = 49
and Sb = 15 for a sphere shape, and Sw = 21 and Sb = 9 for a
torus shape. The yellow dot in (a) is the light source position.

Once all average weights are computed, we reset all the values to
the range [0.0, 1.0] by considering the minimum and maximum ave-
rage shading distribution found on the previous step to finally have

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

77



(a) (b) (c)

Figure 3: Sectioning on the y-direction (a), x-direction (b) and the combination of both directions (c) with the highlight centers marked as
red pixels. The green pixels are the center pixels for each segment.

the estimated shading distribution. In Figure 5 we show some sha-
ding distributions considering the light source in different positions.
Notice how the lighter and darker regions change according to the
light position.

Figure 5: Variety of shading distributions based on the local light
source position (seen as a yellow dot).

3.4 Final Composition

This last stage consists of combining the shading distribution pre-
viously computed to obtain different levels of shaded colors from
the basic ones. We call these variations color shades, whose num-
ber per basic color is defined as the number of shades. To allow
variable compositions, the color shades may be controlled by two
parameters: shading offset and shading shift.

3.4.1 Shading Offset

The shading offset controls the distribution of color shades for every
basic color inside the range [0.0, 1.0] of the shading distribution.
This parameter may be set evenly for every color shade considering
the number of shades, or may be adjusted to change the balance dis-
tribution among them. Figure 6 illustrates different shading offsets
for the basic skin color as well as the result on the entire sprite.

3.4.2 Shading Shift

The second parameter, shading shift (Ss), will control to which
direction the variation of colors will assume for the current color
shade. Let us consider a simple case of four shades for the previous
sprite. The trivial case of Ss = 0 will treat the first color shade
as the basic color of the sprite image among the possible colors.
Lower values of shading distribution with this set leads to darker
versions of the basic color. Now, if the shading shift is set to 1,
as can be seen on Figure 7, the basic colors will be “shifted” to
the right on the palette of possible colors. The same will occur for
negative values, shifting to the left of the palette instead.

Figure 6: Different shading distributions adjusted by the offset.

3.4.3 Shading Composition

The two parameters discussed above will allow a wide range of
shading variations. To calculate new colors from the basic color,
we consider the shading shift Ss and a delta shading parameter ∆S.
The delta shading is the percent of the basic color that separates
different color shades. So, for every increase in the color shade, we
have the corresponding color as a subtraction of the basic color.

Since we have the shading offset for each color shade, we can find
from which shade S every pixel belongs to, by evaluating the value
of its shading distribution. We then set a γ parameter as the value of
the highest RGB component for the basic color. Now considering
c as the color component and the previously discussed parameters,
the final color c′ can be defined as:

c′ = c− (γ∆S)(S − Ss)

Notice that the shading shift Ss adjusts the overall color variation
by controlling positive or negative subtraction of the basic color

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

78



Figure 7: One of the color palettes (skin color) with selected sha-
des inside the green rectangle. The shift adjusts a new set of color
shades on the palette.

from the difference of the shade S. With the final color computed
for every color component, the last operation is to clamp values out-
side the range [0, 255] of possible colors on the RGB color space.

3.4.4 Extended Applications

After we have computed the shading information, other shading-
based effects can be provided. One example is the highlight spe-
cular effect. Assuming that the shading distribution s of a certain
pixel is higher than a threshold ω, we can obtain the new color ch
inside the specular region from the previous color c′ and the high-
light level β((s− ω)/(1.0− ω)) as:

ch = (1.0− β)c′+ βsc

In this equation, β is the highlight level for the shading considering
the distance from the threshold to the maximum value allowed 1.0.
Then, we obtain the new color by balancing this highlight level
between the previous color shade c′ and a specular color sc. This
is a simple approach we propose to control the effect with just two
parameter tweaks, but other ideas can be elaborated and applied as
well. Figure 8 shows and example using this method.

(a) (b) (c)

Figure 8: Our application extended to handle specular highlights.
The glass goblet sprite (a) without (b) and with (c) highlights. The
parameter values used were ω = 0.4 and sc = 0.9 for all color
components.

Another extension for application using shading information is to
generate dithering effects, instead of uniform color shades. We used
the Floyd-Steinberg algorithm [Floyd and Steinberg 1977] to gene-
rate an alternative shading with less color shades, such as presented
in Figure 9. The dithering effect as a shading representation with
less color shades can be used for an alternative shading style or a
palette simplification solution duo to hardware/software limitations.

(a) (b)

Figure 9: Sprite shading without (a) and with (b) dithering effect.

4 Results

Most results presented in this paper were computed considering
sprite images around 100 pixels of resolution. With minimum ad-
justments, we can handle specular highlights by considering that
pixels whose shading distribution is over a certain threshold will
assume a specular color. Figure 8 shows and example of this appli-
cation on a glass goblet sprite.

Figure 10 shows a comparison between a manual shading effect and
the automatic shading from our method. Notice that, even with the
differences on shading distribution, our result is still visually com-
patible with a manual shading work and good enough for practical
use. The computed result can later be refined by user manipula-
tion. The manual artistic work may take a few hours whereas our
solution is real-time, and besides, allows arbitrary light positions.

One possible drawback of an automatic solution is the shading
coherence on sprite animation. Our approach, however, preserves
this coherence, allowing batch processing without compromising
the final work. Figure 11 shows a few frames of an animation loop
after applying the automatic shading from the same light source.

Finally, in Figure 12 we show the shading processing with different
parameter sets for shading shift and light source position to simulate
alternative local light conditions.

5 Conclusion

We proposed an approach to estimate shading distributions on sprite
images, considering adjustable parameters such as position of the
light source and style related parameters involving variation of co-
lor shades. Although simple and fast, our method can be applied on
a wide variety of sprites with a very flexible control of shading de-
tails at interactive rates. This ensures a better user experimentation
and a faster achievement of desired results that on traditional tech-
niques. The shading information generated allows the implementa-
tion of effects that extend beyond those presented here. Like [Be-
zerra et al. 2005], our method is genuinely 2D and the only one
focused on sprite images. Since it does not require any 3D infor-
mation, it is easy to implement and so highly recommended for be-
ginner game developers to learn and test on their applications. Our
technique is more recommended for low resolution sprite images,
although its application on large sprites or even entire scenes may
generate good shading results depending on the color distribution
and/or outline details. Figure 13 shows how the processed shading
can be evaluated as a normal distribution computed with a center
light source and image gradient calculation from the shading. This
is just to establish a comparison between the shading on the formal
procedure and the use of recovered normals from the same shading.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

79



We used the Phong illumination model [Phong 1975] for the nor-
mals with sphere mapping coordinates.

For future work, we will consider possible adaptations of the
method for vector graphics, since games with vector-based images
have drawn a lot of attention in the last years. We will also focus on
improvements to approximate the shading coherence to the object
shape.

(a) (b) (c)

Figure 10: A basic color sprite (a) and the result of a manual sha-
ding work (b) and our method (c).

Figure 11: Frame sequence of an animation loop. The shading
coherence on the resulting animation is well preserved.

Acknowledgements

We would like to thank Meantime Mobile Creations for helping
us test the method by sending some state of the art game spri-
tes (Figure 10). Work partially supported by FACEPE through
grants IBPG-0216-1.03/08 and APQ-0203-1.03/06 and CNPq th-
rough grant 483356/2007.

References

ANJYO, K., WEMLER, S., AND BAXTER, W. 2006. Tweakable
light and shade for cartoon animation. In NPAR ’06: Procee-
dings of the 4th international symposium on Non-photorealistic
animation and rendering, ACM, New York, NY, USA, 133–139.

BEZERRA, H., FEIJO, B., AND VELHO, L. 2005. An image-based
shading pipeline for 2d animation. In SIBGRAPI ’05: Procee-
dings of the XVIII Brazilian Symposium on Computer Graphics
and Image Processing, IEEE Computer Society, Washington,
DC, USA, 307.

FELDMAN, A. 2001. Designing Arcade Computer Game Graphics.
Wordware Publishing, Inc.

(a) Shifts: 0, 0, -1 and 2.

(b) Shifts: 2, 1, 0 and -1.

Figure 12: Applications using 4 (a) and 8 (b) shades with variati-
ons on local light source position and shading shift.

(a) (b)

Figure 13: An evaluation of normal approximation. The shading
on a standard procedure (a) and using estimated normals (b) obtai-
ned from the same shading.

FLOYD, R., AND STEINBERG, L. 1977. An adaptive algorithm for
spatial grey scale. In Proceedings of the Society for Information
Display, 75–77.

JOHNSTON, S. F. 2002. Lumo: illumination for cel animation. In
NPAR ’02: Proceedings of the 2nd international symposium on
Non-photorealistic animation and rendering, ACM, New York,
NY, USA, 45–ff.

PHONG, B. T. 1975. Illumination for computer generated pictures.
Commun. ACM 18, 6, 311–317.

SEDGEMAN, L., DAVIES, K., DIXON, I., VAN BRUGGEN, B.,
PLEIZIER, W., AND LEE, O., 2004. Pixel joint. http://
www.pixeljoint.com.

TODO, H., ANJYO, K.-I., BAXTER, W., AND IGARASHI, T. 2007.
Locally controllable stylized shading. In SIGGRAPH ’07: ACM
SIGGRAPH 2007 papers, ACM, New York, NY, USA, 17.

TSUGUMO, 2001. So you want to be a pixel artist?
http://www.petesqbsite.com/sections/
tutorials/tuts/tsugumo/default.htm.

YU, D., 2005. Derek Yu’s Website. http://www.derekyu.
com.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

80



Charack: tool for real-time generation of pseudo-infinite virtual worlds for
3D games

Fernando Bevilacqua
Cesar Tadeu Pozzer

Marcos Cordeiro d Ornellas
UFSM, Programa de Pós-graduação em Informática, Brazil

Figure 1: Coastlines and islands procedurally generated by Charack

Abstract

In MMO games the player’s experience is mainly influenced by the
size and details of the virtual world. Technically the bigger the
world is, the bigger is the time the player takes to explore all the
places. This work presents a tool (named Charack) able to gener-
ate pseudo-infinite virtual worlds with different types of terrains.
Using a combination of algorithms and content management meth-
ods, Charack is able to create beaches, islands, bays and coastlines
that imitates real world landscapes. The tool clearly distinguish the
generation of each type of content. The contribution of the tool is
the ability to generate arbitrarily large pieces of land (or landscape)
focusing on detailed coastline generation, by means of using proce-
dural algorithms.

Keywords:: MMO, virtual worlds, terrain generation, 3D games,
noise, procedural generation, multifractal

Author’s Contact:

{fernando,pozzer,ornellas}@inf.ufsm.br

1 Introduction

The computer games market has been evolving considerably over
the years. Since the first console, the hardware performance has
increased and new graphic technologies were developed, resulting
in a wide range of themes and game styles. In the multiplayer
games, players interact with other human beings and also with
NPCs, which are represented by virtual characters. That kind of
game is popular and the social interaction between players is a mat-
ter of research [Griffiths et al. 2003; Ducheneaut et al. 2006]. In the
category of multiplayer games there are the massively multiplayer
on-line (MMO) ones, which are on-line games featuring large num-
ber of players interacting with each other in a huge virtual world.

An MMO can feature millions of players, such as EverQuest [Sony
Entertainment 2007] and World of Warcraft [Blizzard Entertain-
ment 2007], the latter with more than 6 million subscribers [Clark
2006]. A persistent virtual world is an important topic to keep the
game fun and attractive to the player. The bigger is the world to be
explored, technically the bigger is the time the player has to spend
in order to explore all the places. As a result of such huge virtual
worlds, their creation and subsequent upgrade are a complex task.
EverQuest and World of Warcraft present a virtual world with a
wide diversity of geographical features such as mountains, valleys,
forests, fields, caves, etc, and most of them have specific names and
are related to the game story. The manual creation of those vir-
tual worlds requires a team able to design heightmaps, adorn land-

scapes, ensure usability of the map (avoid unreachable places, for
instance), create interesting places for players, etc. To help on that
task, the development of a tool able to generate complex virtual
worlds is useful to speed up the development of 3D games such as
MMOs.

The solution proposed in this work is the development of a tool,
called Charack1, able to generate complex virtual worlds in real-
time using noise-based techniques for terrain generation. Charack
was designed to allow developers to use its features in order to gen-
erate 3D terrains for games, particularly MMOs, with minimal hu-
man intervention in the generation process. The content genera-
tion is made on demand. As the user moves along the world, the
elements inside the user’s view are processed and stored into the
memory and the ones away from the user’s view are removed. Even
though the generation of all elements is based on random numbers,
if the player visits an specific point A, then walks for miles generat-
ing a completely different set of landscapes, and returns to point A,
the same previously seen landscape will be shown again. Charack
handles separately the content generation of continents, topography
and coastlines, so each of those elements can be independently ad-
justed in order to produce highly customized results.

This paper is organized as follows. Section 2 describes related
work concerning the generation of finite or infinite virtual worlds.
Section 3 presents the tool structure and the techniques used in
the content generation process. Section 5 describes and illustrates
the results that Charack produced. Finally section 6 presents a
conclusion and ideas for future work.

2 Related works

There are several related works concerning the generation of finite
or infinite virtual worlds. One of them creates an infinite city that is
presented to the user on demand as it walks on the ground [Greuter
et al. 2005]. The world were divided into a grid composed of several
squares, called cells. The location of each cell is used with a global
seed as an input for a hash function [Wang 2000]. The result of this
function is used as a seed for a pseudo random number generator
and it defines all the characteristics of the buildings within a cell.
As a consequence of that approach the contents of a cell is always
the same, no matter if the user moves and that cell is removed from
the memory. That work was the ground zero for Charack develop-
ment, however the original idea was changed in order to make the
tool suitable to generate more types of terrains (mountains, plains,
continents, etc.), not only streets and buildings. The approach of
content generation made on demand was maintained, but the cells
organization was removed.

1Charack is available at http://code.google.com/p/charack

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

81



Figure 2: Results of the planet map creator used by Charack

The use of a procedurally generated world approach [Linda 2007]
is very close to the concept of content generation aimed for
Charack. In that work, a spherical planet is created as a result of
a recursive division of a geometric shape, then noise functions are
applied to the mesh to generate the heightmap. There is no distinc-
tion between the content generation approach for continents and the
content generation for the terrain within the continents. As a result
the continents are created by flooding the heightmap with a wa-
ter plane, which will produce the coastlines based on the sea level
height and the amount of ripples in the topography. The content
itself is not generated on demand. Charack was created from an
evolution of that idea, but with limitations. The world created by
Charack handles differently the content generation of continents,
coastlines and the heightmap and it also generates the content on
demand, however it does not use a spherical approach.

Another related work was a tool used to build the SkyCastle mul-
tiplayer game engine [Häggström 2006; Häggström 2009]. For the
heightmap generation, parameterized procedures and fractal based
systems are combined in a layered approach: starting with a base
map, the application merges a new map with the base one in each
iteration. The new maps are pre-calculated and generated using Per-
lin noise [Perlin 1985]. To texturize the landscape and to adorn it
with plants, several techniques are used [Cohen et al. 2003; Prze-
myslaw and Lindenmayer 1990; Lintermann and Deussen 1998;
Weber and Penn 1995]. Charack uses a similar noise approach in
order to create the terrain height, however it was not initially de-
signed to generate extra content such as trees and plants.

The generation of a virtual world as a result of recursive subdivi-
sions of a quadtree [Dollins 2002] is very similar to the Charack
proposal. In that work, a world with huge proportions is created
and its content is generated on demand as the user moves. The
heightmap is created in a parameterized and multi-resolution way,
so the closer the user is of place, the greater is the amount of detail
there. There is also no distinction in the content generation process
of continents, coastlines and land. The proposed heightmap gen-
eration is used by Charack, however continents and the coastlines
generation process are completely different.

Another approach uses fractals affected by erosion for real-time,
procedural generation of terrains [Olsen 2004]. For the erosion
simulation, thermal [Musgrave et al. 1989] and hydraulic methods
are used. Charack has no feature connected with the weather in-
fluence, even though it produces some sort of very basic erosion
simulation when all sharp edges of the heightmap are removed by
a smoothing algorithm.

The planet map creator based on the generation of a spheric world
using a recursive subdivision of a tetrahedron is another approach
concerning procedural content generation [Mogensen 2009]. All
the generated information is part of a complete virtual world featur-
ing highly customizable continents and oceans created as a result of
a projection of pixels onto a sphere, a method similar to ray trac-
ing [Whitted 1980]. That planet map creator is used by Charack
as a starting point on the continent generation process. Figure 2
illustrates the planet map creator results.

Figure 3: Charack’s basic structure

3 Tool organization

3.1 Basic structure

Analyzing the related works, virtual worlds are generated through
several approaches, but none of them handles differently the con-
tent generation for continents, coastlines and topography. Although
there are variations in how the heightmap is created, the generation
of continents is a result of a water flooding plane. This method al-
lows the developers to focus on the content generation for the land,
however it has a simple approach concerning continents and coast-
lines. The main idea and contribution of Charack is the content
generation handled differently for each world element (continent,
coastline, etc.), with an aggressive and specific approach for each
one. This is a new approach for the content generation process,
which is different from the the related works that focuses on con-
tent generation as a unified process. The term pseudo infinite used
in the paper title is necessary due to physical limitations in comput-
ers hardware: an unsigned integer, for instance, can store a certain
amount of data; if there were no physical limitations, the tool would
be able to generate, in fact, an infinite world.

In order to create a virtual world that reaches the presented pro-
posal, a top-down plan is used for the content generation. The
Charack data flow begins in a macro view of the world, which are
the continents, evolving to a micro view of the planet, which are the
content generation for each vertex that will be drawn in the screen.
Figure 3 shows Charack basic structure.

3.1.1 Maps generator

At the top of the chain is the map generator, which creates the con-
tinents that exist throughout the virtual world. This module is an
encapsulation of the solution created by [Mogensen 2009]. When
the tool is initiated, it uses a user defined seed to generate all the
continents. Once the continents are generated, all the information
related to terrain types (land, water and coast) are stored in a matrix
called macro-matrix (MM), which is used by all the other algo-
rithms.

3.1.2 Slice manager

Below the MM and the map generator is the slice manager (SM). It
extracts a portion of the virtual world (the user’s view described as
a regular mesh) and provide the rendering engine with information
about the heightmap. In order to obtain the required information to
create the heightmap, the slice manager uses the coastline generator
(CG), which uses the height generator (HG) and the data stored in
the MM.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

82



Figure 4: Mapping the MM to the virtual world: each MM vertex
represents several vertices in the virtual world

In the context of the SM, there is no information about land or wa-
ter, only a set of vertexes and their height values. Using the position
of the user as a guide, the SM slices the virtual world and, for each
collected vertex, it queries the CG in order to find out the height
value for that vertex.

3.1.3 Height generator

The height generator (HG) defines the height value for each ver-
tex in the virtual world. To ensure that the developers can create
a customizable heightmap based on their needs, new functions to
generate content can be added to the tool in a simple way.

3.1.4 Coastline generator

The coastline generator (CG) will map each vertex of the slice man-
ager to the MM in order to find out the terrain type of that vertex.
If the vertex being analyzed is mapped to a location in the MM that
is described as water, then the CG assigns a height value equals to
sea level for that vertex and returns it to the SM. If the vertex is
mapped to a place described as (simple) land, then the CG will use
the information provided by the HG in order to set the height value
for that vertex. Finally, if the vertex is mapped to a place described
as coast, then the CG uses its own structure (together with the MM)
to set the height value for the that vertex.

The resulting virtual world technically has height and width defined
by the maximum size of a signed integer, however it is physically
impossible to generate a MM with such proportions. Since the MM
is smaller than the virtual world, an MM’s entry (i, j) represents
several vertices in the virtual world. Figure 4 illustrates the MM
mapping process.

The smaller is the MM size, the more vertices in the virtual world
will be represented by the same entry in the MM. If the virtual world
had 1000x1000 as its size and the MM had 10x10 as its size, for
instance, it means that each entry of the MM represents 100 vertices
in the virtual world. If one of these entries is described in the MM as
coast, then there is an area of 100x100 vertices in the virtual world
that must be a coast. When any of those vertices in that particular
area of the virtual world is analyzed by the CG, it will work on it
and return it with different values, which will result in a coastline
for that area, not an area entirely filled with land or water.

3.1.5 Rendering engine

The rendering engine draws the created heightmap in the screen.
The result is rendered as a triangles mesh that is texturized accord-
ing to the height value of each vertex in the mesh.

Figure 5: Regular mesh describing the virtual world. At the right
a wireframe rendering

4 Implementation

The main problem concerning Charack’s implementation was the
content generation performed on demand. Based on the fact the
user can only see what is inside the visible area, all the content gen-
eration algorithms need to take into account only the information
that is available in the user’s view. Even though this approach is
efficient for resources management (process only the visible ele-
ments), it increases the complexity of the content generation algo-
rithms.

The algorithm that generates mountains, for instance, has no way to
determine where the mountain ends, because the world outside the
user’s view technically does not exist yet, it will be generated as the
user moves. One approach to solve that problem would be the use of
a function that describes the mountain backbone, but this function
should not rely on begin/end points, because they could not exist in
a certain time. If that function does not need any begin/end points,
at least it would have to rely on the position of the user in the virtual
world. If the function must be aware of some special points, those
points have to be previously processed, which would break the on
demand content generation concept.

In addition the algorithms are drastically affected by the fact that the
information they receive in a certain time may disappear altogether
in the next iteration, since the user can move and change the visible
content. Using the example of the mountain generation, a mountain
could present an abrupt end, because the points being used for the
content generation left the user’s view.

To circumvent these problems the content generation was divided
into three main stages: infinite terrain, continents and height gen-
eration. The on demand content generation affects differently each
of these stages and the problems and solutions related to each stage
are described in the following sections.

4.1 Infinite terrain

The main idea for the content generation is to allow the user look
at new content each time a significant movement is performed. As
the user walks, the tool must be able to identify where the observer
is located in the world in order to generate the content around that
position. To solve this problem, the player is able to look at the
screen and see a slice of the virtual world, however it has no explicit
divisions such as cells. The slice is described as a regular mesh as
figure 5 shows.

In order to texturize the sliced data a set of images is interpolated
and managed by the shading language GLSL [OpenGL 2007]. The
height value of the vertex defines the interpolation weight of each
texture. As a consequence, a sand texture has higher weight for
vertices featuring a low height value, for instance. Figure 6 shows
all the available textures.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

83



Figure 6: Set of image used for terrain texturization

Figure 7: Random planets generated with different seeds. (a) and
(b) maps featuring height value information; (c) map featuring only
information about what is water/land

4.2 Height generation

The main idea for the terrain height generation is the use of a para-
metric function that informs the height value of each vertex. The
function is seeded with the point location in the world. As a con-
sequence, the function is able to describe all the height information
in the world with no limitation concerning the world size. The pro-
cessing time is related to the size of the user’s view because the
function uses the point information to calculate its height value.
The height values are generated with a Perlin noise function.

4.3 Continents

The generation of continents and oceans has been proposed in or-
der to break the monotony of a landscape composed only by land
and to increase the similarity of the virtual world with real world
landscapes. The solution for the continents generation consists in
pre-process the land areas and store that information for later cal-
culations. With that approach, the on demand content generation
has been partially broken, since the continents are generated before
all the other content, but it ensures a better control over water/land
areas.

The continents generation is based on the planet map creator de-
scribed in section 2. That planet generator was used because it
has several parameterization options, such as the possibility to use
a seed to manage all the random calculations. Figure 7 (a), (b) and
(c) illustrates the results obtained with the planet generator.

4.3.1 Problems with continent generation

As previously explained in section 3.1, each entry of the MM is
mapped to several vertices in the virtual world. A direct conse-
quence of that mapping process is the generation of large areas fea-
turing straight land lines, as illustrated by figure 8. If there were
no hardware limitation and if it were possible to generate a MM
featuring the exact size of the virtual world, the matrix would con-
tain the necessary resolution for the tool to accurately determine
whether a vertex is land or not land, in a ratio of 1:1 (one MM
entry is mapped to one world vertex). This approach, however, is
not suitable because a matrix with such proportions consumes many
resources and processing time. Although the tool allows customiza-
tion of the MM size, tests showed that a MM featuring 800x800
as its size has enough information to be processed by all the other
algorithms.

All images showing Charack results were generated from a world
with 3x3 million vertices and a MM with size of 800x800. It
means that each MM entry represents 3750 vertices in the virtual
world. Figure 8 illustrates the results obtained by the tool when no
algorithm is used to generate extra content to fill the empty spaces
in the virtual world. This figure illustrates a place in the virtual
world that represents the transition between two different points of
the MM (a land point and a water point). To explain what is hap-

Figure 8: The result of no algorithm to generate extra content to
fill the discrepancies in the MM mapping process

pening, assume the tool is drawing the world at position (x, y,
z), which is the mapping result of an entry (i, j) in the MM,
which is described as land; as the tool increases the coordinate in
order to draw the landscape, each new position is mapped to the
MM. If the result of the mapping process of the new coordinate, (x
+ 1, y, z)) for instance, is still the entry (i, j) in the MM,
then the tool will again draw a land vertex on the screen. Assum-
ing that only at point (x + 10, y, z) the vertices start being
mapped to a different entry in the MM, such as (i + 1, j) (as-
suming it is described as land), then all points before the position
(x + 10, y, z) are drawn as water and all vertices after that
location are drawn as land.

Figure 8 shows clearly when the world coordinates start being
mapped to a different entry in the MM, which is when the tool
replaces the land rendering with the water rendering. As a con-
sequence of no algorithm being applied to generate content for that
transition area, the user will move along the coastline and will see
only straight lines.

4.3.2 Coastline disturbance

The mapping process of the vertices of the virtual world to the MM
produces very unrealistic landscapes. A real world beach has a nat-
ural curvature and is not likely to have a length of 20 Km in a per-
fectly straight configuration. Although the objective of this work
is not to create photo-realistic landscapes, such unreal beaches are
not acceptable. To circumvent this problem, a coastline disturbance
is applied to the locations where the mapping process is made be-
tween two MM points, one of them described as land and the other
one described as water. The algorithm is described below.

The MM has a complete description of what is land and what is wa-
ter in the virtual world. Each of its entries has a descriptor, which
tells the other algorithms what type of terrain one vertex of the vir-
tual world is after it is mapped to the MM. Charack features three
types of terrain: water, land (continent) and offshore (land in con-
tact with water). After the continents are pre-processed and stored
in the MM, it only contains information about land (continents) and
water.

From that moment, the first step of the coastline disturbance algo-
rithm is performed. Using the current MM as its input, the algo-
rithm scan each MM’s entries updating the descriptor of all entries
that represents coasts. A entry is classified as coast when at least
one of its neighbors is water. After the algorithm ends, the MM
contains the three types of terrain described before (water, land and
offshore). The next step to apply disturbance to the coastline is
the content generation based on the descriptor of each MM entry.
When the tool is creating content to be drawn on the screen, each
vertex being drawn is tested against its descriptor in the MM. If the
vertex is mapped to a land entry in the MM, then the function will
set a height value for that point. If the vertex is mapped to a water
entry in the MM, then the function will set the sea level height to
that point. Finally if the vertex is mapped to a offshore entry in the
MM, then the function will disturb the land/water information of

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

84



Figure 9: Coastline disturbance algorithm

Figure 10: Small heightmap generated by the coastline disturbance
algorithm

that vertex, which will result on a non-straight coastline. Figure 9
illustrates the algorithm.

The MM entries A and B have a descriptor indicating that they are
classified as a coast. Plan M describes the MM and plan V describes
the result of the mapping process between them. It is not described
in the figure, but each block of plan V is composed of several ver-
tices, while each block of plan M represents only one MM entry. The
MM entry C is mapped to a massive block of land in the plan V, as
its descriptor tells the tool that it is a entry described as land. The
entry A would also be mapped to a massive block of land, but with
the intervention of the coastline disturbance algorithm it is mapped
to a different configuration. During the content generation for the
vertices that are inside the block RA, the coastline disturbance al-
gorithm alters the land/water information for each vertex, so that
the block will not be composed of land or water vertices only, but a
combination of them instead.

The implementation of that process is based on a noise function
and random numbers with a parametric function deciding what is
land and what is water for all vertices described as a coast in the
MM. Using the vertex position in the block RA, the function maps
that information into a spectrum of values created by a Perlin noise
function. What the parametric function does is check if the hash of
the vertex being analyzed is inside or outside of the spectrum. The
process can be illustrated as a height test of a value against a small
heightmap (which is created as a result of the noise spectrum): if the
return of the noise function for that vertex is greater than a certain
value (which is the granularity of the block being analyzed), then it
is classified as land, otherwise it is classified as water. The higher is
the granularity of the block, the greater is the amount of land on that
location. Figure 10 illustrates the small heightmap generated by the
coastline disturbance algorithm when block RA is being processed.

4.3.3 Beaches

The coastline disturbance algorithm minimizes the problem of un-
realistic coastlines, but the outcome is not quite good enough.
When Charack is rendering a slice of the world, for each vertex
described as land a height value is set it; the same applies to the
vertices that are described as water, but in that case the height value

Figure 11: Beach generation algorithm

is always the same (the sea level). As a direct result of that ap-
proach if the tool is rendering a set of vertices which belongs to a
mountain and the next vertices are described as water at the MM,
the landscape will features a ”step”. It happens because the moun-
tain backbone was generated very close to the water, which means
that its rendering is abruptly interrupted when Charack finds ver-
tices described as water. Although there are cliffs in the real world,
they are not present in all coasts. To solve this problem, a special
algorithm is applied in order to create beaches in certain locations
of the world, which makes the generated landscape looks more re-
alistic.

The beach generation algorithm is performed right before the con-
tent is rendered on the screen. After Charack maps the vertices to
the MM and after the coastline disturbance algorithm is performed,
the result is a heightmap ready to be rendered. The heightmap is
treated by the beach creator algorithm before being drawn on the
screen, as figure 11. The procedure scans all the vertices in the
map and for each one its distance to a near water vertex is checked.
The vertices around the target are mapped directly to the MM, so
the only information that is used from the heightmap is the vertex
location in the world (which is necessary to map it to the MM). The
checking process is performed in four directions (right, left, up and
down) and it ends when a water vertex is found or when N vertices
were analyzed. After that, the four distances are added and used to
calculate the height of the beach. The possible results are:

• If the vertex has 4N as its distance (Figure 11, point B), it
means the tool has iterated through the four possible direc-
tions and found no water. In this case, the height value for the
vertex remains the same. It happens to all the vertices that are
within the continent or on the coast but away from the water:
they do not belong to the beach area and their height value is
defined by the height generator;

• If the vertex has a value smaller than 4N as its distance (Fig-
ure 11, point A), then its height value will be recalculated,
because the vertex is located at the beach. The greater is the
distance from that vertex to the water vertex, the greater is the
height value that will be applied. The height variation is cal-
culated within a range of [T,B], where T is the maximum
height and B is a minimum height value of all vertices in the
beach. The result of that approach is a beach featuring higher
height values near the continent and lower height values near
the water.

Figure 12 shows the results of the beach generator algorithm.

4.3.4 Island generator and beach disturber

The coastline disturbance and the beach generation algorithms
make Charack able to generate more realistic landscapes. The final
result, however, presents a well defined pattern, which is unusual to
happen in the real world, where the lines and landscapes are more
likely to follow a random patterns. If the player walks in the virtual
world only through the coast, he would see beaches with the same
configuration and no islands along the path. To avoid that problem,

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

85



Figure 12: Results of the beach generator algorithm

Figure 13: Results of the beach disturber algorithm

two new algorithms are applied to the coastline vertices: beach dis-
turber and island generator.

The beach disturber disturbs the distance used to calculate the wa-
ter vertices neighboring a certain vertex. Instead of using N as value
to calculate the distance from the vertex to the water, the beach dis-
turber uses the vertex position as a seed and generates a new value
that will be used as the distance. Using this technique, the beach
disturber is able to change the size and shape of the beaches, so
that certain regions may have a greater amount of sand than others.
Figure 13 shows the beach disturber results.

The island generator creates land portions in some MM entries.
After the MM is created and all the descriptors are configured,
the generator iterates through all entries described as coast and for
some of them it sets a flag describing that region as a place that
features islands. Each vertex mapped to that special regions of the
MM has its position used as a hash that is tested against a spectrum
created by a noise function. According to the test result, the vertex
is classified as land, so a group of vertices classified as land will
produce an island. The noise spectrum used for that are different
from that one used in the coastline disturbance algorithm, since the
expected outcome are small portions of land (islands). Figure 14
shows the island generator results.

5 Results

This section aims to evaluate each of the techniques used in the
content generation process, explaining the obtained results for each
approach. It is important to highlight that Charack’s purpose is not
the generation of real or photo-realistic content, but elements that
can be used to create a 3D game scene. A result is classified as
graphically acceptable if it can be integrated into a game and not
surprise the player in a negative way, such as a pyramidal mountain
instead of a smooth mountain.

Figure 14: Island generated by the island generator (beach area
has been influenced by the beach disturber)

Figure 15: Continents and oceans generated by Charack

5.1 Continents evaluation

The time spent for the continent generation is directly proportional
to the size of the specified MM. The reduction of the MM size
to 800x800 yielded significant performance improvements. As
a consequence, the smaller is the MM size, the more linear and
square are the coastlines of each continent. To avoid that problem,
it is possible to adjust the coastline disturbance algorithm in order to
make it produce more aggressive changes in the coastlines. Figure
15 shows the continents and oceans generated by the Charack.

5.2 Terrain height evaluation

The terrain height generated by Charack is fully customizable. The
tool has a built-in terrain height generator based on Perlin noise,
however it was designed for testing purposes only. The main focus
of the present work are the continents and the coastline generation,
so any activity related to terrain height generation was very super-
ficial and presents no contribution. Figure 16 shows the terrain
height created by the built-in generator.

5.3 Coastline evaluation

The coastline generation is composed of two main elements, a
global and a local one. The global one only uses data available
in the MM in order to create the coastlines, as described in section
4.3.1. The final result for that approach is a unreal straight coast-
line. Figure 17 shows two completely straight coastlines which has
no content generation algorithm applied to them.

After the coastline disturbance algorithm was introduced, Charack
started producing more acceptable landscapes. Figures 18 and
21 show small bays in some places of the coast. It happened be-
cause at those locations the coastline disturbance algorithm created
pieces of land towards the ocean and at the same time the beach dis-
turber reduced the amount of sand on the newly created land pieces.
Charack is also able to create gulfs, which are large bays, but it is
not possible to predict the exact location where those bays will hap-

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

86



Figure 16: Terrain heightmap created by Charack’s built-in gener-
ator

Figure 17: The interception of two coastlines with no extra content
being applied to them

pen because it depends on a set of specific values (location, beach
size, etc).

Figures 19 and 20 show the final result obtained with the combi-
nation of all the previously described algorithms: coastline distur-
bance, beach disturber and island generator.

5.4 Performance evaluation

All tests were performed running Charack on Windows Vista on a
Intel(R) Core(TM)2 Duo 1.66Gz, with 2Gb RAM and a graphics
card NVidia 8600 GT, using Microsoft Visual C++ 2008 Express
Edition to compile the source code. Figure 22 shows the time that
Charack takes to process each step on the virtual world generation:
height calculation for each vertex, coastline generation, beach gen-
eration and the rendering process. The X axis shows the world slice
size in vertexes, e.g. 200 means a regular mesh of 200x200 ver-
texes. The Y axis shows the time in miliseconds that Charack takes
to generate the respective world slice.

Figure 18: Small bay featuring rocks

Figure 19: Coastline featuring almost no beach area

Figure 20: Coastline featuring beaches with different sizes

Figure 21: Result of the coastline disturbance algorithm

Figure 22: Time that Charack takes to process each step on the
virtual world generation

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

87



If the world slice visible to the user has a size of 100x100 pixels,
then Charack takes about 200 ms to generate a complete land-
scape (the sum of times for all steps). This process is not executed
for each rendered frame, it is only performed when the user moves
too far from his initial position, what makes Charack remove the
old content from the memory and replace it with new data. If a
slice with size 300x300 pixels is used, then Charack takes about
1000 ms to generate the landscape. Most of the time is spent on
the beach creation because Charack has to analyze each vertex on
the screen and its four neighbours to decide if it is a beach point or
not.

The coastline generation is not significantly affected by the slice
size because the algorithm does not analyze an arbitrary amount
of vertexes to generate the content. It uses a combination of noise
functions and MM meta data in order to generate the required in-
formation.

According to the chart the slowest step performed by Charack is the
beach generation. The second slowest step is the coastline genera-
tion, closely followed by the height generation for each vertex.

6 Conclusion and future work

The automated creation of virtual worlds is one of the available
methods that can help developers to create games featuring detailed
environments in less time and using fewer resources. Unlike the
purely non-automated approaches where a game designer has to
design the entirely world, an automated approach is able to generate
a complete world with almost no human interference. There are
several researches on that subject using different approaches and
focusing on a wide range of results.

This paper presented a tool able to generate pseudo-virtual worlds
featuring different continents, coastlines and landscapes. Using a
combination of algorithms and methods for content management,
the tool is able to create beaches, islands, bays and coastlines simi-
lar to the ones found in the real world.

One of the Charack’s contributions is the ability to generate arbi-
trarily large pieces of land focusing on coastline generation. The
development of the present work aimed to handle separately the
content generation for all elements in the world (continents, ter-
rains, etc.). The main point in the work is the coastline generation,
not the content inside the continents. The final virtual world can
be huge: a player with a 100 vertices per second speed in a virtual
world generated with the maximum value allowed by a integer will
take about 1 year and 3 months to across the whole world.

One suggestion of future work is the enhancement of the height
generator, which currently produces a very simple result. Another
suggestion is the addition of new types to the MM’s descriptors,
such as deserts, forests and cities. All the new content can be cre-
ated tweaking Charack’s content generator algorithm in order to
produce variations in the current results, such as lowering the height
values of all vertices in an area described as a desert, or increasing
them in a volcanic area. Another suggestion is to port all the content
generation algorithms to the CUBA platform [nVidia 2009]. The
generation of each world vertex can be calculated separately, so the
CUBA parallelism capabilities can be fully used. It will drastically
improve Charack’s performance and it will allow the generation of
a bigger world slice to be displayed in the screen. Another sugges-
tion is the addition of rivers, which can be done with a new MM
descriptor and some changes in the content generation algorithm.

References

BLIZZARD ENTERTAINMENT, 2007. World of warcraft. Available
at: http://www.blizzard.com.

CLARK, N. L. 2006. Addiction and the Structural Characteristics
of Massively Multiplayer Online Games. Master’s thesis, Uni-
versity of Hawai, Hawai.

COHEN, M., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003.
Wang tiles for image and texture generation. In Siggraph 03
Conference proceedings.

DOLLINS, S. C. 2002. Modeling for the Plausible Emulation of
Large Worlds. PhD thesis, Brown University, United States of
America.

DUCHENEAUT, N., YEE, N., NICKELL, E., AND MOORE, R. J.
2006. Alone together exploring the social dynamics of massively
multiplayer online games. In CHI 2006 Proceedings.

GREUTER, S., PARKER, J., STEWART, N., AND LEACH, G., 2005.
Realtime procedural generation of ’pseudo infinite’ cities.

GRIFFITHS, M. D., DAVIES, M. N., AND CHAPPELL, D., 2003.
Breaking the stereotype the case of online gaming.

HÄGGSTRÖM, H. 2006. Real-time generation and rendering of
realistic landscapes. Master’s thesis, University of Helsinki,
Finlândia.

HÄGGSTRÖM, H., 2009. Skycastle - free multiplayer game engine
focusing on player creativity and world simulation. Available at:
http://www.skycastle.org/.

LINDA, O. 2007. Generation of planetary models by means of
fractal algorithms. Tech. rep., Czech Technical University.

LINTERMANN, B., AND DEUSSEN, O., 1998. A modelling method
and user interface for creating plants. Computer Graphics Fo-
rum.

MOGENSEN, T. ., 2009. Instant planet generator. Available at:
http://www.eldritch.org/erskin/roleplaying/planet.php.

MUSGRAVE, F. K., KOLB, C. E., AND MACE, R. S., 1989. The
synthesis and rendering of eroded fractal terrains. Computer
Graphics, Volume 23, Number 3, July 1989, pages 41 to 50.

NVIDIA, 2009. Cuda. Available at: http://www.nvidia.com/cuda.

OLSEN, J., 2004. Realtime synthesis of eroded fractal terrain for
use in computer games.

OPENGL, 2007. Opengl shading language. Available at:
http://www.opengl.org/documentation/glsl/.

PERLIN, K. 1985. An image synthesizer. In SIGGRAPH, 287–296.

PRZEMYSLAW, P., AND LINDENMAYER, A., 1990. The algorith-
mic beauty of plants. Springer-Verlag.

SONY ENTERTAINMENT, 2007. Everquest. Available at:
http://everquest2.station.sony.com/.

WANG, T., 2000. Integer hash function. Available at:
http://www.concentric.net/ Ttwang/tech/inthash.htm.

WEBER, J., AND PENN, J., 1995. Creation and rendering of real-
istic trees.

WHITTED, T. 1980. An improved illumination model for shaded
display. Communications of the ACM 23, 6 (June), 343–349.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

88



Design and implementation of a flexible hand gesture command 
interface for games based on computer vision 

João L. Bernardes1       Ricardo Nakamura2       Romero Tori1 

1,2Escola Politécnica da USP, PCS, Brazil        1Centro Universitário SENAC, Brazil 

 
Figure 1: Gestures2Go

Abstract 

This paper describes a command interface for games 
based on hand gestures defined by postures, movement 
and location. The large variety of gestures thus 
possible increases usability by allowing a better match 
between gesture and action. The system uses computer 
vision requiring no sensors or markers on the user or 
background. The analysis of requirements for games, 
the architecture and implementation are discussed, as 
well as the results of several tests to evaluate how well 
each requirement is met. 

Keywords: computer vision, gesture recognition, 
human-computer interaction, electronic games 

Authors’ contact: 
{joao.bernardes, ricardo.nakamura}@poli. 

usp.br, tori@acm.org 

1. Introduction 

The possibility of relaying commands to a computer 
system using one's own hands and gestures has 
interested researches and users for a long time and was 
one of the first topics in user interface research, partly 
because it uses well-developed, everyday skills 
[Bowman 2005]. With the computational capacity 
available today and widespread use of image capture 
devices, even in domestic systems it is possible to 
implement this sort of interaction using computer 
vision. This brings the benefit of leaving the user's 
hands free of any gloves, cables or sensors. 
Gestures2Go, the system described here, provides this 
functionality and its implementation (in C++, 
illustrated in figure 1) is focused on electronic games.  

Games are an ideal platform to test and popularize 
new user interface systems, for several reasons, such as 
an increased user willingness to explore in this medium 
[Starner et al. 2004]. There are many examples of 
academic research developing and studying new 
interfaces with games, particularly incorporating 
Augmented Reality [Bernardes et al., 2008]. The game 
industry has also introduced new (or of previously 
restricted use) interfaces and devices to the public. 
From the joystick to increasingly complex gamepads 
and controllers shaped as musical instruments, from 
datagloves to "pistols" that function as pointing devices 
and even haptic devices [Novint 2009], many are such 
examples, to the point that, today, some professionals 
are encouraged to play games to improve job-related 
skills [Dobnik 2004]. 

On the other hand, both the industry and academia 
acknowledge that new, more natural (and hopefully 
fun) interfaces are one way to attract new consumers to 
this economically important but still restricted market 
[Kane 2005]. And in the past few years, the search for 
these interfaces has been more widespread, continuous, 
well-publicized and commercially successful. After a 
popular gaming platform introduced motion and tilt 
detection in a simpler controller as its most innovating 
feature [AiLive 2007], motion detection was quickly 
added to other platforms and games and continues to 
be researched and improved upon. Several portable 
gaming systems, in particular, are taking advantage of 
motion and tilt sensing, touchscreens and even 
microphones in their interface. More recently still a 
project was unveiled to add interaction based on 
recognition of full-body motion, speech and faces to a 
popular platform [Snider 2009]. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

89



Despite this ebullience in game interfaces, the use 
of hand gestures, especially leaving the user's hands 
free, has seen little academic or commercial research in 
this area and is usually limited to analyzing only hand 
movement or a small number of hand postures. One of 
Gestures2Go's objectives is greater flexibility, to allow 
the use of a greater variety of gestures (currently 
defined by hand postures, movement or location and 
using both hands). Another important goal is that it 
must be easy to use for both players and developers. 
Gestures2Go should also be usable with existing games 
(designed for traditional interfaces) and allow 
multimodal interaction. These and other requirements 
arose, during system design, from an analysis focusing 
specifically on gestures and on game applications. 
Many of the same requirements exist in other 
applications as well, such as education or virtual and 
augmented reality, and the authors believe this system 
may be well suited for these applications, but will 
leave this discussion outside the scope of this paper. 

2. Related Work 

A few works have been proposed recently to use free  
hand gestures in games using computer vision. A 
multimodal multiplayer gaming system [Tse et al. 
2007] combines a small number of postures, their 
location on a table-based interaction system and speech 
commands to interact with games and discusses results 
of using this platform to interact with two popular 
games. Interpreting movements or postures of the arms 
or the whole body is also usual. A body-driven 
multiplayer game system [Laakso & Laakso 2006] uses 
8 postures of the two arms viewed from above, plus 
player location, to design and test the interaction in 
several games. Going further, tests with both functional 
prototypes and Wizard of Oz prototypes indicate that 
body movement patterns (such as running, swimming 
or flying), rather than specific gestures or trajectories, 
may be used to trigger similar actions on game 
characters [Hoysniemi et al. 2005]. 

 Other tools facilitate the use of gesture recognition 
for applications in general, not only games. 
ICondensation [Isard & Blake 1998] is a probabilistic 
framework that allows the combination of different 
observation models, such as color and contours.  
HandVu [Kolsch et al. 2004] also uses condensation 
but provides a simpler interface to track hands in six 
predefined postures using skin color and a "flock" of 
Haar-like features. GART [Lyons et al. 2007] provides 
a high level interface to machine learning via Hidden 
Markov Models used to train and recognize gestures 
that consist only of movements (detected by sensors 
such as a camera, mouse or accelerometers). It is 
interesting to note that HandVu and GART can be 
combined to allow robust hand tracking and a larger 
number of gestures (combining postures and 
movement, like Gestures2Go) than either one isolated. 
Finally, EyesWeb [Camurri et al. 2003] is a framework 
with a graphical programming interface that presents 

several tools and metrics for segmentation and analysis 
of full body movements. 

 The literature regarding gesture recognition in 
general is vast and a complete review is beyond the 
scope of this paper, especially since established and 
comprehensive reviews [Pavlovic et al. 1997] as well 
as more recent but still comprehensive discussions 
[Imai et al. 2004] are available. Other works, when 
relevant to this implementation or future developments, 
are discussed in the correspondent sections. 

3. HCI and Game-specific requisites 

Both the use of gestures and having games as an 
application bring specific requirements to an interface 
and analyzing these requirements was one of the most 
important steps in designing Gestures2Go. For gesture-
based interfaces, current research [Bowman et al. 2005, 
Shneidermann et al. 1998] point out the following: 

 Gestures are most often used to relay singular 
commands or actions to the system, instead of tasks 
that may require continuous control, such as 
navigation. Therefore, it is recommended that gestures 
be part of a multimodal interface [Bowman et al. 
2005]. This also brings other advantages, such as 
decoupling different tasks in different interaction 
modalities, which may reduce the user's cognitive load. 
So, while gestures have been used for other interaction 
tasks in the past, including navigation [Mapes & 
Moshel 1995], Gestures2Go's primary requisite is to 
allow their use to issue commands. Issuing commands 
is a very important task in most games, usually 
accomplished by pressing buttons or keys. Often, 
games feature a limited number of commands, not even 
requiring all the buttons in a modern gamepad. Since 
other tasks, especially navigation, are very common as 
well, another requirement that naturally arises is that 
the system must allow multimodal interaction. 
Massively Multiplayer Online games (MMOs), in 
particular, often have much of their actual gameplay 
consisting of navigation plus the issuing of several 
commands in sequence [Fritsch et al. 2005]. 

 Gesture-based interfaces are almost always 
"invisible" to the user, i.e. they contain no visual 
indicators of which commands may be issued at any 
particular time or context. To reduce short term 
memory load, therefore, the number of possible 
gestures in any given context, but not necessarily for 
the entire application, must be limited (typically to 7±2 
[Miller 1956], or approximately 5 to 10 gestures). The 
gestures must also be highly learnable, chosen from the 
application domain so the gesture matches the intended 
command. Changing gears in a racing game, for 
instance, could be represented by pulling a fist towards 
or away from the user with the hand relatively low, as 
if driving a stick shift car, and pausing the game could 
be associated with an open palm extended forward, a 
well-known gesture meaning "stop". This means that 
while the system is not required to deal with a large 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

90



number of different gestures at any one time (which 
simplifies the implementation), being flexible by 
having a large number of possible gestures to choose 
from, so the interface designer may pick the most 
appropriate to associate with each user action, is indeed 
a requirement. Systems that violate either of these two 
requirements, requiring the memorization of a large 
number of gestures or limiting the space of possible 
gestures to only a few postures or movements, make 
the interface harder to learn and later to remember, 
reducing its usability. 

 The examples above (changing gears and stop) also 
show that the choice of each gesture for the interface 
depends not only on the application, context and 
command, but is also heavily culture-dependant, 
because the cognitive meaning of gestures may vary. In 
the case of gesture-based games, therefore, and with 
games being such a global market, localization could 
also entail changing which gesture is associated with 
each action [Bernal-Merino 2007]. All this leads to the 
requirement that the vocabulary of gestures in each 
context of the interface, while small, must be as simply 
and quickly modifiable as possible. Systems that 
require retraining for each set of possible gestures, for 
instance, could prove problematic in this case, unless 
such training could be easily automated. 

 The interface should also accept small variations 
for each gesture. Demanding that postures and 
movements be precise, while possibly making the 
recognition task easier, makes the interaction 
considerably harder to use and learn, demanding not 
only that the user remember the gestures and their 
meanings but also train how to do them precisely, 
greatly reducing usability. 

 It could be argued that, for particular games, 
reducing the usability could actually be part of the 
challenge presented to the player (the challenge could 
be remembering a large number of gestures, or learning 
how to execute them precisely, for instance). While the 
discussion of whether that is a good game design 
practice or not is beyond the scope of this paper, 
Gestures2Go opts for the more general goal of 
increasing usability as much as possible. This agrees 
with the principle that, for home and entertainment 
applications, ease of learning, reducing user errors, 
satisfaction and low cost are among the most important 
design goals [Shneidermann et al. 1998]. 

 The system should also allow playing at home with 
minimal setup time required. Players prefer games 
where they can be introduced to the action as soon as 
possible, even while still learning the game and the 
interface [Hong 2008]. Therefore, the system should 
not require specific background or lighting conditions, 
complex calibration or repeated training. Allowing the 
use of the gesture-based interface with conventional 
games is also advantageous to the user, providing new 
options to enjoy a larger number of games. From the 
developer point of view, the system should be as easy 

as possible to integrate within a game, without 
requiring specific knowledge of areas such as computer 
vision or machine learning. 

 Finally, processing and response times are 
important requirements. Despite the growing 
availability of multi-core gaming platforms, it is still 
desirable that gesture recognition processing time be as 
low as possible, freeing processing power to other 
tasks such as artificial intelligence and physical 
simulation. It is limited by the acceptable response 
time, which, in turn, depends on the game. Performing 
a gesture, for instance, will almost always be slower 
than pressing a button or key, so this sort of interface is 
probably not a good choice for reflex-based games 
such as first person shooters. A genre that has already 
been mentioned as a good match for this sort of 
interface is MMOs. Not only much of their gameplay 
consists of navigation and issuing commands, MMOs 
use several strategies to deal with network latency 
[Fritsch et al. 2005] that also result in not penalizing 
the slower input from gestures, when compared, for 
instance, with button pressing. Such strategies include 
reducing the number of commands necessary in a fixed 
amount of time (for instance, it is common to "enter or 
exit attack mode", instead of repeating a command for 
each attack) and accepting the queuing of only one new 
command while the action triggered by the last one has 
not finished (and actions are set up to take some time, 
usually spent with animations or special graphical 
effects). In the game Everquest 2, for instance, Fritsch 
et al. report that the use of these strategies, with actions 
usually taking 1000ms, makes the game playable with 
latencies of up to 1250ms. A more practical bound, 
however, pointed after the analysis of several related 
works, is around 250ms for interactive games 
[Henderson & Bhatti 2003]. In a setup such as the one 
described above, that would leave one second to be 
divided between gesture performance and system 
response time and this is the parameter that will be 
used for Gestures2Go. This applies, of course, even for 
games designed for regular interfaces. When designing 
a game specifically to explore gestures, similar game 
design strategies or even new ones could be adopted to 
compensate for the time the user spends performing the 
gesture. 

4. Gestures2Go 

Because one of the requirements for this system was 
ease of use, both for the player and the developer, it 
was named Gestures2Go to imply that the gesture 
recognition is ready to go, to take home, with little 
extra work. It consists of an abstract framework that 
divides the system in modules and defines the interface 
between these modules and, currently, of a single, 
simple implementation of this framework. It is 
important to note that the requirements discussed in 
section 3 apply to the current implementation, which is 
focused on games, and not to the abstract framework. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

91



The computational task of identifying a gesture 
from a known vocabulary of possibilities is often 
divided in gesture modeling, analysis and recognition 
[Pavlovic et al. 1997]. 

Gesture modeling consists in how a gesture is 
defined by the system, from a computational point of 
view (since definitions of gesture abound in other 
areas). Gesture2Go's abstract framework defines a 
gesture as an initial hand posture, an optional 
movement of the entire hand through an arbitrary path 
and a final posture, which is optional if the movement 
is omitted but mandatory otherwise. The starting 
location of the hand, relative to the user's head (left or 
right, above, below or roughly aligned with the head), 
is also an optional parameter of this definition, since it 
often changes the meaning of a gesture. This means 
that a gesture may consist of a single posture, of an 
initial and a final posture or of an initial posture, a 
movement and a final posture, all depending or not on 
the initial hand position. It also means that changes of 
posture during the movement are not taken in 
consideration, since these changes rarely have semantic 
meaning [Quek 1994]. While the abstract framework 
also includes variable parameters in the gesture 
definition (such as speed or pointing direction), the 
simple implementation described here does not deal 
with parametric gestures. Finally, the abstract 
framework does not specify how each part of the 
gesture definition is actually modeled (each is 
identified by a string or numerical ID), so it can vary in 
each implementation. The hand posture could, for 
instance,  be modeled as a collection of values for the 
degrees of freedom of a particular hand model, or it 
could consist of a list of 2D or 3D points of the hand's 
contour. 

During the analysis phase, the gesture's spatial and 
temporal parameters (which depend on each model) are 
obtained from sensor data (in this case, from an image 
or a set of images) and this data is used during the 
recognition phase to identify the gesture within the 
vocabulary of possibilities. Analysis and recognition 
are often, but not necessarily, tightly inter-related. 

4.1 The Abstract Framework 

Figure 2 shows a UML Activity Diagram representing 
Gesture2Go's object flow model.  

G2gGesture is responsible for the gesture model, 
while G2gAnalysis and G2gRecognition define the 
interfaces for the classes that will implement gesture 
analysis and recognition. To these activities are added 
image capture and segmentation. G2gCapture provides 
an interface for capturing 2D images from one or 
multiple cameras or pre-recorded video streams 
(mostly for testing). The images must have the same 
size, but not necessarily the same color depth. A device 
could provide, for instance, one or more color images 
and a grayscale image to represent a dense depth map. 
G2gSegmentation should usually find in the original 

image(s) one or both hands and possibly the head (to 
determine relative hand position). 

 
Figure 2: Gesture2Go's Object Flow Model 

 Figure 2 shows that the usual flow of information 
in Gestures2Go in each time step is as follows: one or 
more images serve as input to the image capture 
model, which makes these images available as an 
OpenCV's IplImage object [OpenCV 2009]. The 
segmentation uses this image and provides a 
segmented image as an object of the same class (and 
same image size, but not necessarily color depth). 
Based on the segmented image, the analysis provides a 
collection of features as a G2gFeatureCol object which 
are in turn used by the recognition to output a gesture.  

G2gFeatureCol is a collection of G2gFeature 
objects. G2gFeature contains a identifier string to 
describe the feature and either a scalar and an array of 
values (more often used) or an image (useful, for 
instance, for features in the frequency domain). 
G2gFeature already defines several identifiers, for 
those features most often found in the gesture 
recognition literature, to facilitate the interface between 
analysis and recognition, but user-created identifiers 
may also be used. 

Desc2Input is an optional module that accompanies 
but is actually separate from Gestures2Go. It is 
responsible for facilitating, in a very simple way, both 
multimodal input and integration with games or 
engines not necessarily aware of Gesture2Go. It simply 
translates its input, which is a description (a numerical 
or string ID or a XML description, for instance) that 
may be supplied either by Gestures2Go or any other 
system (and here lies the possibility of multimodal 
interaction), into another type of input, such as a 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

92



system input (like a key down event) or input data to a 
particular game engine. In one of the tests, for instance, 
gestures are used for commands and a dancing mat is 
used for navigation. 

Because this architecture consists mostly of 
interfaces, it is possible to create a single class that, 
through multiple inheritance, implements the entire 
system functionality. This is usually considered a bad 
practice in object orientation (should be avoided) and 
is actually one of the reasons why aggregation is 
preferred to inheritance [Eckel 2003]. There are design 
patterns that could have been used to force the use of 
aggregation and avoid multiple inheritance, but 
Gestures2Go opts for allowing it for a reason. Gesture 
recognition may be a very costly task in terms of 
processing, and must be done in real time for the 
purpose of interaction. Many algorithms may be better 
optimized for speed when performing more than one 
task (such as segmentation and analysis) together. 
Furthermore, analysis and recognition are very tightly 
coupled in some algorithms and forcing their 
separation could be difficult. So, while it is usually 
recommended to avoid using multiple inheritance and 
to implement each task in a different class, making it 
much easier to exchange one module for the other or to 
develop modules in parallel and in teams, the option to 
do otherwise exists, and for good reason. 

Finally, all Gestures2Go classes must implement 
init( ) and cleanup( ) methods which are preferred to 
using the new and delete operators (the system is 
implemented in C++) to avoid problems with multiple 
inheritance and with synchronization. 

4.2 Implementation 

The requirement analysis pointed that an 
implementation of the abstract framework described 
above specifically for games should have the following 
characteristics: minimum need for setup, low 
processing demand even though the response time may 
be relatively high, a high number of possible gestures 
but with only a small and easily modifiable vocabulary 
in any one context, tolerance to variations in the 
execution of gestures, allow multimodal interaction 
and make development of games using gestures as easy 
as possible. With these requirements in mind and 
assuming that a single player in the scene will interact 
through gestures, this implementation attempts to find 
the simplest solution for each of the activities shown in 
figure 2. 

 Segmentation is based on skin color, to find both 
hands and the head. A G2gSimpleSkinSeg2 (a class 
which implements G2gSegmentation) object performs 
a simple threshold operation on the captured image, in 
the HSV color space, taking in account both hue and 
saturation. For most people, skin color lie in a small 
interval between the red and yellow hues, due to blood 
and melanin, respectively [Fleck & Forsyth 2009], so 
using hue is a good way to identify a large range of 

lighter or darker skin tones, even in different 
illumination conditions. Saturation is used mostly to 
remove regions that are either too light or too dark and 
may end up showing a hue similar to the skin. 

At first, fixed average values and tolerances were 
adopted for the skin's hue and saturation. Testing in 
different lighting conditions, environments and using 
different cameras, however, showed large variations 
for these values in the captured images, either due to 
different lighting conditions or differences in the white 
balance [Viggiano 2004] performed automatically by 
the cameras (and, in most cases, with no "off" option). 
G2gSimpleSkinSeg2 was then incremented with 
methods to accumulate and calculate averages and 
standard deviations for hue and saturation of several, 
arbitrary rectangular skin-colored regions. This allows 
an application to add a quick calibration step so the 
segmentation may use adequate skin hue and saturation 
values for the threshold operation. 

Finally, after tests in an environment where the 
background actually has a hue very similar to the 
skin's, a fixed background removal operation was 
added as an option. Figure 1 shows a sample result of 
this operation. Even with a color tolerance of 50 in a 
256x256x256 RGB space, about half of the pixels do 
not match the recorded background (not showing as 
black), even when this background is far enough that 
its actual appearance is unlikely to change due to the 
presence of the hand. This problem is minimized by 
applying a 3x3 erosion operation after the background 
removal, also illustrated in figure 1, but due to local 
corrections imposed by the camera a region around the 
foreground elements still shows, looking like an "aura" 
around the color segmented hand images in figure 1. 

The system, currently, does not segment the arm 
from the hand, which imposes the limitation that users 
must wear long sleeves. This is considered a serious 
limitation. Even without any information about hand 
posture, for most of them the arm could be segmented 
by finding the direction of its major axis, finding the 
point of minimum width or abrupt change in direction 
along this axis (the wrist) and segmenting there [Yoon 
et al. 2006]. This does not work well if only a small 
length of arm is showing, however, or for certain 
postures (such as preparing a "karate chop"). 

Other segmentation strategies that do not require 
knowledge of the hand's posture were attempted, such 
as using color histograms and probabilities instead of 
the simple average and deviation, as well as the use 
contour information, but so far showed little 
improvement and more computational cost. 

 The first step of the analysis activity, implemented 
in the G2gSCMAnalysis class, is to find the connected 
components in the segmented image. The system does 
not assume that the background is fixed or that there 
are no other skin colored regions in the image, but it 
does presume that the player using gestures is the 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

93



closest person to the camera, so it can assume that the 
three largest connected components correspond to the 
user's hands and face. There is also a minimum number 
of pixels for a connected component to be accepted as 
a region of interest. If only 2 components above this 
minimum size are found, the system assumes that the 
missing component corresponds to the user's non-
dominant hand and if only one is present, it is assumed 
to be the head (the head was cropped from figures 1 
and 3). To further simplify the identification of the 
hands and head, this implementation assumes that the 
left hand is the leftmost region with the head in the 
middle and the right hand to the right. While this 
certainly limits user movements and the number of 
possible gestures, it was considered a valid limitation 
in this case and, during informal testing, was accepted 
with no complaint from the users, who obeyed it most 
of the time even when not informed of it. This first step 
also reduces noise left after the segmentation and 
eliminates from the analysis other people who might 
wander in the background. 

 Analysis and recognition of the gestures themselves 
adopt a divide and conquer strategy [Wu & Huang 
1999], separating the recognition of hand posture and 
hand movements. Postures are recognized through 
estimation by synthesis (ES), i.e. the real hand's image 
is compared with images synthesized from a 3D hand 
model so that 3D posture information (the parameters 
used to model the hand's posture) is obtained 
comparing only 2D images, instead of trying to match 
a 3D model to the real image, which can be accurate 
but computationally expensive and complicated by the 
presence of postures with self occlusion [Imai et al. 
2004]. Unlike most applications of ES methods, 
however, here it is not necessary to determine hand 
posture continuously and differentiate between 
postures with only small differences. Because tolerance 
of variation in postures is one of the system's 
requirements, it is not only acceptable but necessary 
that small differences in posture be disregarded. This 
implementation, therefore, may sidestep one of the 
most serious complication of ES methods. It only 
needs to compare the real hand image with a small 
number of possible postures, instead of thousands of 
possibilities. When no acceptable match is found, the 
system simply assumes the user is not performing a 
command gesture. 

 As in other ES methods [Shimada et al. 2001, Imai 
et al. 2004], the features G2gSCMAnalysis provides are 
based on the hand's 2D contour. The most important 
feature is a vector of the distances between the hand's 
centroid and a fixed number of points on the contour. 
These points are shown in figure 1. This vector is 
normalized in the analysis, so the maximum distance 
always corresponds to the same value and the features 
are scale-invariant, reducing the influence of the 
distance between the hand and the camera. All features 
for the vocabulary of possible, modeled postures are 
pre-calculated so only those for the real hand need to 
be determined in each execution step. Currently the 

number of points sampled from the contour in the 
feature vectors is, somewhat arbitrarily, set at 128. This 
number has shown to be small enough to allow fast 
computation and large enough that it is not necessary 
to worry about choosing points near remarkable 
contour features (usually local maxima and minima 
corresponding to tips and bases of fingers). 

 G2gSCMRecognition implements both posture and 
movement recognition. Posture recognition consists 
simply of comparing the feature vector obtained from 
the real hand's captured image with each vector for all 
the possible postures and finding the posture that 
minimizes the mean squared error between these two 
vectors. If the minimum error is still larger than a 
tolerance value, no posture is recognized (recognition 
returns a "not found" constant). 

Unlike other ES implementations, however, the 
observed vector is not made rotation-invariant during 
recognition (by rotating it during each comparison so 
extremal points coincide with the model). While some 
tolerance in posture recognition is desired, rotation-
invariance is not. Should this operation prove 
necessary, to avoid incorrect results due to the 
accumulation of many small errors caused by a small 
rotation, it could still be implemented while leaving the 
algorithm sensitive to rotation because recognition uses 
yet another feature: the angle between the highest point 
in the contour and the centroid. This feature, also 
provided by G2gSCMAnalysis, is currently used to 
speed up recognition by discarding, before the 
calculation of the mean squared error, any posture with 
an angle that differs by more than a certain tolerance 
from the one in the observed image. The highest point 
(usually a fingertip) is easy to determine because the 
contour-finding algorithm is implemented in a way to 
always find this point first. This angle could also be 
used to account for hand rotation if the vector of 
distances was made rotation-invariant, but tests so far 
have not shown the need for this operation. 

The analysis also provides the centroid's absolute 
location in the image and its area (or number of pixels), 
which are used for movement recognition. Only 12 
movements are recognized: left, right, up, down, back, 
forward, 4 diagonals, clockwise and counter-clockwise 
approximate rotations. The movement is temporally 
segmented by the gesture's initial and final postures, so 
it can be identified as one of these possibilities by a 
simple set of conditions, similar to a two stage scheme 
described in the literature [Mammen et al. 2001]. For 
the back and forward movements, the initial and final 
posture of the hand must be the same, since this 
movement is estimated by the variation in area. 

In the current implementation, a gesture may be 
defined by movements and initial relative locations of 
both hands, but only postures of the dominant one 
(currently the right hand, but the next version will 
allow choosing left or right) are identified. There are 
now 41 postures available. Adding more postures is 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

94



quite simple and others were considered and could 
have been added, but they were either meaningless, 
quite hard to perform or had the same contour in a 2D 
image. With this number of available postures and 
movements, and remembering that a gesture might 
consist of one or two postures, or a movement bound 
by two postures that may be different (except when 
moving back or forward), there are almost 20,000 
available gestures for the dominant hand alone, even 
before considering its location relative to the head or 
the movement of the other hand. 

Finally, Desc2Input's implementation in the current 
version, for MS Windows only, has only two public 
methods: associate and sendDesc. The associate 
method receives a description (a string, representing a 
gesture or any other event, such as stepping on a 
dancing mat's "button") and the system input (key 
press, mouse move or click) and parameters (such as 
key or position) associated to that description. The 
sendDesc method only receives a description and 
indicates that Desc2Input must generate the associated 
input (which is broadcast to all windows). A priority 
for future versions is making this module easier to use, 
adding alternatives that require little programming 
(leaving the association of gestures and commands to 
an external configuration file, for instance). 

5. Tests and Results 

Four prototype applications were created to test the 
system in different conditions. The first priority was to 
verify the posture analysis and recognition strategy, 
independent of segmentation. To accomplish that, 120 
already segmented pictures of hands in different 
postures were stored and ran through the analysis and 
recognition modules. These images were segmented 
using the same algorithm described before but were 
chosen manually at moments when it worked 
adequately (as in the examples shown in figure 3). 

pinkyR 

 
point 

 

pinky 

 
 

pointL 

 
 
 
 

thumb up 

Figure 3: Sample segmented postures used in static tests 

To allow the comparison of every posture with 
every other one, the angle difference between the 
highest point in each posture was discarded and the 
mean square error between the distance vectors was 
recorded. Table 1 shows the results, truncated to the 
nearest decimal, of one such test, comparing 15 
postures. More postures are not shown due to the 
limited space. This particular test was chosen 
specifically because it contains similar postures that 
show problematic results. 

In all cases the correct posture was identified (i.e. 
had the minimum error), as shown by the values with a 
gray background in table 1. In 8 cases, however, 
incorrect postures showed a low error as well (shown 
in bold on white). The system considers error values 
below 1 as possible matches. So, if "pinkyR" had not 
been one of the possible postures, for instance, "pinky" 
would have been accepted by the system as "pinkyR". 
Figure 3 shows these problematic postures. Two of 
these cases (pinky and pinkyR, point and pointL) are 
postures where a single finger is raised and that differ 
from each other by this finger's angle. Using the angle 
of the highest point as a feature eliminates these 
incorrect matches. The other mismatch that might have 
occurred is between the postures with the pinky up and 
the thumb up posture, but as seen in figure 3, these 
postures are actually quite similar. In all these static 
tests, all postures were recognized correctly but a few 
similar ones showed possible mismatches. In the test 
illustrated by table 1, for instance, only 8 comparisons 
in 225 were possible mismatches, approximately 3.5%. 

Table 1: Sample static posture comparison 

 

A second test application shows identified postures 
in real time and allows the verification of the effects of 
the segmentation. It requires a few seconds for setup, 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

95



showing a region on the screen that the user must 
"cover" with a region of skin so initial averages and 
deviations for skin color can be determined. While the 
application allows this to be done several times (to 
capture, for instance, the colors of the palm and back 
of the hand as well as face regions), showing either 
many or any single region of skin have always given 
similar results during tests. The application also 
includes the options of recording and removing a 
known background and can either show a color image 
of the foreground or a monochrome image of the 
segmented skin regions. While showing the 
monochrome image, if a posture is identified the 
application also displays its description on the bottom 
of the screen. This application also identifies and 
displays the 8 possible movements. Actually, a gesture 
was defined for each movement, all 8 having as both 
initial and final posture a closed fist (which is very 
accurately identified by the system). The images 
labeled as "Erosion" and "Posture" in figure 1 are 
actually regions from screenshots of this application. 

 During the tests with this application, analysis and 
recognition continued to perform well when the images 
were well segmented. Often, however, a finger, usually 
the thumb or pinky, would disappear from the 
segmented image or only parts of the fingers would 
show, leading to postures not being recognized or for 
mismatches (such as an open palm identified as 
mimicking a claw). This was mostly due to problems 
with the illumination and image capture, such as a 
bloom showing between the fingers if the open hand 
was in front of a light source or bright light sources 
reflecting specularly from large regions of skin. Both 
make large skin regions show as white. Even in these 
environments with no controlled (and problematic) 
illumination, the system identified the right posture 
most of the time. Another problem that occurred during 
these tests happened when the long sleeves worn by the 
subjects slid down the wrist, showing a portion of the 
forearm. Only 2 or 3 centimeters needed to show to 
cause a dramatic drop in the recognition's quality. 
During these tests, the movements were always 
recognized correctly. 

 While Gestures2Go should be primarily used to 
issue commands with gestures, a third application was 
built to evaluate its use to select objects, replacing the 
use of the mouse. A posture was associated with 
moving the mouse and relative changes in hand 
position while that posture was recognized were 
mapped to relative positions in the mouse pointer using 
Desc2Input. Two other postures were associated with 
left and right clicks. The hand moved only in a small 
region of a 640x480 image while the mouse should 
move over a 1024x768 region, so the linear mapping 
between movements increased the hand's vertical and 
horizontal movements by different constants to apply it 
to the mouse. The system was still relatively easy to 
use even to click on smaller objects on the screen. 

 Finally, postures, movements, using the hand to 
move the mouse pointer and click and the use of a 
dancing mat for navigation were put together in a 
fourth test application which was used to control a 
popular MMO. Using the hand to move the mouse 
pointer and clicking was only necessary to manipulate 
some objects in the scenery. A gesture was associated 
with the command to select the next possible target and 
several gestures were associated with different actions 
to be performed on this target. This interface was 
especially adequate to this particular MMO because 
most actions are accompanied by easily identifiable 
hand motions of the player's avatar, so the mapping 
between gesture and game action was natural, very 
visible and enjoyable. To navigate in the game world 
using the dancing mat, it was connected to the 
computer's parallel port and a class was created to read 
its inputs and send them to Desc2Input to be translated 
as the arrow keys and commands for actions such as 
jumping. Because in systems derived from Windows 
NT only applications running in kernel mode can 
access the parallel port, it was necessary to either write 
a device driver or use an existing one. Using Inpout32 
[logix4u 2009] was the chosen solution. It is a DLL 
with an embedded driver and functions for reading and 
writing to the parallel port (inp32 and out32). Up to the 
time of this writing, unfortunately, permission to use 
this MMO's name and images had not yet been granted 
by the publisher. 

 The performance of each module was also tested, 
using a 3GHz Intel Core 2 Duo CPU and 2GB of RAM 
(the test process ran in only one core, however). Table 
2 shows approximate average times measured for each 
task in 375 tests (5 tests of 5s at 15 frames per second). 

Table 2: Performance 
Activity Time (ms) 

Segmentation 13.600 
Components 0.650 
Moments 0.013 Analysis 
Features 0.003 
10 Postures 0.002 

Recognition  
Movement <0.001 

Table 2 shows how segmentation is by far the most 
costly activity. During analysis, finding the connected 
components is also the most time consuming task, but 
still only takes less than a millisecond. Finding the 
image moments for one hand's connected component 
takes approximately 13µs only because OpenCV's 
function calculates up to third order moments, while 
the system only requires moments of orders 0 and 1, so 
this operation could be easily sped up, but it is clearly 
not a priority. Calculating all features needed for 
recognition and the recognition itself were extremely 
fast during these tests, at less than 5µs. That's assuming 
there are 10 possible postures (recognition time 
increases linearly with possible postures) and a worst 
case scenario where the angle difference is never above 
tolerance, so the mean square error between distance 
vectors is calculated for every possibility. Movement 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

96



recognition consists of only a few conditions and 
happened too fast to get accurate measurements. With 
these results, the system satisfies the requirement of 
low processing demand and should it be necessary to 
make it faster, it is trivial to parallelize the 
segmentation, either to run in more cores or to be done 
in the GPU. These processing times, however, indicate 
that finding a more robust segmentation strategy is 
much more important than increasing its performance. 

6. Conclusion 

This current implementation of Gestures2Go, focused 
specifically on games and other similar applications, 
satisfies most of the requirements for gesture-based 
interfaces and games which were studied during the 
system's design phase. 

 While there is need of some setup, to record the 
background and calculate the player's skin color 
parameters, this setup only takes a few seconds. Each 
execution step takes less than 15ms in a single 3GHz 
core, satisfying the requirements for low processing 
demand, especially considering that in most contexts 
the system must only differentiate between 5 to 10 
gestures. However, combining 41 (or more) postures of 
one hand and 12 movements and initial hand locations 
(relative to the head) for both hands creates a 
vocabulary of thousands of possible gestures, greatly 
increasing the chance that the interface designer can 
find an appropriate gesture to associate with an action. 
Desc2Input facilitates multimodal interaction and the 
system as a whole is quite tolerant to variations in 
gesture execution, both for postures and movements. 

 One requirement cannot be considered satisfied yet, 
however: simplifying the development of games with 
gestures. Desc2Input should be responsible for this 
requirement, but currently its interface only allows the 
association of descriptions and inputs by hard coding 
them using the associate function. Furthermore, its 
current version is provided as source code that must be 
included within the same project as the gesture 
recognition system and systems for interpreting other 
modes of interaction (such as the dancing mat used in 
one of the tests, or speech recognition). This makes the 
system's use by programmers much more complex than 
desired. It is a priority for future works, therefore, to 
develop a better interface for Desc2Input. The next 
system's version will allow the association of 
descriptions and inputs though an external xml 
configuration file and Desc2Input will be available not 
only as source code but as a DLL to include in projects 
as well as a standalone executable that receives 
descriptions via sockets from different modules 
responsible for complementary interaction modes. 
Gestures2Go will also include a standalone application 
that generates regular system inputs from command 
gestures so that this sort of interface may be used  with 
any other interactive application simply customizing a 
configuration file associating gestures to inputs, 
without requiring a single line of programming. 

Another standalone application is in development to 
facilitate this configuration: instead of editing the 
configuration file directly, the user simply shows initial 
and final posture to the system and selects, in a 
graphical interface, movements, locations and which 
input that gesture must generate. A final improvement 
in this area is the integration of Gestures2Go with a 
game engine, but this depends on the engine's 
architecture and is beyond this paper's scope. 

 Another priority for future works is improving the 
segmentation. One of the system's requirements is that 
it must not demand controlled or special lighting or 
unusual or expensive equipment and, under those 
severe limitations, the segmentation actually works 
considerably well. But it is still the less robust part of 
the system and causes frequent and noticeable errors 
under some lighting conditions. Several robust 
probabilistic solutions exist to track hands and their 
contours, such as using variations of the condensation 
algorithm [Isard & Blake 1998]. Most of these 
solutions require knowledge either of one fixed hand 
posture, or a small number of postures and a transition 
model between them [Liu & Jia 2004] which 
complicates the addition of new postures and gestures. 
Even these methods often use depth data to aid in 
segmentation. Other methods do not require a known 
model for the hand but only track its position, not the 
contour, which is necessary for Gestures2Go. One 
promising approach that will be tested as soon as 
possible within this system is tracking the hand and its 
contour with no hand model information by using 
Kalman filters to estimate both the hand's movement 
and the positions of control points of curves that define 
hand shape [de Bem & Costa 2006]. This strategy will 
be adopted if tests show that its performance and 
accuracy are adequate while tracking enough control 
points to model a rapidly changing hand contour. 

 Using depth data [Nakamura & Tori 2008] is 
another planned improvement to the system, both to 
the segmentation and to allow a greater number of 
postures, such as pointing postures. Lastly, formal 
usability tests must be conducted to determine whether 
the interaction techniques using Gestures2Go in a 
MMO are effective in the context of games. 

References 

AILIVE, 2007. LiveMove White Paper. Available from: http: 
//www.ikuni.com/papers/LiveMoveWhitePaper_en.pdf 
[Accessed 24 July 2009]. 

BERNARDES, J. ET AL, 2008. Augmented Reality Games In: 
Extending Experiences: Structure, analysis and design of 

computer game player experience. Lapland University 
Press, p. 228-246. 

BERNAL-MERINO, M., 2007. Localization and the Cultural 
Concept of Play. Available from: http://www. 
gamecareerguide.com/features/454/localization_and_the_
cultural_.php [ Accessed 24 July 2009]. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

97



BOWMAN, 2005. 3D User Interfaces: Theory and Practice. 
Addison-Wesley. 

CAMURRI ET AL., 2003. Analysis of expressive gestures in 
human movement: the EyesWeb expressive gesture 
processing library. In: Proc. XIV Colloquium on Musical 

Informatics. 

DE BEM, R., COSTA, A., 2006. Rastreamento de visual de 
múltiplos objetos utilizando uma abordagem livre de 
modelo. In: Proc. XVI Congresso Brasileiro de 

Automática, 2760-2765. 

DOBNIK, V., 2004. Surgeons may err less by playing video 
games. Available from: http://www.msnbc.msn.com/id/ 
4685909 [Accessed 24 July 2009]. 

ECKEL, B., 2003. Thinking in C++. Prentice Hall. 

FLECK, M. & FORSYTH , D., 2009. Naked people Skin Filter. 
Available from: http://www.cs.hmc.edu/ ~fleck/naked-
skin.html [Accessed 24 July 2009]. 

FRITSCH ET AL., 2005. The Effect of Latency and Network 
Limitations on MMORPGs (A Field Study of Everquest 
2). In: Proc. of NetGames '05. 

HENDERSON & BHATTI, 2003. Networked Games – a QoS-
Sensitive Application for QoS-Insensitive Users? In: 
Proc. ACM SIGCOMM 2003 Workshops. 

HONG, T., 2008. Shoot to Thrill. In: Game Developer 15(9) 
p. 21-28. 

HOYSNIEMI ET AL., 2005. Children’s Intuitive Gestures in 
Vision-Based Action Games. In: Communications of the 

ACM 48(1), p.44-50. 

IMAI, A. ET AL., 2004. 3-D Hand Posture Recognition by 
Training Contour Variation. In: Proc. Automatic Face 

and Gesture Recognition 2004, p. 895-900. 

ISARD, M., BLAKE, A., 1998. ICondensation: Unifying low-
level and high-level tracking in a stochastic framework. 
In: Proc. 5th European Conf. Computer Vision. 

KANE, B., 2005. Beyond the Gamepad panel session. 
Available from: http://www.gamasutra.com/features/ 
20050819/kane_01.shtml [Accessed 24 July 2009]. 

KOLSCH, ET AL.,  2004. Vision-based Interfaces for Mobility. 
In: Proc. Intl. Conf. on Mobile and Ubiquitous Systems. 

LAAKSO, S., LAAKSO, M., 2006. Design of a Body-Driven 
Multiplayer Game System. In: ACM CCIE 4(4). 

LIU, Y., JIA, Y., 2004. A Robust Hand Tracking and Gesture 
Recognition Method for Wearable Visual Interfaces and 
its Applications. In: Proc. ICIG '04. 

LOGIX4U, 2009. Inpout32.dll for Windows 98/2000/NT/XP. 
Available from: http://logix4u.net/Legacy_Ports/Parallel_ 
ort/npout32.dll_for_Windows_98/2000/NT/XP.html 
Accessed 24 July 2009]. 

LYONS, H. ET AL., 2007. Gart: The gesture and activity 
recognition toolkit. In Proc. HCI International 2007. 

MAMMEN, J.; CHAUDHURI, S. & AGARWAL, T. Simultaneous 
Tracking Of Both Hands By Estimation Of Erroneous 
Observations. In: Proc. British Machine Vision 

Conference 2001. 

MAPES, D., MOSHEL, J.,1995. A Two Handed Interface for 
Object Manipulation in Virtual Environments. In: 
Presence: Teleoperators and Virtual Environments 4(4), 
p. 403-416. 

MILLER, G., 1956. The Magical Number Seven, Plus or 
Minus Two: Some Limits on Our Capacity for 
Processing Information. In: The Psychological Review 

63, p. 81-97. 

NAKAMURA, R., TORI, R., Improving Collision Detection for 
Real-Time Video Avatar Interaction. In: Proc. X Symp. 

on Virtual and Augmented Reality, p. 105-114. 

NOVINT, 2009. Novint Falcon. Available from: 
http://home.novint.com/products/novint_falcon.php 
[Accessed 24 July 2009]. 

OPENCV, 2009. Available from: http://sourceforge.net/ 
projects/opencvlibrary/ [Accessed 24 July 2009]. 

PAVLOVIC ET AL., 1997. Visual Interpretation of Hand 
Gestures for Human Computer Interaction: A Review. 
IEEE Transactions on Pattern Analysis and Machine 

Intelligence 19(7), p. 677-695. 

QUEK, 1994. Towards a vision-based hand gesture interface. 
In: Proc. Virtual Reality Software and Technology 

Conference 1994. 

SHIMADA ET AL., 2001. Real-time 3-D Hand Posture 
Estimation based on 2-D Appearance Retrieval Using 
Monocular Camera. In: Proc. Int. Workshop on RATFG-

RTS, p. 23–30. 

SHNEIDERMANN, 1998. Designing the user interface: 
strategies for effective human-computer interaction. 
Addison Wesley, 3. ed. 

SNIDER, M., 2009. Microsoft unveils hands-free gaming. In: 
USA Today, 1 June 2009. Available from: http://www. 
usatoday.com/tech/gaming/2009-06-01-hands-free-
microsoft_N.htm [Accessed 24 July 2009]. 

STARNER ET AL., 2004. Mind-Warping. In: Proc. ACM 

SIGCHI Advances in Computer Enternatainment 2004, p. 
256-259. 

TSE ET AL., 2007. Multimodal Multiplayer Tabletop 
Gaming. In: ACM CIE 5(2). 

VIGGIANO, J., 2004. Comparison of the accuracy of different 
white balancing options as quantified by their color 
constancy. In: Proc. of the SPIE 5301, p. 323-333. 

WU, Y., HUANG, T., 1999. Capturing Articulated Human 
Hand Motion: A Divide-and-Conquer Approach. In: 
Proc. IEEE Int'l Conf. Computer Vision, p. 606-611. 

YOON, T. ET AL., 2006. Image Segmentation of Human 
Forearms in Infrared Image. In: Proc. 28 IEEE EMBS 

Annual International Conf., p. 2762-2765. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

98



Development of Games for SET-TOP-BOXES with 
 Brazilian’s Middleware GINGA-NCL 

 

Aderbal N. Silva Junior       Antônio C. S. Souza       Luiz C. S. Machado 
 

Instituto Federal de Educação, Ciência e Tecnologia da Bahia, DTEE, Brazil  
 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Frames illustrating the games that are being produced on this project. 

 

Abstract 
 

This paper aims to present the process of creating 

games for set-top-boxes with Brazilian’s middleware 

GINGA embedded on it, focusing on GINGA-NCL, 

since game’s pre-production until the end of the 

demonstrration (DEMO) version developed by the 

Research Group of Information’s Technology on 

Digital TV of the Instituto Federal de Educação, 

Ciência e Tecnologia da bahia in conjunction with 

the Core of Computational Modeling of SENAI / 

CIMATEC. All games in this text have been 

programmed in the language Lua coupled to NCL 

and the tests to evaluate the gameplay were 

performed using the emulator Ginga-NCL Player and 

the Virtual Set-Top-Box (STB) Ginga-NCL. Both 

softwares simulate the needed equipment for 

televisions that do not have specific tuner for 

receiving digital signal. 

 

Keywords: digital tv, ginga, set-top-box 

 

Authors’ contact: 
{aderbalnunes,antoniocarlos,luizcms} 

@ifba.edu.br 

 

1. Introduction 
 

The market of electronic games have been 

highlighted in the last decade on Brazilian economy, 

being currently responsible for handling 87.5 million 

reais adding specific hardware and software 

according to the Brazilian Association of Developers 

of Electronic Games (ABRAGAMES). It was also 

discovered in the last survey that the software 

industry of games in Brazil has grown about 30% per 

year. Worldwide’s economic viability is even more 

visible since 2003, when the segment of video games 

exceeded the revenues of the film industry 

[ABRAGAMES 2004]. 

 

The current scenario for the deployment of 

Brazilian System of Digital Television (SBTVD) is 

an opportunity to encourage the Brazilian scientific 

and technological development, since the guidelines 

and strategies of Decree No. 4901 of November 26
th

, 

2003 of Brazilian’s government that establishes the 

SBTVD [Brazil 2006], are to encourage regional and 

local industry in the production of digital 

applications. Looking deeper in the guidelines and 

strategies of the decree establishing the SBTVD, its 

inclusion intends to implement three key concepts: 

portability, connectivity and interactivity, field in 

which the development of games stands out among 

all other types of applications. However, being a 

relatively new technology, the construction of more 

complex and dynamic applications for SBTVD is still 

a challenge. The middleware GINGA set for the 

Brazilian’s digital TV system, developed by the 

Catholic University of Rio de Janeiro (PUC-Rio) and 

the Federal University of Paraíba (UFPB) has some 

limitations, showing that still needs to be improved, 

given that it does not meet all needs of interactive 

applications’ development.  

 

The transmission of free signal of digital TV in  

Brazil is on implementation’s phase and for this 

reason the majority of Brazilian’s cities are not 

receiving the digital signal. So the feedback from 

researchers and developers who work in this area and 

were not part of the team responsible for the creation 

of middleware is essential for a stronger version of 

GINGA to be available. 

 

The main objective of this work is to strengthen 

the activities aimed at production of digital content in 

Bahia, including its research centers in the area of 

Digital TV and production of electronic games. The 

research and development in the Group of Research 

on Information Technology, Line of Digital TV are 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

99



part of the project contemplated by FAPESB, August 

2007 edict, for the development of innovative 

solutions in the field of information and 

communication technology. A partnership of the 

Instituto Federal de Educação, Ciência e Tecnologia 

da Bahia, with SENAI / CIMATEC, joining a team 

of programmers, designers, writers, specialists in 

sound effects, masters and doctors in computing area 

for the strategic positioning of the State of Bahia in 

the forefront of development and improvement of the 

transmission of digital TV in Brazil.  

 

2. Detailed Steps of Development 
 

The process of developing software for Digital TV 

presents peculiarities compared to other architectures 

such as PCs, cell phones and video game consoles, 

although the cycle of production is based on three 

stages set by Schuytema [2008] with pre-and post-

production well defined. Below are the detailed steps 

of the methodology used by the Group of Information 

Technology - Research Line of Digital TV from 

Instituto Federal de Educação, Ciência e Tecnologia 

da Bahia with SENAI / CIMATEC for Digital TV 

Games Development Project. 

  

2.1 Analysis of Functions Provided by the 
Middleware 
 

In this case, GINGA was the middleware analyzed. 

The analysis seeks to exploit the resources of image, 

sound, storage devices and input and output. Due to 

possible problems with patents, GINGA-Java (or 

Ginga-J) had no official forecast for full release when 

this project started and that is why the development 

of Java applications for digital TV was discarded. 

Ginga-Java adopted GEM, a software block, which is 

part of Multimedia Home Platform (MHP), the 

european standard, and OpenCable Application 

Platform (OCAP), the north-american standard. The 

GEM’s adoption to make the system more 

compatible with the other technologies became a 

delay factor for GINGA-Java because GEM was 

patented, as it was described by B4DTV. Then, the 

SBTVD forum made a deal with Sun Mycrosystems 

to develop an open version of GEM and that is why 

all the work described here was designed and 

implemented under GINGA-NCL using its support 

for the programming language LUA.  

 

2.2 Game’s Specification 
 
Some ideas of casual games were chosen to be 

worked remembering the platform and physical 

limitations such as the remote control. These 

limitations had to be considered because they affect 

directly the gameplay of certain applications, such as 

the use of remote controls as joysticks that prevents 

excessively rapid responses and a greater care in the 

provision of keys to be used. These specifications and 

settings will be the Design Document (DD) and the 

basis for script and analysis of games geared for TV 

and other platforms that have characteristics in 

common with the games that are part of the project. 

This is the first model of the DD because the process 

of creating games is iterative and this document is in 

constant improvement in each step what prevents the 

development team to lose focus of the project. 

 

2.3 Tools’ Definition 
 

This step consists in study, evaluation and selection 

of tools that will be used. After the definition of the 

game, the designers specified the graphical objects to 

be used in the game table to table exported in 3D 

Studio Max (to be in 3D), Adobe Flash (for 

animation 2D) and Adobe Photoshop (for 2D 

paintings and illustrations ) in order to generate the 

frames of each object. For programming of game’s 

routines in languages NCL and Lua the selected tools 

were Lua’s Composer to write the code, the emulator 

GINGA-NCL player to run the first tests and virtual 

machine Ginga-NCL Virtual STB, that simulates the 

environment of a STB with the middleware GINGA-

NCL embedded on it. 

 

2.4 Implementation 
 

It is conducted around the Development Group (DG) 

and begins after the definition of the visual identity of 

the games. Usually the team of arts and design make 

the first characters and environments for the game, 

which are turned into a test environment by the 

programming team. Then, in parallel or in sequence, 

the whole interface is designed (the main screen and 

other screens of the game). The features’ 

programming and phases of the game are supervised 

by the DG. The activities are executed in parallel, 

making it a cyclic and incremental process, where 

each cycle implements a new stage, mission or play 

mode. Below are described the parts of 

implementation, the responsible staff and their 

respective functions. 

 

2.4.1 Design and Arts 
 

The game’s script and DD will subsidize the 

illustration and modeling of characters, objects and 

scenarios which is built up by the group of design 

and arts. This stage consists of the following sub-

steps: decoupage (stage where functionalities of the 

particular phase are identified and documented), 

conceptual art, storyboard, illustration or modeling, 

animation and animations exporting. 

 
2.4.2 Sound 
 

As the design and arts team, the sound team is 

subsidized by the game’s script in the implementation 

phase, so the soundtrack portrays faithfully the 

atmosphere suggested by each stage or mission and 

its peculiarities in terms of effects. The stages of 

production in the group are decoupage, search and 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

100



cataloging of music and sound effects, editing, 

composition, adjustment and composition and editing 

with animations. 

 

2.4.3 Programming 
 

Like previous teams, the group will be guided by the 

stage or mission’s script. The activities of this group 

are: decoupage, model solution planning, 

implementation and level design - where occurs the 

integration of products from the previous phase 

placing characters, objects and the sources of sound 

and also adding all the programming logic required to 

make the correct operation of these objects. 

The step of testing and adjustments close the 

development cycle and starts a new one, which will 

create a new stage or part of the game. 

 

The first cycle of development was used to design 

the demonstration version of the game. This version 

is being used to test the usability of the game and, 

soon players from outside the group of research and 

development will be called to play it. The players’ 

suggestions will be taken for evaluation and the most 

important of them will be included as a possible fix 

on the subsequent cycle. 

 

2.4.4 Beta Version and Final adjustments 
 
This test will be conducted with a group of players 

after the completion of the final version of the game. 

Level of motivation and entertainment offered by the 

game will be considered on this phase. Noticed 

problems like breaks on the flow, components that 

maximize the difficulty to the point of discouraging 

casual gamers and general unexpected errors as well 

as significant suggestions for improved use of the 

remote control will be corrected before release to 

consumers, thereby ending the process of developing 

the game. 

 

2.4.5 Completion 
 

This stage is the end of the last adjustment. In the 

completion a fully game’s evaluation will be held by 

the whole project team. There will be discussed and 

evaluated the produced games and the development 

process adopted as well. Each DG will present their 

report of overall development, which contains 

information such as problems encountered, solutions 

to problems and methodologies adopted. This 

meeting will result in a document with the project’s 

analysis that will synthesize the knowledge and 

suggestions for possible improvements in a new 

version or sequel for the game developed. The second 

and third sub-steps from this stage involve the 

process of distribution and monitoring of the game. 

As most of the steps is common to many processes of 

development of electronic games, here was just 

explored the tool’s definition and its implementation 

which are described in the following section. 

 

3. Definition and Implementation of 
Tools 
 
As shown previously, there are some differences 

between the process of software development for 

Digital TV and the same process on common 

platforms. In this architecture, as well as cellular 

phones, emulators are used to simulate the 

middleware in which the application will run, making 

the installation of the application in the STB 

unnecessary, at least while you are doing test 

procedures of implementation.  

The games developed and presented in this article 

were run in Emulator GINGA-NCL Player, which 

can be found in the Brazilian Public Portal Software 

for the operational systems: Windows, Linux and 

MAC OS. Note that the package Java Runtime 

Environment (JRE) is a prerequisite. 

 

Ginga-NCL was created by PUC-Rio to provide 

an infrastructure for submitting applications for 

multimedia / hypermedia under the declarative 

paradigm written in language NCL. NCL provides 

facilities for specification of interactivity aspects, 

space-time synchronization between media objects, 

adaptability and support for multiple devices 

[Brazilian Public Software Portal 2008]. Unlike 

HTML or XML, the language NCL do not mix the 

definition of the document’s contents with its 

structure, offering a noninvasive control of both the 

document’s layout (presentation space) and the 

exhibition time. NCL does not define any objects of 

media, but only reference these objects semantically 

together in a multimedia presentation. As Such, as 

quoted in Souza [2008], the use of language NCL is 

not sufficient for the development of games, because 

these applications require a control flow at runtime. 

Thus, developers of PUC-Rio provided a integration 

with LUA language (LUA-NCL). 

 

LUA is a light but really powerful programming 

language, which was designed to extend applications. 

It combines simple syntax for procedural 

programming with powerful constructs for data’s 

description based on associative tables and extended 

semantics. It thus allows the game designer to have 

some control over the language without having the 

need to follow the huge learning curve, usually 

associated with programming, as said by Schuytema 

[2008]. As said by Celes [2004], Lua is a scripting 

language, designed to provide meta-mechanisms that 

enable the construction of more specific mechanisms. 

In particular, developers of the games can provide 

adequate abstractions for writer and artist, 

simplifying the tasks of these. 

 

Lua is dynamically typed and is interpreted from 

bytecodes to a virtual machine (engine). It has 

automatic memory management with incremental 

garbage collection. These characteristics make it an 

ideal language for configuration, automation 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

101



(scripting) and rapid prototyping [Soares 2007]. This 

language simplicity, efficiency, portability and low 

impact of inclusion in applications, makes it one of 

the most used programming languages in the world 

of entertainment and can be seen today in games 

from LucasArts, BioWare, Microsoft, Relic 

Entertainment, Absolute Studios, Monkeystone 

Games, among others mainstreams producers as cited 

by Souza [2008]. 

 
4. Results 

 
In the second step of the methodology six games 

were chosen to be produced. Of these six games, one 

has already a beta version being on implementation’s 

phase and another two are under the demonstration 

version production. For all these games was adopted 

a line of creativity where the visual theme overlaps 

the simple aspect inherent to casual games. The 

interfaces are more dynamic and interactive, which 

easily draws the user’s attention due to the easy 

assimilation. 

 

4.1. Sudoku 
 

Sudoku was the first produced game and there is, 

actually, a demonstration version with most of its 

features. This is a logical reasoning game where each 

new game usually lasts 10 to 40 minutes depending 

of the difficulty level and the player’s experience. 

The puzzle starts with some initial clues and the 

player has to fulfill the remaining grids with numbers 

from 1 to 9, so that no digit is repeated in any block, 

row or column. Despite the numerical appearance the 

game does not need algebraic knowledge of the 

player, as said before it is a logic game. 

 

 
Figure 2: Sudoku’s main menu.  

 

The game was developed exploring the idea of 

using the colored buttons on the remote (as shown on 

Figure 2), the simplicity of handling, the games of 

chance inherent in reasoning, the limitation of using 

the memory emulator that simulates a platform and a 

design characteristic of board games as can be seen in 

Figure 3. 

 

 
Figure 3: Sudoku’s clean board.  

 
Animated videos identified and coordinated as 

objects in NCL, were used to create the animated 

menu. The start of the presentation, the loop of 

animations, the interaction between the player and 

the screen through colored buttons and the script that 

describes the game itself (identified as an object of 

type LUA) were are referenced in NCL. The main 

code written in NCL, with all those references, will 

be run by GINGA-NCL, be it on the emulator or in 

the virtual machine. 

 

Transitions are made through NCL simple 

connectors like "onEndStart", "onBeginStart" or 

"onKeySelectionStartStopAbort" that executes 

literally their descriptions. The trick to the flow 

dynamism in the NCL controlled part is on the 

production, merge and timing of the videos and the 

player’s control.  

 

Inside the LUA object called through the main 

code are the chunks (lines or blocks of code / 

commands) that describe the paths to load the entire 

graphical interface within the game and the variables 

that store the objects (chalk, board, numbers) its 

original position and size, in addition to the functions 

that govern the movement, appearance, 

disappearance and replacement of what is shown on 

screen, win or lose and life systems.  

 

The win or lose system for board games of this 

type can be done through a finder function like: 

 

function whereami() 

x  = math.floor((cursor.x-PIH)/EHQ) + 1 

y  = math.floor((cursor.y-PIV)/EVQ) + 1 

return y*TQV+(x-TQH)  

end 

 

Where PIH / PIV represents the initial position of 

the cursor in the horizontal / vertical, EHQ / EVQ are 

the spaces that the cursor has to walk in order to 

reach the next grid in horizontal / vertical and TQH / 

TQV is the total number of grids in horizontal / 

vertical. Combined with a generic function to fill the 

board (and also the array with the new information to 

be compared with the solution array) the code will be 

like: 

 

 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

102



function changeimage(target, num) 

 

if target.fix == false and 

tonumber(num) == 

rightgame[whereami()]then  

target.img = 

canvas:new('/imagens/'..num..'_ok.png') 

target.num = num 

 

if gameimplayn == rightgame then 

event.post('out', { class='ncl', 

type='presentation', area='fim', 

transition='starts' }) 

IGNORE = true 

end 

 

elseif target.fix == false and num ~= 

rightgame[whereami()] then  

target.img = 

canvas:new('/imagens/'..num..'_no.png') 

target.num = num 

 

playerslife= playerslife-1 

if playerslifer== 0 then 

event.post('out', { class='ncl', 

type='presentation', area='fim', 

transition='starts' }) 

IGNORE = true 

end 

else return end 

end 

 

As can be seen on this block, there is already 

attached to the function the change of images, the 

lose system and the correction with its penalties 

(reduction of player’s life). Also the notification that 

determines the end of the game, consequently the end 

of LUA’s script, and the return to NCL control which 

will be verified by the IGNORE on the handler of 

events that controls the input in the program. Note 

that the “var = var – 1” works on LUA. You just need 

to make sure that “var” is not NIL (null value). 

 

Board games for GINGA-NCL as the Sudoku can 

use the same principle, applied here, where tables 

(arrays) with pre-defined positions according to their 

scenario can load random matches each time a player 

starts a new game. The loading of random files where 

arrays with different games are could be done 

through the “require” function. The possibility of 

loading different games from chunks of the source 

code allows the possibility to download new and 

different level games. In this game, the opening 

animation was made in 3D and all the gameplay 

(screen background, and cursor numbers) was created 

with 2D digital paintings and illustrations, including 

the sub-menus (Figure 4). 

 

 
.Figure 4: Sudoku’s sub-menu. 

 

4.2. Wing Force 
 

Wing Force was based on old shooters of vertical 

progression where players control an aircraft seen 

from above, such as River Raid of the extinct console 

ATARI 2600. The player must destroy enemy 

aircrafts, tanks, ships and interactive elements of the 

scenario as he travels through it collecting power-ups 

(improvements to the machinery of the aircraft) and 

keeping himself alive until the end of each stage and 

thus achieve the next level. 

 

The source code of this game is severely more 

complex than sudoku’s code, since you need to 

control a time flow with constant handling of the 

scenario, ship, enemies, etc. that should be controlled 

by co-routines (threads). The problem is that despite 

the support of co-routines by the programming 

language Lua, the virtual machine that simulates the 

STB with the Ginga-NCL does not offer this support 

installed. The algorithm is improved using the 

movement of variables to control the appearance and 

movement of enemies.  

 

Today the enemies on the screen tend to bump 

against the player at a lower speed than the player’s 

ship what gives the player enough time to evade. 

Right now the enemy’s ships mechanism is being 

studied for better handling, be it random or fixed, to 

further minimize the problem of GINGA-NCL 

lacking of co-routines.  

 

Some objects can explode in case of collisions. 

The collisions can be done by a comparator function 

of position in the handler of events. 

 

 
Figure 4: Sudoku’s sub-menu. 

 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

103



The scenarios are 2D paintings and enemy ships 

and tanks as other scenario’s elements were modeled 

and animated in 3D and then exported frame to 

frame. The animations were completed in Adobe 

Flash, retouching the texture in Adobe Photoshop. 

The soundtrack is very fast, with typical effects of 8-

bit consoles and a melody-based on 80s rock. 

 

5. Related Work 

 

Although the SBTVD’s game development is 

something new, all the analysis about limits and 

possibilities of GINGA made by Souza et al.[2008] 

was a essential part of this work, as much as Piccolo 

et al.[2008] study about STBs and Digital TV 

architecture is particularly recommended for 

understanding of the operation of STBs and how 

 

Development of games in Lua is perfectly describe in 

the whole Celes and Ierusalimsch work as much as 

development of applications in NCL is described in 

Soares at al.[2007] work. 

 
6. Conclusions 

 

The difficulty of developing more robust games for 

GINGA-NCL is visibly noticeable. Not just for the 

question of co-routines, but also by the limitation of 

the size of imported images and scenarios. By the 

close time of this article, the latest virtual machine 

that simulates the STB (GINGA LIVE CD V1.0) still 

does not support co-routines. The concept that most 

stood out in the proposed deployment of SBTVD, 

interactivity, is still not satisfactory because 

applications that are being produced and 

disseminated are still quite poor in terms of 

interaction between the user and the TV. While these 

application hopes to astonish users for their visual 

appeal they still provide little immersion an important 

conception in games.  

 

Although the games presented here are almost 

finished, this work can still be seen as an initial step 

in developing applications for Brazilian’s digital TV 

as there is still much to explore with GINGA-JAVA 

especially on development of applications aimed at 

interactivity and entertainment. It is presumable now 

that with the GINGA-JAVA’s confirmation a new 

way to the development of games for STBs with 

Brazilian’s middleware fostering interactivity, and 

conducting a more robust version of GINGA-NCL 

with more opportunities and less restrictions. 

 

Acknowledgements 
 

The authors would like to thank Fundação de 

Amparo à Pesquisa do Estado da Bahia and Ifba’s 

CTPGP for the financial support and for believing in 

this project. Also it is important to mention B4DTV 

blog and DEVDTV discussion list the best source for 

those who want to develop absolutely anything for 

GINGA or just to keep in touch with everything 

about Digital TV on Brazil. 

 

References 
 
ABRAGAMES, 2004. Plano Diretor de Promoção da 

Indústria de Desenvolvimento de Jogos Eletrônicos no 

Brasil – Diretrizes Básicas, 

http://www.abragames.org/docs/pd_diretrizesbasicas.p

df, [Accessed 17 July 2009]. 

 

B4DTV – Blog for Digital Tv.  

http://b4dtv.blogspot.com/[Accessed 15 August 2009]. 

 

 

BRASIL. Decreto n 5.820, de 29 de Junho de 2006. 

Implantação do Sistema Brasileiro de Televisão Digital 

Terrestre - SBTVD-T. DOU de 27/11/2006. 

http://www.planalto.gov.br/ccivil_03/_Ato2004-

2006/2006/Decreto/D5820.htm, [Accessed 20 June 

2008]. 

 

Celes, W., Figueiredo, L. H. e Ierusalimschy, R., 2004. “A 

Linguagem Lua e suas Aplicações em Jogos”, 

http://www.tecgraf.puc-

rio.br/~lhf/ftp/doc/wjogos04.pdf, [Accessed 15 May 

2008]. 

 

Openginga, 2008 ProjetoOpenGING.  

http://www.openginga.org, [Accessed 15 July 2008]. 

 

Piccolo, L. S. G., Melo, A. M., Baranauskas, M. C. 

C.[2008]. “Accessibility and Interactive TV: Design 

Recommendations for the Brazilian Scenario”, Human 

Computer Interaction INTERACT 2007 11th IFIP TC 

13. 

 

Piccolo, L. S. G., “Arquitetura do Set-top Box para TV 

Digital Interativa”. 

http://www.grupos.com.br/group/designcefet20051/Me

ssages.html?action=download&year=08&month=5&id

=121077537895923&attach=arquitetura%20conversor.

pdf, [Accessed 15 May 2008] 

 

Soares, L. F. G., Rodrigues, R. F., Moreno, M. F.,2007. 

“Ginga-NCL: the Declarative Environment of the 

Brazilian Digital TV System”. Journal of the Brazilian 

Computer Society, v. 12, p. 37-46, 2007. 

 

Souza, A. C., Machado, L. C. S., Sampaio, R. L. e 

Raimundo, P. O. , 2008. “Desenvolvimento de Jogos 

para TV Digital”, 3° Congresso de Pesquisa e Inovação 

da Rede Norte Nordeste de Educação Tecnológica. 

 

Souza, A. C., Machado, L. C. S., Sampaio, R. L. e 

Raimundo, P. O. , 2008. “TV Digital: Limites e 

Possibilidades Tecnológicas”, 3° Congresso de 

Pesquisa e Inovação da Rede Norte Nordeste de 

Educação Tecnológica. 

 

Schuytema, P. , 2008. Design de games: Uma 

abordagem prática, Brasil, Ed. Pioneira.  

 

 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

104



Ginga Game: A Framework for Game Development for the Interactive 
Digital Television 

 

Diego Cordeiro Barboza  Esteban Walter Gonzales Clua 

 

Universidade Federal Fluminense, Instituto de Computação - Media Lab, Brasil 
 

Abstract 
 

With the implantation of Brazilian’s Digital Television 

System, a new software development platform has 

been created. Applications for the Digital TV are an 

important part of this new system, which aims, in 

addition to higher image and sound quality, the 

creation of an interactivity channel for the viewer. 

Among all possible applications for this new 

environment are the digital games, which every year 

attract a growing audience worldwide. However, game 

development isn’t a simple task, and doing so in a 

limited platform such as digital receivers could be a 

complicated process. So, this paper presents a 

framework for game development for the Digital TV, 

which allows the developer to focus on content 

creation only, without concerns about technical issues 

or common tasks related to game development.  

 

Keywords: Ginga, Digital TV, frameworks, games 

 

Authors’ contact: 
dbarboza@ic.uff.br, esteban@ic.uff.br 

 

1. Introduction 
 

Brazilian Digital Terrestrial Television System 

(SBTVD-T) has three guidelines, in addition to its 

current analogue system: high-definition digital 

broadcast (HDTV); digital broadcast for fixed, mobile 

and portable reception; and interactivity [Brasil 2006]. 

 

 SBTVD-T’s interactivity channel allows the system 

to be expanded through applications built over a 

reference standard system. The main idea is to allow 

the digital receiver (set-top box) to run different 

applications, such as electronic guides, shopping 

channels, bank and educational services, among others 

[Barbosa and Soares 2008].  

 

 Digital games are an interactive application type 

that could help Digital TV become popular in the 

country, since the national industry is in an expansion 

and growing moment [Ferreira and Souza 2009]. 

 

In SBTVD-T, the Ginga middleware takes place 

between applications and execution infrastructure 

(hardware and operating system) [Ginga 2009].  For 

this reason, applications for the Brazilian Digital TV 

must be based on the Ginga middleware, using one of 

its supported programming languages. 

 

This paper’s main goal is to present a game 

development framework for the SBTVD-T, using 

Ginga-J (the procedural part of Ginga middleware that 

uses the Java language).  The framework presents an 

application model and a set of classes that simplifies 

game development for the Digital TV as well as 

abstracts the process from a specific platform. 

 

The idea is to use the framework to facilitate the 

game development for the Digital TV to the process of 

developing games to personal computers, except for 

some certain limitations imposed by the platform 

[ABNT 2008], such as hardware limitations concerning 

memory and processing capacity, and input issues 

related to the use of a remote control instead of mouse 

and keyboard.  

 

  The paper is organized as follows: section 2 

presents some related publications to this paper’s 

proposal. Section 3 presents the Ginga middleware and 

its structure. Section 4 describes the Ginga Game, the 

framework proposed in this paper, and also presents an 

example of its application. The last section presents the 

paper’s conclusions. 

 

2. Related Work  
 

There is some related work about game development 

for the Digital TV. Among these papers, the following 

could be highlighted: [Ferreira and Souza 2009], that 

presents a different approach to Ginga Game, but with 

similar purpose; [Lima 2007], that develops a 

communication protocol for network games within 

SBTVD-T; and [Junior et al 2009], that doesn’t use 

Ginga-J, but makes an interesting study about game 

development for the Digital TV using Ginga-NCL with 

the Lua programming language. 

 

 In its master degree dissertation, [Valente 2005] 

presents the study about the development of a 

framework for computer games. This work isn’t 

directly related to game development for the Digital 

TV, but has some interesting content about game 

development frameworks architectures, which some of 

them are used in this work. 

 

3. Ginga Middleware 
 

Ginga is the middleware for running applications on 

the SBTVD-T. This platform was developed together 

by the research laboratories Telemídia [Telemídia 

2009] and LAViD [LAViD], from PUC-Rio and 

UFPB. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

105



 

  The Ginga middleware is subdivided into two 

applications environments for Digital TV receivers and 

allows the application development following two 

distinct programming paradigms: the declarative 

(Ginga-NCL) and the procedural (Ginga-J). 

 

 The declarative environment allows the 

programmer to define a set of tasks to be executed 

without concerning who will perform these tasks and 

how they will be performed. This way, it is needed 

only the description of the desired results in a 

declarative language, instead of an algorithm [Barbosa 

and Soares 2008]. The SBTVD-T employs the NCL 

(Nested Context Language) language in its declarative 

environment [ABNT 2007] together with the Lua 

language, for non-declarative applications. 

 

The non-declarative environment, or the procedural 

environment, requires the specification of each step to 

be performed by the program. In this kind of 

environment, the programmer has higher level of 

control over the application and its execution flow, but 

it’s also required a higher language and algorithm 

knowledge [Barbosa and Soares 2008]. The Java 

language is employed in the SBTVD-T’s procedural 

environment. 

 

Figure 1 exposes Ginga middleware’s architecture. 

The Presenting is the subsystem responsible for 

processing NCL documents, and the Execution 

Machine is in charge of processing procedural 

applications, i.e., Java Xlets [ABNT and CEET-

00:001.85 2008].  

 

 

Figure 1 – Ginga middleware architecture [ABNT and 

CEET-00:001.85 2008]. 

 
This paper’s scope doesn’t enclose the Ginga’s 

declarative environment, focusing solely on Ginga-J. 

For further information on application development 

using Ginga-NCL, it is recommended [Barbosa and 

Soares 2008]. 
 
3.1 Ginga-J 
 

Ginga-J, the procedural environment for the Ginga 

middleware, is currently under development and 

doesn’t have an official implementation. On may/2008, 

a draft version, without normative value, of Ginga-J 

specification was released by ABTN (Associação 

Brasileira de Normas Técnicas) and CEET-00:001.85 

(Comissão de Estudo Especial Temporária de 

Televisão Digital) [ABNT and CEET-00:001.85 2008]. 

This specification defines Ginga-J’s architecture and 

execution environment, and is addressed to 

applications and digital receivers developers. 

 

 Ginga-J’s architecture is shown on Figure 2. In this 

architecture, user’s applications (called Xlets) are 

placed on the top level and must make use of Ginga-

J’s standard API (Application Programming Interface). 

Resident Applications, on the other hand, may use non-

standard system resources, available from the operating 

system or a particular implementation of Ginga. This 

kind of application includes closed captions, system 

messages, receiver’s menus, program guide, and others 

[ABNT and CEET-00:001.85 2008]. 

 

 

Figure 2 – Ginga-J middleware architecture [ABNT and 

CEET-00:001.85 2008]. 

 
 The Ginga-J’s reference implementation document 

defines the Ginga-J API, a set of Java packages 

included in Ginga-J. This API includes packages from 

the following APIs: 

 

 JavaTV [Sun 2009a]: an extension of Java 

platform to add support for Digital TV 

application development. It’s main goal is to 

run applications abstracting the technologies 

used on the broadcast.; 

 DAVIC [DAVIC 1998]: is a set of 

specifications aims to keep interoperability 

between platforms involved on execution of 

broadcasted audio and video; 

 HAVi [HAVi 1999]: defines a home network 

interoperability standard between audio and 

video devices. HAVi packages’ also provides 

resources for graphical users interface 

creation, extending Java’s AWT 1.1 [Sun 

1999]; 

 DVB [DVB 2009]: packages that extends 

features from JavaTV, DAVIC and HAVi, 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

106



and includes other features, such as Xlets 

communications, persistence, and others; 

 Ginga Extensions: class set that includes 

channel tuning control, media flow API, and 

return channel API; 

  ARIB STD B-23 [ARIB 2003]: API 

compatible with japanese Digital TV standard 

specifications; 

 Ginga-J Definitions: packages that offer 

functions to Ginga middleware-included 

devices, such as multi-user interaction, and 

the bridge with Ginga-NCL. 

  

The full list of these packages is available from 

[ABNT and CEET-00:001.85 2008]. 

 

Due issues related to copyrights costs, this 

reference implementation of Ginga-J has not been 

included in any digital receiver  marketed in Brazil so 

far. 

 

In may/2009, the Board of the Forum of Brazilian 

Digital Terrestrial Television System (Conselho 

Deliberativo do Fórum do Sistema Brasileiro de TV 

Digital Terrestre) decided [Fórum SBTVD 2009a] for 

the implantation of JavaDTV [Sun 2009b] in the Ginga 

middleware, instead of the previous published draft 

[ABNT and CEET-00:001.85 2008]. This API is also 

based on JavaTV and is very similar to the reference 

implementation, but it replaces some proprietary 

solutions. 

 

The JavaDTV binaries are unavailable on the time 

this papers is being writted and only its documentation 

has been published [Fórum SBTVD 2009b]. 

 

This paper’s elaboration uses the reference 

implementation so that it is possible to present a 

functional version of the project. The framework’s 

structure has been developed in a way that platform 

specific details are isolated, making easier for the 

migration process to be done when JavaDTV becomes 

available. 

 

3.2 Applications for the Digital TV 
 

Applications for the Digital TV are called Xlets, just 

like Java applications for the web and mobile are called 

Applets and Midlets, respectively. An Xlet life-cycle is 

shown in Figure 3. As soon as the application is loaded 

to the set-top box, it will stay on the loaded state until 

it’s started. Then it pass from the paused state to the 

started state (where it is actually running), and may be 

eventually paused and resumed again. Finally, the 

application manager destroys the Xlet when it enters 

the destroyed state [Burlamaqui et al 2008].  

 

 

Figure 3 – The Xlet’s life-cycle [Morris 2005]. 

 

An important difference between an Xlet and an 

Applet is the possibility to pause and resume an Xlet. 

This is very important in a limited environment like the 

digital receivers, where many applications could be 

running at the same time and sharing the limited 

available resources. This way, it’s possible to 

temporary stop an application that is not visible and 

release the resources to other applications [Morris 

2005].  
 

  A Digital TV application is, therefore, an 

application that implements the Xlet interface provided 

by JavaTV [Sun 2006].  The following are the public 

methods of this interface: 

   

 destroyXlet: signals the Xlet must be 

finalized and enter in the destroyed state; 

 initXlet: signals the Xlet must be initialized 

and enter the paused state, which means 

it’s ready to start providing a service; 

 pauseXlet: signal the Xlet must stop 

providing a service and enter it’s paused 

state; 

 startXlet: signals the Xlet must start 

providing a service and enter it’s started 

state. 

  

The Xlet interface allows an application manager to 

create, initialize, start, pause and destroy an Xlet. Due 

its life-cycle, it’s possible that several different Xlets 

are controlled at the same time by the application 

manager, and the runtime environment chooses which 

one should be active in a given time. 

 

For the elaboration of this paper, while the 

JavaDTV is unavailable, the reference implementation 

[ABNT and CEET-00:001.85 2008] has been used. 

Tests with the built applications were held with the 

XleTView [Sveden 2004], an Xlet emulation software 

that allows testing applications developed for the 

Digital TV [Carvalho and Araújo 2009]. 

 
 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

107



4. Ginga Game 
 

Ginga Game is a Digital TV game development 

framework proposed in this paper. Its goal is to provide 

a structure that makes it easier to develop games for 

the Digital TV and make this task more similar to the 

development for personal computers. 

 

  The purpose on the creation of a software 

framework for game development is to avoid that 

common tasks be implemented again every time a new 

game is produced. [Valente 2005] presents a similar 

approach, but focuses on the reuse of software 

components for computer game development. 

 

 Ginga Game provides an application model that 

automatically performs several recurring tasks 

concerning game development, such as resources 

loading and component management, and allows the 

developer to focus on its game specific code. 

 

 This approach is similar to the models provided by 

XNA [Microsoft 2009] and Unity 3D [Unity 2009], for 

instance. These tools provide a complete game 

structure and the developer must only write the code 

that defines the behavior of its game components and 

add them to the game scenes. 

 

 Ginga Game is subdivided in three different Java 

packages. This implementation was made in a way that 

classes that need platform specific resources are in a 

separate package from the classes that doesn’t have 

this kind of dependency. So, the migration of Ginga 

Game to another platform could be made just by doing 

the required modifications in only one package, while 

the others remain unchanged. 

 

 The package GingaGame provides some abstract 

interfaces that must be implemented in a platform 

specific package. In this package are defined basic 

concepts of the framework, such as game objects and 

game components, scenes, and the application model 

that manages these objects. 

 

 The package GingaGame.GameComponent has a 

set of ready to use components. These components 

must be added to objects in a game scene. Among the 

developed components are AnimatedSprite (that allows 

the drawing of animated images), StaticSprite (for 

drawing static images), and BoundingBox (for collision 

checking using rectangles). More components will be 

developed over time. 

 

Lastly, the GingaGameJavaTV package encloses all 

platform specific classes, in a JavaTV specific 

implementation. An example of platform specific 

resource is the window manager. JavaTV uses the class 

HScene (from the HAVi package) to access the 

application’s windows. These classes are put apart 

from the remaining classes of the framework to make it 

easy to change the execution platform, if it’s needed. 

This way, only the platform specific code should be 

modified, but the interfaces remain the same. 

The UML Package Diagram for Ginga Game is 

shown in Figure 4. 

 
Figure 4 - Ginga Game Package Diagram. 

  

4.1 How Ginga Game works 
 

Games created with Ginga Game are made with a class 

that extends the framework’s Game class. This is the 

main class in the framework, and it works as a starting 

point on the creation of new games, while it’s also 

responsible for running the application model and the 

component management. 

 

A game can be decomposed into logical units called 

scenes that are instances of the Scene class. Each scene 

is independent from other scenes and could be 

initialized and finalized at any moment by the game. It 

may also hold several game components and objects 

that are loaded and removed from the game at the same 

time of the scene. This division allows a simpler game 

organization, where each screen, stage or level can be 

described as a scene. 

 

A scene or the game can hold a game object 

collection, where a game object is an instance of the 

GameObject class. These entities interact with each 

other and these interactions are what give life to the 

game. Characters in an adventure game or cars in a 

racing game, for instance, could be described as game 

objects. A game object may be added to a scene or the 

game (in this case, it will be a persistent object that 

will not be destroyed when the scene is finalized). A 

game object may contain one or more game 

component. 

 

The game components are instances of the 

GameComponent class used to compose a game object. 

For instance, a car object can be composed by wheels, 

engine, lights and several other items. Each of these 

items can be represented as a game component. 

 

It’s up to the developer to use the components 

available from the framework or create its own. The 

GameObject and GameComponent classes can be 

extended so the developer can create its own content. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

108



This approach allows software reuse at various levels. 

Depending on how the content was created, scenes, 

objects and component can be easily reused in other 

games. For example, a game options screen (a scene) 

can be shared between games that have the same user’s 

options. Likewise, an object used to account player’s 

scores can also be the same in several different games. 

 

Ginga Game has classes to manage game resources 

and execute certain routine tasks. The Screen class is 

responsible for drawing images and text into the game 

screen, while the ContentManager class is employed to 

load and manage resources, such as images and fonts. 

 

User interface is made through the Input class that 

must query the remote control keys’ state e provide this 

information to the game components. 

 

A collision manager verifies if a collision has 

occurred between solid objects in a scene and notifies 

the objects involved in the collision. This way, a solid 

object doesn’t need to query if a collision has occurred 

at any time, when it happens an event is triggered and 

the object can treat it. 

 

In future versions, more components will be 

available and the common content will be more and 

more separated from the specific content a game may 

need. 

 

A simplified UML Class Diagram for Ginga Game 

is shown in Figure 5. 

 
Figure 5 - Ginga Game Class Diagram. 

 

4. Validation of the Ginga Game 
 

To illustrate the development of a game with Ginga 

Game, a simple quiz game has been elaborated. While 

it’s a very simple game, it helps to illustrate the use of 

the framework, since many of Ginga Game’s features 

are employed. 

 

The game works as follows: a question and four 

answers are shown to the player. The answers appear 

inside red, green, yellow and blue buttons, using the 

colors of the remote control button’s to make the 

process more intuitive. For each question the player 

must press the correspondent button color that he 

thinks is the right answer. A component accounts how 

many right and wrong answers the player has given. 

 

Figure 6 shows the game’s project, where it’s listed 

its classes and images. Following is a brief description 

of each class: 

 

 Botão (Button): a game object that 

represents one possible answer to the 

question. A button is related to an image 

(a StaticSprite) and to a text (the answer); 

 Controle (Controller): the game object that 

verifies if a remote control key was 

pressed and tests if the right answer was 

chosen. The controller tells the scoreboard 

if the answer was correct or not and 

requests a new question to the game; 

 GingaGameQuiz: the application’s starting 

point. This class creates the Xlet and a 

game instance; 

 Jogo (Game): an instance of the Game class 

that is responsible for initializing the game 

scenes, as well as the scoreboard (a global 

object that controls the player’s score); 

 Pergunta (Question): a game object that 

represents a question in-game.  

 Placar (Scoreboard): a global game object 

created by the game, not a scene, that 

controls player’s score; 

 TelaDePergunta (Question Screen): each 

question screen is a scene that contains a 

question, a controller and four buttons. In 

order to add more questions to the game, 

it’s needed just to create more instances of 

this class. 

 

 

Figure 6 - Quiz Game classes. 

 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

109



This game exemplifies de use of Ginga Game’s 

classes in a very simplified way. In the game the game 

object, game component and scene concepts are used 

to divide the game in smaller logical units. 

 

Figure 7 shows a game screen on the XleTView 

emulator. The area within the yellow lines are the 

game itself (a question on the top, the answer options 

on the right side using the colors of the remote control, 

and a scoreboard on the lower-left corner) and the 

remote control on the left side is provided by the 

emulator. 

 

 

Figure 7 – Sample game developed using Ginga Game. 

 

New features could be easily added. A win screen, 

for instance, can be created through a new scene that 

could be loaded after the player answers some correct 

questions. 

 
5. Conclusion 
 
The development of games for the Digital TV in 

Brazil, using the Ginga middleware, either within the 

procedural environment (Ginga-J) or the declarative 

environment (Ginga-NCL) is possible and the appeal 

the games have may help popularize the interactive 

content on SBTVD-T. 

 

 Software development auxiliary tools has great 

importance and the creation of frameworks that allows 

greater code reuse and reduces the needing to rewrite 

code for common tasks may help to make the process 

quicker and more intuitive. 

 

 With the elaboration of Ginga Game, it’s expected 

to make the process of creating games for the Digital 

TV simpler, providing an environment that abstract the 

execution platform and allows the developer to focus 

only on the game’s logic. Through its structure, Ginga 

Game proposes an environment that allows a high rate 

of software component reuse, reducing the creation 

time for new games, as previously created components 

can be reused in new projects. 

 

 Future versions of the framework could add current 

unavailable features, such as sound and video 

playback, as well as the integration with NCL 

documents. 

 
References 
 
ABNT - Associação Brasileira de Normas Técnicas, 2007. 

Televisão digital terrestre - Codificação de dados e 

especificações de transmissão para radiodifusão digital - 

Parte 2: Gimga-NCL para receptores fixos e móveis - 

Linguagem de aplicação XML para codificação de 

aplicações. Sistema Brasileiro de TV Digital Terrestre, 

NBR 15606-2. Available from: 

http://www.dtv.org.br/download/pt-

br/ABNTNBR15606_D2_2007Vc3_2008.pdf [Accessed 

20 April 2009]. 

 

ABNT - Associação Brasileira de Normas Técnicas, 2008. 

Televisão digital terrestre – Receptores. Sistema 

Brasileiro de TV Digital Terrestre, NBR 15604. 

Available from: 

http://www.abnt.org.br/imagens/Normalizacao_TV_Digit

al/ABNTNBR15604_2007Vc_2008.pdf. [Accessed 20 

April 2009]. 

 

ABNT - Associação Brasileira de Normas Técnicas and 

CEET-00:001.85 - Comissão de Estudo Especial 

Temporária de Televisão Digital, 2008. Televisão digital 

terrestre - Codificação de dados e especificações de 

transmissão para transmissão digital – Parte 4: Ginga-J - 

Ambiente para a execução de aplicações procedurais 

(VERSÃO DRAFT 05/2008). Available from: 

http://www.openginga.org/00_001_85_006-4abnt_port-

DRAFT-05200.pdf [Accessed 23 April 2009]. 

 

ARIB, 2003. Application Execution Engine Platform for 

Digital  Broad Casting – ARIB STD-B23. Available 

from: http://www.arib.or.jp/english/html/overview/ 

doc/6-STD-B23v1_1-E1.pdf [Accessed 21 June 2009]. 

 

Barbosa, S.D.J. and Soares, L.F.G. TV digital interativa no 

Brasil se faz com Ginga: Fundamentos, Padrões, Autoria 

Declarativa e Usabilidade. In T. Kowaltowski & K. 

Brealtman (orgs.) Atualizações em Informática 2008. Rio 

de Janeiro, RJ: Editora PUC-RIO, 2008. pp.105-174. 

 

Brasil. Decreto n 5.820, de 29 de Junho de 2006. Implantação 

do Sistema Brasileiro de Televisão Digital Terrestre - 

SBTVD-T. DOU de 27/11/2006. 

http://www.planalto.gov.br/ccivil_03/_Ato2004-

2006/2006/Decreto/D5820.htm [Accessed 23 June 2009]. 

 

Burlamaqui, A., Silva, I. R. M. and Bezerra, D. H. D., 2008. 

Construção de programas Interativos para TV Digital 

utilizando o Ginga. Available from: 

http://gingarn.wikidot.com/local--

files/tvdiepoca08/capituloTVDIEPOCAFinal.pdf 

[Accessed 23 June 2009]. 

 

Carvalho, S. R. C. and Araújo, V. T., 2009. Emuladores para 

TV Digital – OpenMHP e Xletview. Available from: 

http://www.tvdi.inf.br/upload/artigos/artigo7.pdf 

[Áccessed 31 March 2009]. 

 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

110



DAVIC, 1998. Digital Audio-Visual Concil Davic 1.4. 

Available from: http://www.davic.org/down1.htm 

[Accessed 20 June 2009]. 

 

DVB, 2009. Digital Video Broadcasting – Standards & 

BlueBooks. Available from: 

http://www.dvb.org/technology/standards/ [Accessed 21 

June 2009]. 

 

Ferreira, D. A. and Souza, C. T., 2009. TuGA: Um 

Middleware para o Suporte ao Desenvolvimento de Jogos 

em TV Digital Interativa. Centro Federal de Educação 

Tecnológica do Ceará. Available from: 

http://code.google.com/p/tuga-

sdk/downloads/detail?name=TuGA_Middleware.Jogos.T

VDigital_v1.6.pdf [Accessed 21 May 2009]. 

 

Fórum SBTVD, 2009a. Fórum do Sistema Brasileiro de 

Televisão Digital define o padrão para a interatividade. 

Available from: 

http://www.forumsbtvd.org.br/materias.asp?id=127 

[Accessed 30 May 2009]. 

 

Fórum SBTVD, 2009b. Sun Microsystems entrega 

especificações Java DTV para Ginga-J sem cobrança de 

royalties. Available from: 

http://www.forumsbtvd.org.br/materias.asp?id=74 

[Accessed 12 June 2009]. 

 

Ginga, 2009. Available from: http://www.ginga.org.br/ 

[Accessed 20 June 2009]. 

 

HAVi, 1999. Technical Background – HAVi, the  a/v digital 

network revolution. Available from: 

http://www.havi.org/pdf/white.pdf [Accessed 20 June 

2009]. 

 

Junior, A. N. S., Souza, A. C. S., Santos, L. C. M., Sampaio, 

R. L. and Raimundo, P. O., 2009. Desenvolvimento de 

Jogos para o Sistema Brasileiro de TV Digital, I Santa 

Catarina Games. Available from: 

http://200.169.53.89/scgames/artigos/08980100014.pdf 

[Accessed 18 June 2009]. 

 

LAViD, 2009. Available from: http://www.lavid.ufpb.br/ 

[Accessed 24 June 2009]. 

 

Lima, F. M., 2007. Protocolo de Aplicação para Jogos de 

Tabuleiro para Ambiente de TV Digital. Available from: 

http://www.midiacom.uff.br/~debora/fsmm/trab-2007-

2/protocolo.pdf [Accessed 21 April 2009]. 

 

Microsoft, 2009. XNA. Available from: http://www.xna.com/ 

[Accessed 01 June 2009]. 

 

Morris, S., 2009. An Introduction To Xlets. Available from: 

http://www.mhp-

interactive.org/tutorials/mhp/xlet_introduction [Accessed 

30 May 2009]. 

 

Sun, 1999. The AWT in 1.0 and 1.1. Available from: 

http://java.sun.com/products/jdk/awt/ [Accessed 28 

March 2009]. 

 

Sun, 2006. Interface Xlet. Available from: 

http://72.5.124.55/javame/reference/apis/jsr217/javax/mi

croedition/xlet/Xlet.html [Accessed 30 March 2009]. 

Sun, 2009a. Java ME Technology – Java TV API. Available 

from: http://java.sun.com/javame/technology/javatv/ 

[Accessed 28 March 2009]. 

 

Sun, 2009b. Java(TM) DTV 1.0 Final Release. Available 

from: https://cds.sun.com/is-

bin/INTERSHOP.enfinity/WFS/CDS-CDS_Developer-

Site/en_US/-/USD/ViewProductDetail-

Start?ProductRef=javadtv-1.0-oth-JPR@CDS-

CDS_Developer [Accessed 30 May 2009]. 

 

Sveden, M., 2004. xleTView. Available from: 

http://www.xletview.org/ [Accessed 30 May 2009]. 

Telemídia, 2009. Available from: http://www.telemidia.puc-

rio.br/ [Accessed 24 June 2009]. 

 

Unity, 2009. Unity: Game Development Tool. Available 

from: http://unity3d.com/ [Accessed 01 June 2009]. 

 

Valente, L., 2005. GUFF: Um Framework para 

desenvolvimento de jogos, Dissertação (Mestrado) - 

Universidade Federal Fluminense – Instituto de 

Computação. Available from: 

http://guff.tigris.org/docs/Thesis05-pt.pdf [Áccessed 07 

March 2009]. 

 

 

 

 

 

 

 

 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

111



GPU Accelerated Path-planning for Multi-agents in Virtual Environments
Leonardo G. Fischer, Renato Silveira, Luciana Nedel

Institute of Informatics
Federal University of Rio Grande do Sul

Figure 1: Virtual characters controlled by the BVP Planner in a virtual environment.

Abstract

Many games are populated by synthetic humanoid actors that act
as autonomous agents. The animation of humanoids in real-time
applications is yet a challenge if the problem involves attaining a
precise location in a virtual world (path-planning), and moving re-
alistically according to its own personality, intentions and mood
(motion planning). In this paper we present a strategy to imple-
ment – using CUDA on GPU – a path planner that produces natural
steering behaviors for virtual humans using a numerical solution
for boundary value problems. The planner is based on the poten-
tial field formalism that allows synthetic actors to move negotiat-
ing space, avoiding collisions, and attaining goals, while producing
very individual paths. The individuality of each character can be set
by changing its inner field parameters leading to a broad range of
possible behaviors without jeopardizing its performance. With our
GPU-based strategy we achieve a speed up to 56 times the previous
implementation, allowing its use in situations with a large number
of autonomous characters, which is commonly found in games.

Keywords:: Path-planning, GPGPU, NVIDIA CUDA, Agent
Simulation

Author’s Contact:

{lgfischer,rsilveira,nedel}@inf.ufrgs.br

1 Introduction

Many types of games, specifically First Person Shooters (FPS) and
Real Time Strategy (RTS) are populated by synthetic actors that
should act as autonomous agents. Autonomous agents, also called
non-player characters, are characters with the ability of playing
a role into the environment with life-like and improvisational be-
havior. To behave in such way, the agents must act in the virtual
world, perceive, react and remember their perceptions about this
world, think about the effects of possible actions and finally, learn
from their experience [Funge 2004]. In this complex and suitable
context, navigation plays an important role [Nieuwenhuisen et al.
2007]. To move agents in a synthetic world, a semantic represen-
tation of the environment is needed, as well as the definition of the
agent initial and target position (goal). Once these parameters were
set, any path-planning algorithm can be used to find a trajectory to
be followed.

However, in the real world, if we consider different persons (all
in the same initial position) looking for achieving the same target
position, each path followed will be unique. Even for the same
task, the strategy used for each person to reach his/her goal depends
on his/her physical constitution, personality, mood, reasoning, ur-
gency, and so on. From this point of view, a high quality algorithm

to move characters across virtual environments should generate ex-
pressive, natural and unexpected steering behaviors.

In contrast, the high performance required for real-time graphics
applications compels developers to look for most efficient and less
expensive methods that produce yet good and almost natural move-
ments. To illustrate how performance is a crucial problem, it is
known that to be playable, a game must run at least at a rate of
30-100 frames per second. This implies in 0.02 seconds per frame.
Each frame (or step of an animation) includes the updating of the
game status, handling user inputs, graphics processing, physics
computations, strategic AI, path-planning, among others. Then, we
can easily consider something as one millisecond per step for path-
planning (with multi-core architectures, this restriction is relaxed).

Many researchers are working on methods to improve the quality
of the steering behavior of synthetic agents with a minimal cost.
One way to improve the performance is taking advantage of mas-
sively parallel architectures, as multi-core CPUs and GPUs (Graph-
ics Processing Unit). In this work we propose a GPU implemen-
tation of the BVP Planner recently proposed by us [Dapper et al.
2007]. The BVP Planner is a method based on the numeric solution
of the boundary value problem (BVP) to control the movement of
pedestrians allowing the individuality of each agent.

Our main contributions in this paper are:

• A parallel version of our previously technique [Dapper et al.
2007], implemented on the GPU using nVIDIA CUDA (Com-
pute Unified Device Architecture) [NVIDIA. 2009]

• A strategy to reduce the number of memory transactions be-
tween CPU and GPU

• Several tests showing that the GPU implementation improves
up to 56 times the CPU sequential version, allowing the real-
time use of this technique even in scenarios with a large num-
ber of autonomous characters

Despite humanoid, autonomous agent, and behavior are terms used
in many different contexts, in this paper we limit its use in order to
match our goals. For the sake of simplicity, we consider humanoids
as a kind of embodied autonomous agent with reactive behaviors
(driven by stimulus), represented by a computational model, and
capable of producing physical manifestations in a virtual world.
The term behavior will be used mainly as a synonymous of ani-
mation or steering behavior and intend to refer the improvisational
and personalized action of a humanoid.

The remaining of this paper is structured as follows. Section 2 re-
views some related works on path-planning techniques applied to
virtual agents simulation. Section 3 describes the fundamentals of
the path-planning method proposed by us. In Section 4 we detail
the strategy used to handle the information about the environment
and other agents. In Section 5 we present our strategy to implement

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

112



this technique on GPU. Section 6 shows our results, including sev-
eral comparisons between the CPU and GPU version, and exposes
considerations about performance. Finally, Section 7 presents our
conclusions and some ideas for future works.

2 Related Work

The path-planning problem has been deeply explored in game de-
velopment. The generation of a path between two known con-
figurations in a bi-dimensional world is a well-known problem in
robotics, artificial intelligence, and computer graphics field. How-
ever, to find the path is not enough when we want to endow artificial
characters with natural and realistic movement similar to the ones
found and followed by real human beings. When it comes to a
game with many autonomous characters, for instance, these char-
acters must also present convincing behavior. It is very difficult to
produce natural behavior by using a strategy focusing on the global
control of characters. On the other hand, taking into account the in-
dividuality of each character can be a costly task. As a consequence,
most of the approaches proposed in computer graphics literature do
not take into account the individual behavior of each agent.

An example is the technique proposed by Kuffner [James J. Kuffner
1998]. Kuffner proposed a technique where the scenario is mapped
onto a 2D mesh and the path is computed using a dynamic pro-
gramming technique like Dijkstra. Then, the motion controller is
used to animate the agent along the path planned. Kuffner argue
that his technique is fast enough to be used in dynamic environ-
ments. Another example is the work developed by Metoyer and
Hodgings [Metoyer and Hodgins 2004]. They proposed a tech-
nique where the user defines the path that should be followed by
each agent. During the motion along this path, it is smoothed and
slightly changed to avoid collisions using force fields that act on the
agent.

The development of randomized path-finding algorithms – spe-
cially the PRM (Probabilistic Roadmaps) [Kavraki et al. 1996] and
RTT (Rapidly-exploring Random Tree) [LaValle 1998] – allowed
the use of large and more complex configuration spaces to generate
paths efficiently. Thus, the challenge becomes more the generation
of realistic movements than finding a valid path. For instance, Choi
et al. [Choi et al. 2003] use a library of captured movements asso-
ciated to the PRM to generate realistic movements in a static envi-
ronment, that is, live-captured motions are used insofar the agent
tracks the path computed from a roadmap. Despite the fact the path
is computed in a pre-processing phase, results are very realistic.
Pettré et al. [Pettre et al. 2002] improved this idea adding one more
step in this process. This step consists of smoothing the path com-
puted by the PRM using Bézier curves. Hereinafter, the already
captured motions are associated to the agent position during the
path execution. As in previous works, the motion is also performed
on a 2D environment.

Differently, Burgess and Darken [Burgess and Darken 2004] pro-
posed a method based on the principle of least action which de-
scribes the tendency of elements in nature to seek the minimal ef-
fort solution. Authors claim that a realistic path for a human is the
one that requires the smallest amount of effort. The method pro-
duces human-like movements, through very realistic paths, using
properties of fluid simulation.

Tecchia et al. [Tecchia et al. 2001] proposed a platform that aims
to accelerate the development of behaviors for agents through local
rules that control these behaviors. These rules are governed by four
different control levels, where each one reflects a different aspect
of the behavior of the agent. Results show that, for a fairly simple
behavioral model, the system performance can achieve interactive
time.

Pelechano et al. [Pelechano et al. 2005] described a new architec-
ture to integrate a psychological model into a crowd simulation sys-
tem in order to obtain believable emergent behaviors. The architec-
ture achieves individualistic behaviors through the modeling of the
agent knowledge, as well as the basic principles of communication
between agents.

Treuille et al. [Treuille et al. 2006] proposed a crowd simulator

driven by dynamic potential fields which integrates both global nav-
igation and local collision avoidance. Basically, this technique uses
the crowd as a density field, and, for each group, constructs a unit
cost field which is used to control people displacement. The method
produces smooth behavior for a large amount of agents at interac-
tive rates.

Recently, Reynolds [Reynolds 2006] implemented a high perfor-
mance multi-agent simulation and animation for the Playstation R©

3. Basically, his technique uses a spatial partitioning that divides
the simulation into disjoint jobs which are evaluated in an arbitrary
order on any number of Playstation R© 3 Synergistic Processor Units
(SPUs). A fine-grain partitioning suits SPU memory size and pro-
vides automatic load balancing. This approach allows a scalable
multi-processor implementation of a large and fast crowd simula-
tion, achieving good frame rates with thousand of agents.

In 2008, Bleiweiss [Bleiweiss 2008] implemented the Dijkstra and
the A* algorithms using CUDA. Differently from our work, these
algorithms are used in the path finding problem with pre-computed
graphs. After several benchmarks, he observed that the Dijkstra
implementation reached a speed up of 27 times compared to a C++
implementation without SSE instructions. The A* implementation
reached a speed up of 24 times compared to the C++ implementa-
tion with SSE instructions.

Based on local control, van den Berg [van den Berg et al. 2008]
proposed a technique that handles the navigation of multiple agents
in the presence of dynamic obstacles. He uses an extended velocity
obstacles concept to locally control the agents with few oscillation.
Kapadia [Kapadia et al. 2009] presented a framework that enables
agents to navigate in unknown environments based on affordance
fields that compute all the possible ways an agent can interact with
its environment.

As mentioned above, most of the approaches do not take into ac-
count the individual behavior of each agent, his internal state or
mood. Our assumption is that realistic paths derive from human
personal characteristics and internal state, thus varying from one
person to another. As a consequence, we [Dapper et al. 2006; Dap-
per et al. 2007] recently proposed a technique that generate individ-
ual paths. Our path is smooth and is dynamically generated while
the agent walks. In the following sections, we will explain the con-
cepts of our technique and our strategy to implement it on the GPU.

3 Path Planner based on Boundary Value
Problems

Recently, we [Dapper et al. 2006; Dapper et al. 2007] developed
a technique that produces natural and individual behaviors for vir-
tual humanoids. This technique is based on an extension of the
Laplace’s Equation that produces a family of potential field func-
tions that do not have local minima. This family is generated
through the numeric solution of a convenient partial differential
equation with Dirichlet boundary conditions, i.e., a boundary value
problem (BVP). Boundary conditions are central to the method in-
dicating which regions in the environment are obstacles and which
ones are targets. Our method uses the following equation

∇2 p(r) + εv.∇p(r) = 0 (1)

where v is a bias unity vector and ε is a scalar value.

The use of terms ε and v distort the potential field providing a pre-
ferred direction to be followed. This distortion allows the produc-
tion of individual behaviors for humanoids illustrated through the
path followed by each one during navigation tasks.

To generate realistic steering behaviors, we need to conveniently
adjust both parameters ε and v. The vector v, called behavior vec-
tor, can be thought as an external force that pulls the agent to its
direction always as possible whereas the parameter ε can be under-
stood as the strength or influence of this vector in the agent behav-
ior. The allowed values of parameters ε and v permit to generate an
expressive amount of action sequences – displacement sequences –
that virtual humanoids can use to reach a specific target position.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

113



Figure 2 shows three different paths followed by an agent using the
Equation 1 and changing the parameters ε and v.

(a) (b) (c)

Figure 2: Different paths followed by an agent using Equation 1:
(a) path produced by harmonic potential, i.e., with ε = 0; (b)
with ε = −1.0 and v = (1, 0); (c) with ε = −1.0 and v =
(1, sin(0.6t))

.

Two action sequences are not statically defined for a same pair ε and
v, i.e., the path generated vary according to the information gath-
ered by the agent to allow it to dynamically react against unexpected
events (e.g. dynamic obstacles). In other words, the configuration
of the obstacles has an important role in the generation of the path.

Besides, this pair is not constrained to keep constant during the ex-
ecution of tasks. They can vary insofar the agent displaces in the
environment to obtain the desired behavior. Figure 2(c) shows a sit-
uation where the behavior vector varies according to a sin function.
It is not natural for human beings to walk based on a sin function.
However, the path based on a sin function illustrates the flexibility
of Equation 1. Any function can be associated to v and ε to generate
a behavior.

When ε = 0, Equation 1 reduces to ∇2 p(r) = 0 which cor-
responds to Laplace’s Equation. This equation is used as core of
the path planner based on harmonic function developed by Con-
nolly and Grupen [Connolly and Grupen 1993] on Robotics con-
text. This planner produces paths that minimize the hitting proba-
bility of the agent with obstacles, i.e., in an indoor environment the
agent will tend to follows a path equidistant to the walls, as shown
in Figure 2(a). This behavior is not always adequate to simulate
humanoid motion since it looks very stereotyped because humans
do not always walk equidistant to the walls. Hence the importance
of using these parameters ε and v.

The common approach to numerically solve a BVP is to consider
that the solution space is discretized in a regular grid. Each cell
(i, j) is associated to a squared region of the real environment and
stores a potential value pt

i,j at instant t. Each cell is distant from
each other 1 unit. The Dirichlet boundary conditions previously as-
sociate a specific potential value to some cells, before the relaxation
process is performed. That is, cells associated to obstacles in the
real environment store a potential value equal to 1 (high potential)
whereas cells containing the target store a potential value equal to
0 (low potential). The high potential value prevents the agent from
running into obstacles whereas the low potential value generates
an attraction basin that pulls the agent. The potentials of the other
cells are computed using the Gauss-Seidel relaxation method, as
discussed in [Prestes et al. 2002]. By considering the Equation 1,
the potentials of the free space cells are updated through the follow-
ing equation

pc =
pb + pt + pr + pl

4
+
ε((pr − pl)vx + (pb − pt)vy)

8
(2)

where pc = pt+1
i,j , pb = pt

i,j+1, pt = pt+1
i,j−1, pr = pt

i+1,j , pl =

pt+1
i−1,j and v = (vx, vy). Figure 3 shows a representation of these

cells.

Figure 3: Representation of pc, pb, pt, pr and pl on the grid.

The parameter v must be a unit vector and ε must be in the interval
(−2, 2). Values out of this range generate oscillatory and unstable
paths that do not guarantee that the agent will reach the target or will
avoid obstacles. This happens because the boundary conditions –
that assert the agent is repelled by obstacles and attracted by targets
– are violated.

After the potential computation, the agent moves following the di-
rection of the gradient descent of this potential at its current position
(i, j),

(∇p)(i,j) =
(
pi+1,j − pi−1,j

2
,
pi,j+1 − pi,j−1

2

)
This process is an intuitive way to control the agent motion. How-
ever, it can easily fail in producing realistic steering behaviors, as
observed in real world. One of the reasons is that the agent changes
its direction based solely on the gradient descent of its position. For
instance, if the field of view of the agent is small, its reaction time
will be very short to treat dynamic obstacles1. Then, these obstacles
will produce a strong repel force that will change the agent direc-
tion abruptly. As we can see in Figure 4, if the agent uses only the
gradient descent (dgrad) it will change its direction in nearly π/2.

We handle this problem by adjusting the current agent position by

∆ d = υ(cos(ϕt), sin(ϕt)) (3)

where υ defines the maximum agent speed and ϕt is

ϕt = η ϕt−1 + (1− η) ζt (4)

where η ∈ [0, 1) and ζ is the orientation of the gradient descent at
current agent position.

When η = 0, the agent adjusts its orientation using only informa-
tion about the gradient descent. If η = 0.5, the previous agent di-
rection (ϕt−1) and the gradient descent direction influence equally
the computation of the new agent direction. Figure 4(b) shows the
vector dt with orientation ϕt computed with η = 0.5. The parame-
ter η can be viewed as an inertial factor that tends to keep the agent
direction constant insofar η → 1. When η → 1, the agent reacts
slowly to unexpected events, increasing its hitting probability with
obstacles. η is a flexible parameter that the user is able to control.
However, a learning strategy could be used to specify what is the
best η to a specific situation.

Despite Equation 3 produces good results and smooth paths in en-
vironments with few obstacles, when the environment is cluttered
with obstacles, the agent behavior is not realistic and collisions can
happen. To solve this problem, a speed control was incorporated
into this equation,

∆ d = υ (cos(ϕt), sin(ϕt)) Ψ(|ϕt−1 − ζt|) (5)

1We consider that dynamic obstacles (as other agents) are mapped in the
environment only when they are inside the field of view of the agent, which
almost corresponds to reality.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

114



(a)

(b)

Figure 4: Defining agent motion. (a) Situation before the agent A2

enters in the field of view of A1. (b) If the agent A1 follows the
direction defined by the gradient descent (dgrad), it will changes
its direction in nearly π/2, what is undesirable. However, if the
agent uses the vector d, it will achieve a smooth curve, what is
more natural and realistic.

where function Ψ : R→ R is

Ψ(x) =

{
0 if x > π/2
cos(x) , otherwise .

If |ϕt−1− ζt| is higher than π/2, then there is a high hitting proba-
bility and this function returns the value 0, making the agent stops.
Otherwise, the agent speed will change proportionally to the col-
lision risk. In regions cluttered with obstacles, agents will tend to
move slowly. If a given agent is about to cross the path of another,
one of them will stop and wait until the other get through. Further-
more, speed control allows the simulation of agents’ mood through
the variation of the speed magnitude, that is, it is possible to simu-
late a tired agent making it move slower and an agent that is anxious
about its work making it move faster.

4 Implementation Strategy

As previously explained, our motion planning method requires the
discretization of the environment into a regular grid. In this section
we present the strategy that was used in our previous work [Dapper
et al. 2006; Dapper et al. 2007] to implement it by using global
environment maps (one for each target) and local maps (one for
each agent), as well as the mechanisms used to control each agent
steering behavior.

4.1 Environment Global Map

The entire environment is represented by a set of homogeneous
meshes, {Mk}, in which each meshMk has Lx × Ly cells, de-
noted by {Ck

i,j}. Each cell Ck
i,j corresponds to a squared region

centered in environment coordinates r = (ri, rj) and stores a par-
ticular potential value Pk

i,j . The potential associated to the mesh
Mk is computed by the harmonic path planner, through the Equa-
tion 2, and then used by agents to reach the target Ok.

In order to delimit the navigation space, we consider that the en-
vironment is surrounded by static obstacles. Global maps are built
before simulation starts, in a pre-processing phase.

4.2 Agent Local Map

Each agent ak has one map mk that stores the current local infor-
mation about the environment obtained by its own sensors. This
map is centered in the current agent position and represents a small
fraction of the global map, usually about 10% of the total area cov-
ered by the global map.

The map mk has lkx × lky cells, denoted by {cki,j} and divided in
three regions: the update zone (u-zone); the free zone (f-zone) and
the border zone (b-zone), as shown in Figure 5. Each cell corre-
sponds to a squared region centered in environment coordinates
r = (ri, rj) and stores a particular potential value pk

i,j .

Figure 5: Agent Local Map. The update (u-zone), free (f-zone) and
border zones (b-zone) are shown. Blue and red cells correspond to
the intermediate goal and obstacles, respectively.

The area associated to each agent map cell is smaller than the area
associated to the global map cell. The main reason is that the agent
map is used to produce refined motion, while the global map is used
only to assist the long-term agent navigation. Hence, the smaller the
size of the cell on the local map, the better the quality of motion.

4.3 Updating Local Maps from Global Maps

For each agent ak, a goal Ogoal(k)
2, a particular vector vk that

controls its behavior, and a εk should be stated. The same goal, v,
and ε can be designated to several agents. If vk or εk is dynamic,
then the function that controls it must also be specified.

To navigate into the environment, an agent ak uses its sensors to
perceive the world and to update its local map with information
about obstacles and other agents. The agent sensor sets a view cone
with aperture α.

Figure 6 exemplifies a particular instance of the agent local map
where we can see the obstacles mapped from the global map. The
u-zone cells cki,j which are inside the view cone and correspond
to obstacles or other agents have their potential value set to 1. In
Figure 7, as there is an agent in the u-zone of the agent local map,
inside of his view cone, it is mapped as an obstacle into his local
map. This procedure assures that dynamic or static obstacles behind
the agent (out of his view cone) do not interfere in his future motion.

For each agent ak, the global descent gradient on the cell in the
global map Mgoal(k) that contains his current position is calcu-
lated. The gradient direction is used to generate an intermediate
goal in the border of the local map, setting the potential values of a
couple of b-zone cells to 0, while the other b-zone cells are consid-
ered as obstacles, with their potential values set to 1. In Figure 7,
the agent calculates his global gradient in order to project an in-
termediate goal in its own local map. As the agent local map is
delimited by obstacles, the agent is pulled towards the intermediate
goal using the direction of his local gradient. The intermediate goal
helps the agent ak to reach its target Ogoal(k) while allowing it to
produce a particular motion.

2Function goal() maps the agent number k into its current target number

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

115



Figure 6: Global map mapped onto the agent local map.

Figure 7: The cells which are inside the agent’s view cone and
correspond to obstacles or other agents have their potential value
set to 1.

In some cases, the target Ogoal(k) is inside both view cone and u-
zone, and consequently local map cells associated are set to 0. The
intermediate goal is always projected, even if the target is mapped
onto the u-zone. Otherwise the agent can easily get trapped be-
cause it would be taking into consideration only the local informa-
tion about the environment, in a same way as traditional potential
fields [Khatib 1980].

F-zone cells are always considered free of obstacles, even when
there are obstacles inside. The absence of this zone may close the
connection between the current agent cell and the intermediate goal
due to the mapping of obstacles in front of the intermediate goal.
When this occurs, the agent gets lost because there is no informa-
tion coming from the intermediate goal to produce a path to reach
it. F-zone cells handle the situation always allowing the propaga-
tion of the goal’s information to the cells associated to the agent
position.

After the sensing and mapping steps, the agent k updates the poten-
tial value of its map cells using Equation 2 with its pair vk and εk.
Hereinafter, it updates its position according to Equation 5 using
the gradient descent computed from the potential field stored on its
local map in the position px = dlkx/2e and py = dlky/2e.

5 Implementation on GPU

In the real world, people walking inside a room react to what
they perceive from the environment based on their own personal-
ity, mood and reasoning, i.e., they think in parallel. So, a technique
that handles several agents should be parallelized in the same way.

According to Section 3, during the update phase of our technique,
each agent must update its local map with the environment obsta-
cles which are inside this region. Note that, in this step, we consider
that for a given agent ai, each other agent aj , i 6= j, is also an ob-
stacle. Then, each cell in the agent local map inside his view cone
is updated as an obstacle, with the potential value equal to 1. After
the update of these cells, we update the cells which correspond to
the agent goal, with the potential value of 0.

Note that each one of these updates can be made in parallel between
the agents. The only dependency here is that obstacle cells must be
updated before goal cells. It must be done sequentially, otherwise,
if an agent has a goal very close to an obstacle, both obstacle and
goal may be mapped to the same cell. In this case, if goal cells are
updated before obstacle cells, the agent will become lost, without a
goal to achieve. All other cells are updated as free cells.

Afterwards, the Equation 2 is evaluated for each agent local map.
Since it is difficult and needs to be evaluated independently for each
agent, it is a good candidate for a parallel implementation. The
Gauss-Seidel relaxation method (previously used in Equation 2) is
not suitable for a parallel implementation because it uses values
from the current and previous iterations. In a sequential approach,
it is very simple to implement and fast to execute, but a parallel im-
plementation will require some kind of synchronization, which may
cause degradation in performance. A better approach for a parallel
implementation is to use values only from the previous iteration.
This is exactly what the Jacobi method does. The update rule is
described below.

pc =
pb + pt + pr + pl

4
+
ε((pr − pl)vx + (pb − pt)vy)

8
(6)

where pc = pt
i,j , pb = pt

i,j+1, pt = pt
i,j−1, pr = pt

i+1,j , pl =

pt
i−1,j and v = (vx, vy).

We implemented the parallel version of our technique using the
nVIDIA R© Cuda [NVIDIA. 2009] language, which allows us to use
the graphics processor without using shading languages. In the con-
text of CUDA, the CPU, here called Host, controls the graphics
processor, called Device. It sends data, calls the Device to execute
some functions, and then copies back its results.

Each graphics processor of a nVIDIA graphics card is divided into
several multiprocessors. Cuda divides the processing in blocks,
where each block is divided in several threads. Each block of
threads is mapped to one multiprocessor of the graphics processor.
When the Host calls the Device to execute a function, it needs to
inform how the work will be divided in blocks and threads. Maxi-
mum performance is achieved when we maximize the use of blocks
and threads for a given graphics processor.

Each of the multiprocessors is a group of simple processors that
share a set of registers and some memory (the shared memory
space). The shared memory size is very small (16KB on graphics
cards up to Compute Capability 1.3), but it is as fast as the reg-
isters. The communication between two multiprocessors must be
done through the Device Memory, which is very slow if compared
to the shared memory. There is also the Constant Cache and Tex-
ture Cache memory, which has better access times than the Device
memory, but it is read-only for the Device.

Before the execution of the code in the Device, the Host must send
the data to its Device Memory to be processed later. The mem-
ory copy from the Host Memory to the Device memory is a slow
process, and should be minimized. Besides, the nVIDIA Cuda Pro-
gramming Guide [NVIDIA. 2009] says that one single call to the
memory copy function with a lot of data is much more efficient
than several calls to the same function with a few bytes. We can
improve the performance of our application making good use of
these restrictions of Cuda.

As previously mentioned, each agent ak has several attributes: the
scalar εk, the vector vk, and its current objective Ogoal(k). The lo-
cal map also has some attributes, like its width lkx and height lky . All
these attributes must be sent at least once to the Device. The agent
goal and the local map position in the world, for instance, will be
frequently updated. To avoid several memory transactions between
the Host and the Device, we store all these attributes in contiguous
memory areas, and treat it like an array. At the position k we store
an attribute of the agent ak. Proceeding this way, we avoid several
unnecessary copies, improving the overall performance.

Figure 8 shows our data structure for a set of 3 agents. The array
m with all local map cells is illustrated with its cell’s index. Each
position k of the array s contains an index to the first position in
the array m in which the agent ak local map information is stored.
Each position k of the array l,O, ε, v contains the information of the

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

116



local map dimension and goal, as well as the behavioral parameters
ε and v of the agent ak, respectively.

Figure 8: Data structure used on GPU.

There are situations in which the size of the agent local map must be
changed. Any update on the size of an agent local map will require
the modification of the array m, which implies in the entire data
structure reconstruction. In these cases, the Host must reallocate
the entire array in the Host Memory, and send it again to the Device
Memory. These attributes should not only be copied once to the
Device memory, but they should be sent to the Constant Memory or
Texture Memory.

As the Environment Global Map is composed only of static obsta-
cles, it can be copied to the Device Memory only once. Then, the
update step can be done in the following way. First, each local map
is mapped into a block of threads, in which each thread updates
one cell of the local map. The thread will find the local map cell
corresponding to the Environment Global Map, and will copy the
information from the global map cell to the local map cell. This is
done only to the cells in the f-zone. Figure 6 illustrates this situa-
tion.

Afterwards, each local map is mapped to a block of threads, and
each thread is associated with a dynamic obstacle. This thread
checks whether the obstacle appears inside the view cone. If yes,
the local map cells occupied by the obstacle update its potential
value to 1. Next, each cell in the b-zone is mapped as an obsta-
cle, also updating its potential to 1, except for the ones that are goal
cells. The remaining cells are updated as free cells. Then, the Equa-
tion 6 can be evaluated, starting one thread to each local map cell.
A synchronization must be made between the iterations in order to
guarantee that all cells are up to date to the next iteration.

The convergence of the Equation 6 is achieved through several
reads and writes at the Device Memory during several iterations.
In order to avoid the high latency of the Device Memory, this must
be made in the shared memory of the multiprocessor. An imple-
mentation of the Jacobi method will require two copies of the po-
tential map, where at each iteration the values are read from one
of them and written to the other. However, the shared memory size
is very limited. Then, we decided to use a combination of the Ja-
cobi method with the Gauss-Seidel. In our implementation, only
one copy of the potential map is stored in the shared memory. At
each iteration t, a cell cki,j may be updated with the potential of the
neighborhood cells at the iteration t − 1 or t. We do not specify
whether will be used values from iteration t − 1 or t. It will de-
pend on how the information will be arranged in the shaders, i.e.,
the synchronization between cells update is not needed.

6 Results

In order to verify that our parallel implementation can be executed
faster than the sequential one, a couple of tests were accomplished.
All the tests were executed in an Intel R© Core 2 6300 1.86GHz,
with 2Gb of RAM memory, a nVIDIA GeForce 9800 GX2 graphics
card (the graphics processor has 600 MHz of clock) and Microsoft
Windows XP SP3 operating system. We measured how many times
per second the algorithm can be executed, and what is the impact
of the memory copy between the Host and the Device, using three
different sizes for the local maps.

The tests were executed in the following way. Initially, three sizes
of local maps where chosen: 11×11, 16×16 and 21×21. We chose
these sizes because previous tests [Dapper et al. 2006] showed that
they generate animations with very good quality, being the most
interesting for tests. Then, several scenarios were executed using
the parallel and sequential versions of the algorithm, changing the
number of agents in the scene. For each test, we recorded the fre-
quency at which the algorithm can be executed, and the percentage
of time spent in memory copies between the Host and the Device.

Figure 9: Speed up achieved using the parallel implementation
over the sequential version, with three different sizes of local maps.

The graphic in Figure 9 shows the speed up achieved using the par-
allel implementation over the sequential version of the technique.
As we can see, in all tests executed the parallel version was above
twice faster than the sequential one (exactly the lowest point in the
graphic is at 2.85 times). Besides that, the highest point in the
graphic occurs at the point 56.60, meaning that in an optimal config-
uration the parallel version was 56 times faster than the sequential
version.

Using bigger local maps means that more threads are needed for
each local map in the several steps of the technique. The fact that
the multiprocessor offers several running threads at the same time
implies in a better use of the resources and in good improvements
in performance.

On the other hand, for several reasons, with smaller local maps the
speed up is not so high. On the side of the parallel version, a small
local map does not make a good use of the resources of each mul-
tiprocessor. And on the side of the sequential version, a small local
map may fit better in the processor cache. Moreover, the proces-
sor clock is three times higher than the graphics processor clock. If
we combine all these factors in the same test, the speed up in the
parallel version is minimized.

In addition, according to the nVIDIA Cuda Programming
Guide [NVIDIA. 2009], the graphics processor cannot handle all
the data in a parallel way. The division of the work in blocks of
threads lets the graphics processor scheduler run some blocks of
thread while others wait for execution. Because of this, the compu-
tation of 256 local maps in a parallel way does not give a speed up
of 256 times.

To explain what is the cause of the graphics peaks, the nVIDIA
Cuda Programming Guide says that each algorithm implemented

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

117



with Cuda has an optimal point, in which the amount of blocks and
threads uses the most possible number of resources available in the
graphics processor simultaneously. In our technique, this point is
the one with 500 agents in the scene, each one with a local map of
a size of 21× 21.

7 Conclusion

This paper presented a strategy to implement on GPU a BVP Plan-
ner [Dapper et al. 2007] that produces natural steering behaviors
for virtual humans, using a path-planning algorithm based on the
numerical solution of boundary value problems.

The guiding potential of Equation 1 is free of local minima, what
constitutes a great advantage when compared to the traditional po-
tential fields method. Furthermore, the method proposed is for-
mally complete [Connolly and Grupen 1993] and generates smooth
and safe paths that can be directly used in mobile robots or au-
tonomous characters in games. The local information gathered
by agent sensors allows treating dynamic obstacles, such as other
agents navigating in the environment.

We implemented a parallel version of this algorithm using the
nVIDIA R© Cuda [NVIDIA. 2009] language, which allows us to use
the graphics processor avoiding the use of shading languages. The
parallelism was explored, reducing the amount of memory transac-
tions between CPU and GPU.

Our result shown that the GPU implementation improves up to 56
times the sequential CPU version, allowing the real-time use of this
technique even in scenarios with a huge number of autonomous
characters, which is a common situation often found in games.

As future work, we suggest the exploration of ADI Method [Peace-
man D. W. 1995], obtaining a faster convergence of the relaxation
process. The ADI Method is suitable to be used on parallel architec-
tures and to explore the use of other shading languages. It would be
interesting to compare the possible improvements in performance
using other languages.

We have also proposed an extension of this technique to manage
the movement of groups of agents in dynamic environments [Sil-
veira et al. 2008]. We intend to implement a parallel version of this
extension and release the project over an open source license.

Acknowledgements

The authors would like to thank Edson Prestes and Fabio Dapper
for their valuable work on the CPU version of the path-planning
algorithm, and Francele Carvalho Rodrigues for helping in the or-
thographic and grammatical revision of the text. This work was
partially supported by grants from CNPq to Leonardo Fischer, Re-
nato Silveira and Luciana Nedel.

References

BLEIWEISS, A. 2008. Gpu accelerated pathfinding. In GH ’08:
Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware, Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 65–74.

BURGESS, R. G., AND DARKEN, C. J. 2004. Realistic human
path planning using fluid simulation. In Proceedings of Behavior
Representation in Modeling and Simulation (BRIMS).

CHOI, M. G., LEE, J., AND SHIN, S. Y. 2003. Planning biped lo-
comotion using motion capture data and probabilistic roadmaps.
ACM Trans. Graph. 22, 2, 182–203.

CONNOLLY, C., AND GRUPEN, R. 1993. On the applications of
harmonic functions to robotics. International Journal of Robotic
Systems 10, 931–946.

DAPPER, F., PRESTES, E., IDIART, M. A. P., AND NEDEL, L. P.
2006. Simulating pedestrian behavior with potential fields. In
Advances in Computer Graphics, Springer Verlag, vol. 4035 of
Lecture Notes in Computer Science, 324–335.

DAPPER, F., PRESTES, E., AND NEDEL, L. P. 2007. Generating
steering behaviors for virtual humanoids using bvp control. Proc.
of CGI.

FUNGE, J. D. 2004. Artificial Intelligence For Computer Games:
An Introduction. A. K. Peters, Ltd., Natick, MA, USA.

JAMES J. KUFFNER, J. 1998. Goal-directed navigation for ani-
mated characters using real-time path planning and control. In
International Workshop on Modelling and Motion Capture Tech-
niques for Virtual Environments, Springer-Verlag, London, UK,
171–186.

KAPADIA, M., SINGH, S., HEWLETT, W., AND FALOUTSOS, P.
2009. Egocentric affordance fields in pedestrian steering. In
I3D ’09: Proceedings of the 2009 symposium on Interactive 3D
graphics and games, ACM, New York, NY, USA, 215–223.

KAVRAKI, L., SVESTKA, P., LATOMBE, J.-C., AND OVER-
MARS, M. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration space. IEEE Transactions on
Robotics and Automation 12, 4, 566–580.

KHATIB, O. 1980. Commande dynamique dans l’espace
opérational des robots manipulaters en présence d’obstacles.
PhD thesis, École Nationale Supérieure de l’Aéronatique et de
l’Espace, France.

LAVALLE, S. 1998. Rapidly-exploring random trees: A new tool
for path planning. Tech. Rep. 98-11, Computer Science Dept.,
Iowa State University.

METOYER, R. A., AND HODGINS, J. K. 2004. Reactive pedestrian
path following from examples. The Visual Computer 20, 10,
635–649.

NIEUWENHUISEN, D., KAMPHUIS, A., AND OVERMARS, M. H.
2007. High quality navigation in computer games. Sci. Comput.
Program. 67, 1, 91–104.

NVIDIA. 2009. Nvidia cuda. http://www.nvidia.com/cuda, last
acces at 07/2009.

PEACEMAN D. W., R. J. H. H. 1995. The numerical solution
of parabolic and elliptic differential equations. Journal of the
Society for Industrial and Applied Mathematics 3, 28–41.

PELECHANO, N., OBRIEN, K., SILVERMAN, B., AND BADLER,
N. 2005. Crowd simulation incorporating agent psychologi-
cal models, roles and communication. In 1st Int’l Workshop on
Crowd Simulation, 21–30.

PETTRE, J., SIMEON, T., AND LAUMOND, J. 2002. Planning hu-
man walk in virtual environments. In IEEE/RSJ International
Conference on Intelligent Robots and System, vol. 3, 3048 –
3053.

PRESTES, E., ENGEL, P. M., TREVISAN, M., AND IDIART, M. A.
2002. Exploration method using harmonic functions. Robotics
and Autonomous Systems 40, 1, 25–42.

REYNOLDS, C. 2006. Big fast crowds on ps3. In sandbox
’06: Proceedings of the 2006 ACM SIGGRAPH symposium on
Videogames, ACM Press, New York, NY, USA, 113–121.

SILVEIRA, R., PRESTES, E., AND NEDEL, L. P. 2008. Managing
coherent groups. Comput. Animat. Virtual Worlds 19, 3-4, 295–
305.

TECCHIA, F., LOSCOS, C., CONROY, R., AND CHRYSANTHOU,
Y., 2001. Agent behaviour simulator (abs): A platform for urban
behaviour development.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Continuum
crowds. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,
ACM Press, New York, NY, USA, 1160–1168.

VAN DEN BERG, J., PATIL, S., SEWALL, J., MANOCHA, D., AND
LIN, M. 2008. Interactive navigation of multiple agents in
crowded environments. In I3D ’08: Proceedings of the 2008
symposium on Interactive 3D graphics and games, ACM, New
York, NY, USA, 139–147.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

118



GPU Based Fluid Animation over Elastic Surface Models
∗Bruno Barcellos S. Coutinho and Gilson Antonio Giraldi

National Laboratory for Scientific Computing
Petropolis, RJ, Brazil

(lsdelphi, gilson)@lncc.br

Antonio L. Apolinário Jr.
State University of Feira de Santana

Bahia, BA, Brazil
apolinario@ecomp.uefs.br

Keywords:: Real-time Animation, Cellular Automata, Fluid
Simulation, Elastic Surfaces, GPU programming.

∗Bruno Barcellos now is a master student in the Computer
Graphics Laboratory (LCG) at Federal University of Rio de Janeiro
(UFRJ-COPPE)

Abstract

In this work, we focus on flow animation in elastic surfaces de-
scribed by mass-spring models for computer game applications.
We propose the combination of an efficient fluid model, that does
not require solution of complicated equations, with a mass-spring
approach to simulate the deformable surface. Firstly, we describe
the fluid model for simulating the flow and its GPU implementa-
tion. The simulation method is based on a particle system, that
evolves over a lattice. This lattice is defined over the surface do-
main. A set of local rules determine the interaction between parti-
cles. The elastic surface is simulated by a GPU based mass-spring
system, geometrically represented by a regular mesh. The fluid
particles are guided by the surface topography interacting with the
elastic mesh due to external, elastic and damping forces. In the
experimental results we emphasize the fact that physically plausi-
ble flow/deformation phenomena can be efficiently reproduced and
animated in real time by the combined technique.

1 Introduction

Physically-based techniques for the animation of natural elements
like fluids (gas or liquids), flood, elastic, plastic and melting objects,
among others, have taken the attention of the computer graphics
community [Iglesias 2004; Nealen et al. 2005; Deusen et al. 2004].
In particular, techniques in the field of Computational Fluid Dy-
namics (CFD) have been applied for fluid animation in applications
that involve the interaction between the fluid and deformable solids
[Müller et al. 2004; Keiser et al. 2005; Genevaux et al. 2003; Chen-
tanez et al. 2006].

A common approach in this area relies on top down viewpoints that
use 2D/3D mesh based techniques in conjunction with fluid equa-
tions [Chentanez et al. 2006]. Other possibility is to apply mass-
spring systems to model the elastic solid [Genevaux et al. 2003].
Mass-spring models are well suited to animation due to its flexibil-
ity to handle non-rigid solid properties, its easy manipulation and
implementation. Besides, mass-spring models can be faster then
their counterpart in continuous mechanics, and so, more suitable
for real time applications specially when GPU capabilities are ex-
plored [Mosegaard and Sorensen 2005].

However, a common challenge is this area is the cost of the com-
putational animation of the solid-fluid interaction. Recently, it has
been demonstrated the advantages of using bottom up models for
surface water flow simulation which are inspired in Lattice Gas

Cellular Automata (LGCA) and LBM techniques [Barcellos et al.
2007; Fan et al. 2005]. These methods are cheaper than the tradi-
tional ones for fluid simulation, because there is no need to solve
Partial Differential Equations (PDEs) to obtain a high level of de-
scription [Frisch et al. 1987]. Convincing animations with real time
frame rates can be generated by lattice methods, as demonstrated
in [Judice et al. 2008] for computer game applications involving
surface flow over terrains.

In this paper we combine the mass-spring model described in
[Mosegaard and Sorensen 2005] with an extension of the surface
flow simulation proposed in [Barcellos et al. 2007] in order to get
a general system for GPU animation of fluids over elastic surfaces.
The combined technique is the main contribution of this paper. The
advantages of this method over other approaches are its simplicity
for implementation and the gain in computational efficiency allow-
ing real time frame rates. The basic data structures of the model are
a polygonal representation of the surface and a regular lattice with
nodes (i, j) ∈ L × L, where L ⊂ IN. Up to now, we consider
surface flow simulation over deformable 2D manifolds which have
a global parameterization ϕ : D → IR where ϕ(x, y, t) is the ele-
vation of the surface at point (x, y), at time t. So, each lattice node
(i, j) is a projection of a surface point (i, j, ϕ(i, j, t)). The surface
deforms as a mass-spring system, due to internal forces (elastic and
damping ones) and external forces (gravitational, etc.). Extensions
for more general parametric surfaces will be discussed in section 6.
Potential applications in games are erosion effects and deformation
of objects, modeled by elastic surfaces, under water accumulation.

The fluid model uses a LGCA approach. Therefore, particles can
only move along the edges of the lattice and their interactions
are based on local rules. Differently from traditional LGCA ap-
proaches, in our model more than one particles may share the same
node position (i, j). Particles move according to the surface to-
pography and the fluid configuration nearby. There is a counter in
each lattice node used to keep the number of particles in the corre-
sponding (i, j) position. When particles move over the lattice the
particles counters change and, consequently, the flow distribution is
updated and the surface deforms. The obtained result is a function
f(i, j, t) which gives the elevation of the free surface of the fluid,
at the point (i, j), in the simulation time t.

The paper is organized as follows. Sections 2 gives a survey of
works in interaction between fluids and elastic materials. In Sec-
tion 3 we present our technique for simulating surface water flow
over deformable surfaces. Its GPU implementation is described in
Section 4. The experimental results are presented on Section 5. Fi-
nally, we present the conclusions and future works on Section 6.

2 Interaction of Fluids with Deformable
Objects

The main focus of this work is the animation of fluids interacting
with deformable objects. Generally speaking, this subject includes:

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

119



(1) Representation of the object geometry; (2) The modeling of me-
chanical behavior of elastic solid; (3) A suitable model for fluid
simulation; (4) A model for interaction of the flow with the object;
(5) Visualization and rendering issues.

The 3D object geometry is usually represented by mesh based
methods that offer the support for Finite Element techniques
[Müller et al. 2002; Debunne et al. 2001]. Bidimensional mani-
folds can be represented by using implicit surfaces [Zhu and Brid-
son 2005], triangulated meshes or subdivision surfaces with local
parameterization for representation [Guendelman et al. 2005; Stam
2003].

The mechanical behavior of elastic objects (item (2)) can be de-
scribed by the continuum elasticity theory that models how the ob-
jects deform under applied forces. In this case, constitutive laws are
used for the computation of the symmetric internal stress tensor σ,
and a conservation law gives the final PDE that governs the dynamic
of the material [Nealen et al. 2005]. Then Finite Element methods,
Boundary Element Method (BEM), Finite Differences (FDM) or
SPH techniques, are applied to solve the PDE [Müller et al. 2002;
James and Pai 1999; Terzopoulos and Witkin 1988; Debunne et al.
2000; Desbrun and Gascuel 1996]. Other possibility is to apply dis-
crete models, based on mass-spring systems [Genevaux et al. 2003;
Mosegaard and Sorensen 2005]. In this case, the object geometry
is represented by a mesh and its nodes are treated like mass points
while each edge acts like a spring connecting two adjacent nodes.
The relation between mass-spring models and the continuum elas-
ticity theory was examined in the reference [Delingette 2008]. The
conclusion is that methods that are based on the continuum me-
chanics are more realistic than their discrete counterparts. How-
ever, mass-spring models are simple to implement and can be faster
then the continuous ones, and so, more suitable for real time appli-
cations [Volino and Magnenat-Thalmann 2000; House and Breen
2000; VanGelder and Wilhelms 1997; Etzmuss et al. 2003].

The item (3) involves numerous works that can be coarsely classi-
fied in non-physically and physically based models [Iglesias 2004;
Deusen et al. 2004]. Our work belongs to the later class, which can
be subdivided in PDEs and Lattice based techniques [Frisch et al.
1987; Iglesias 2004].

PDEs methods involve continuous fluid equation, like the Navier-
Stokes ones, and numerical techniques based on discretization ap-
proaches that can be Lagrangian (Smoothed Particle Hydrodynam-
ics (SPH) [Liu and Liu 2003], method of characteristics [Stam
1999], Moving-Particle Semi-Implicit [Premoze et al. 2003]) or Eu-
lerian (Finite Element) ones [Foster and Metaxas 1997]. The for-
mer class uses particle systems for discretization while in the latter
model properties are computed for a set of stationary points, usu-
ally connected in a mesh, and updated to get the time evolution
of the continuous media. PDE based models are called top down
approaches because continuous mechanics concepts are applied to
derive the PDE, which governs the continuous dynamics, while the
particle view appears as a consequence of discretization methods.

Alternatively, lattice methods comprised by the Lattice Gas Cellular
Automata (LGCA) - FHP and HPP are the most known ones - and
Lattice Boltzmann (LBM) can be used [Frisch et al. 1987; Wei et al.
2004; Ye et al. 2004]. The basic idea behind these methods is that
the macroscopic dynamics of a fluid is the result of the collective
behavior of many microscopic particles. The LGCA will follow
this idea but simplifying the dynamics through simple and local
rules for particles interaction and displacements while LBM con-
structs a simplified kinetic model, a simplification of the Boltzmann
equation, that incorporates the essential microscopic physics so that
the macroscopic averaged properties obey the desired macroscopic
equations [Chen and Doolen 1998]. Therefore, lattice methods do
not apply PDEs to simulate fluids which can reduce the computa-
tional cost of the animation. Recently, it was demonstrated the ad-
vantages of using the philosophy behind FHP and HPP models for
computer graphics applications and for surface water flow simula-
tion [Barcellos et al. 2007]. Besides, despite of some intrinsic lim-
itations, multiscale techniques were applied to demonstrated that
the FHP and LBM models can reproduce Navier-Stokes behaviors
[Frisch et al. 1987].

Particularly, the FHP model has a number of advantages over more
traditional numerical methods, particularly when fluids mixing and
phase transitions occur [Rothman and Zaleski 1994]. The simula-
tion is always performed on a regular grid and can be efficiently
implemented on a massively parallel computer. Solid boundaries
and multiple fluids can be introduced in a straightforward manner
and the simulation is performed equally efficiently, regardless of the
complexity of the boundary or interface [Buick et al. 1998]. In ad-
dition there are not numerical instability issues because the evolu-
tion follows integer arithmetic. However, system parameterization
(viscosity, for example) is a difficult task in such lattice models and
they are less realistic than PDE based models.

The item (4), interaction between deformable solids and fluids, can
be addressed by hybrid methods (fluid is a continuum medium and
the solid is represented as a discrete one), SPH based techniques
and variational approaches [Genevaux et al. 2003; Solenthaler et al.
2007; Batty et al. 2007]. In [Genevaux et al. 2003] the interac-
tion problem is addressed by an hybrid technique in which the de-
formable solid is represented through a mass-spring network and
the fluid is simulated by Navier-Stokes equations and an Eulerian
method. The key idea is to apply spring forces to mass-less marker
particles in the fluid and the nodes of the mass-spring network. In
[Müller et al. 2004] authors proposed another hybrid method, in
which the fluid is represented by a SPH approach and the solid is
represented by polygonal meshes. To model the solid-fluid inter-
action it is used virtual boundary particles which are placed on the
surface of the solid objects according to Gaussian quadrature rules.
Such approach allows the computation of smooth interaction poten-
tials that yield stable simulations at interactive rates.

A subclass of hybrid methods deals with the interaction between
fluids and bidimensional manifolds modeled by a lower dimen-
sional (moving) triangulated surface. The fluid model is a con-
tinuous one, simulated by Navier-Stokes plus SPH or grid based
techniques. These approaches deals with the specific problem of
preventing the leaking of fluid across the thin solids. In [Guendel-
man et al. 2005] it is proposed a ray cast based visibility method
to perform this task and a new technique for properly enforcing in-
compressibility near the triangulated surface. When using the SPH
method, robust point face collisions detection algorithms must be
used to prevent fluid leaking [Bridson et al. 2002]. In addition, fluid
flows can be simulated on 2D manifolds, represented by (continu-
ous) subdivision surfaces or unstructured meshes, following tradi-
tional [Stam 2003] or LBM approaches [Fan et al. 2005]. Interac-
tion between Navier-Stokes fluids and digital terrain models is an-
other subclass of fluid-surface interaction [Ye et al. 1996]. Fluid
equation on height fields, like shallow water equations [Thürey
et al. 2006; Kass and Miller 1990], where applied for surface flow
simulation. These methods and our technique share the idea of
modeling the terrain and water surface as height fields. Besides,
a hybrid particle and implicit surface approach to simulating water
was proposed in [Foster and Fedkiw 2001], which led to the particle
level set method of [Enright et al. 2002].

The interaction fluid-solid can be seen as a simplified case of two-
phase systems. This is explored in [Solenthaler et al. 2007] where it
is presented an unified SPH framework for the simulation of melt-
ing and solidification which can be straightforward adapted for in-
teraction between fluids and deformable solids. The technique uses
the SPH method for the simulation of liquids, deformable as well
as rigid objects, which eliminates the need to define an interface for
coupling different models. Additionally, a new surface reconstruc-
tion technique, based on considering the movement of the center of
mass, is proposed to reduce rendering errors in concave regions.

Variational approach follows the usual philosophy for strong vari-
ational techniques: a functional (the Lagrangian) is defined such
that the governing equation is the Euler-Lagrange equation for min-
imizing that functional. In [Batty et al. 2007] the governing equa-
tion is the pressure PDE and the functional computes the total ki-
netic energy of the system. The solution in this formulation is the
divergence-free fluid field and compatible solid velocities that min-
imizes the total kinetic energy.

Finally, visualization and rendering techniques must be applied to
ensure the desired level of realism or visual effect. Realistic ren-

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

120



dering methods can properly account for this task through several
algorithms including path tracing, bidirectional path tracing [Heck-
bert 1990], Metropolis light transport [Veach and Guibas 1997],
and photon mapping [Jensen and Christensen 1998]. The interested
reader is also encouraged to browse interesting reviews in this area
[Adabala and Manohar 2002; Iglesias 2004].

In this paper we focus on the interaction between fluids and de-
formable 2D manifolds modeled, respectively, by a lattice based
technique and mass-spring systems. The work is based on a fluid
model proposed in [Barcellos et al. 2007] that shares the basic fea-
tures of the HPP and FHP models. Therefore, we do not apply
PDEs, LBM or shallow water methods and the fluid evolution is
computed by integer arithmetic. The mass-spring system is sim-
ulated by the GPU implementation presented in [Mosegaard and
Sorensen 2005]. Next, we describe the proposed model and its GPU
implementation.

3 Particle-Based Simulation Model

In [Barcellos et al. 2007] we propose a particle based model for
flow simulation over static surfaces which is inspired in a lattice
gas model [Frisch et al. 1987]. In this paper we modify that model
for surface flow simulation over deformable 2D manifolds which
have a global parameterization ϕ : D → IR where ϕ(x, y, t) is the
elevation of the surface at point (x, y), at the time t. The extension
for general manifolds is discussed in Section 6.

The fluid-solid interaction model is composed by three basic ele-
ments: (1) A discretization of ϕ, composed by a regular lattice and
the value of ϕ in each lattice node (i, j); (2) A mass-spring sys-
tem to model the elastic surface; (3) A particle based water flow
simulation.

The fluid model uses a cellular automaton approach and is based on
the 2D regular lattice, a particle system and local rules for particles
displacements. The Figure 1 illustrates the surface domain and the
regular lattice which resolution is the same of that one used in the
ϕ discretization. In this figure we highlight a (i, j) node of the
lattice and its 4 neighbors given by (i− 1, j), (i, j − 1), (i+ 1, j)
and (i, j + 1), numbered V1, V2, V3 and V4, respectively. Besides,
we can estimate the surface slope at point (x, y) ∈ D through the
projection of the surface normal over the domain D.

Figure 1: Neighborhood of a lattice node.

The particles movement are discrete in space and time; that means,
each particle moves from one lattice node to another one in the
neighborhood, in the time step 4t. Specifically, from the lattice
topology in Figure 1, we have four directions to consider for the
red node (i, j), which can be indexed as {1, 2, 3, 4}. So, we score
these directions, as described by Algorithm 1. The output of this
algorithm is the list Flow Directions, which receives the four direc-
tions sorted according to the priorities for the flow; that means, we
have the first, second, third and forth flow direction.

A particle moves from a node (i, j) to a nearest neighbor Vk =
(m,n) if k is the first element of Flow Directions that satisfies
f(Vk, t) < f(i, j, t). Besides, a four bit string n1(i, j), n2(i, j),...,
n4(i, j) is assigned to each node (i, j) of the lattice. We set

Algorithm 1 : Build Flows Directions ()

1: Initialization:
2: L = {1, 2, 3, 4}
3: while L not null; do
4: m← arg

k
min{arc(−→s , Vk − (i, j)), k ∈ L};

5: Remove m from L;
6: Insert m in Flow Directions;
7: end while

nk(i, j) = 1 if the node (i, j) has one particle to send to the neigh-
bor k. In the actual implementation each lattice node can send at
most one particle at a time, and consequently, can receive at most 4
particles in each simulation time.

For each grid node (i, j) a particle counter is associated, which is
used to define the high of the free surface of the flow. The particle
system is used in order to update the field of counters. The result is
a function

f(i, j, t) = ϕ(i, j) + β · counter(i, j, t), (1)

which gives the elevation of the free surface flow f, at the point
(i, j) in the simulation time t (β is a scale parameter).

In this work, the surface deforms as a mass-spring system, subject
to internal forces (elastic and damping ones) and external forces.
Therefore, the surface elevation ϕ and slope field −→s are non-
stationary fields (as well as the f in Expression (1)).

The mass-spring system follows the reference [Mosegaard and
Sorensen 2005]. The surface nodes works as masses and the edges
defines the linear springs with damping. So, given a particle i
with mass mi and position vector xi, the force system is composed
by the elastic (fielastic), gravitational (figrav) and damping (fidamp)
forces, defined respectively, by:

fielastic =

4∑
j=1

kij (lij − ‖xi − xj‖)
(xi − xj)

‖xi − xj‖
, (2)

where kij is the stiffness of the spring linking the nodes xi and xj

and lij the spring rest length;

figrav = (βicounter(i))z +mig, (3)

fidamp = γiẋi, (4)

where βi is a scale parameter, g is the gravity field, γi is the damp-
ing factor and counter(i) holds the number of particles accumu-
lated in the corresponding position. Following Newton’s Laws, we
get the following evolution equation:

miẍi = fielastic + fidamp + figrav. (5)

This system of ordinary differential equations can be effi-
ciently solved by the Verlet integration technique [Mosegaard and
Sorensen 2005]:

xi (t+ h) = 2xi (t)− xi (t− h) + ẍi (t)h2. (6)

Now, let us put the fluid model and the mass-spring together to ren-
der the basic algorithm. At the initialization, the particle counters
field, the initial surface geometry and velocity of the nodes must
be defined. Then, in the simulation loop, the forces in Expressions
(2)-(4) are computed and the differential Equation (5) is integrated
through the Verlet scheme in Equation (6). Next, the new normal
field is computed and projected to get the new field −→s . Then, the
Algorithm 1 is applied to obtain the Flow Directions field. Based on
the free surface high and on the Flow Direction, the nk field is built.
This field is used to compute the number of particles that each node

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

121



(i, j) sends and receives from the neighbors, and, consequently, the
particles counter field is updated. Finally, the deformable surface
and the surface flow are visualized and the next simulation step
starts. At each interaction, we re-compute the free surface eleva-
tion, given by expression (1), in order to mimic the transference of
velocity from the terrain to the particles.

Besides, we can include physical effects like evaporation E (i, j, t)
and precipitation P (i, j, t) by using an intuitive balance model
given by:

counter (i, j, t)← counter (i, j, t) + (P − E) . (7)

This model is based on local rules which try to simulate some as-
pects of overland flows [Ye et al. 1996].

We shall emphasize that the fluid simulation algorithm does not suf-
fer from numerical stability issues because the floating-point oper-
ations are simple (normal field and computation of expressions (1))
and the update of the counter field is based on simple comparisons
and integer arithmetic. Besides, volume conservation is straightfor-
ward verified because all operations are conservative with respect
to the number of particles.

4 GPU Implementation

The algorithm described in Section 3, for surface flow simulation
over deformable surfaces, is based on a regular lattice and local
rules for surface deformation and fluid animation. Therefore, it
may be very suitable for a GPU implementation. The main idea
is to encode the information needed in the simulation as textures
into the video memory. The Algorithm 2 gives an overview of the
whole GPU processing. The initialization step computes the ini-
tial values to the nodes particle counters, the surface geometry and
the initial velocity to each node. These values are computed in the
CPU and stored in different matrixes. Then, the simulation loop
starts, performing, for each time step, the simulation and visualiza-
tion processes. The simulation process update of the surface ge-
ometry, based on the mass-spring simulation, and the fluid simula-
tion updates the fluid particles distribution among the lattice nodes.
Finally, the visualization step begins, drawing the surface and the
water surface. The loop process, involving simulation and visual-
ization is completely performed on the GPU.

Algorithm 2 : GPU Simulation and Visualization()

1: Initialization:
2: Compute
3: Particles Counters.
4: Surface Geometry.
5: Velocity.
6: Transfer Data to GPU.
7: loop
8: Simulation:
9: GPU-Based Mass-Spring Simulation();

10: GPU-Based Fluid Simulation();
11: Visualization:
12: Draw Mass-Spring Surface;
13: Draw Water Free Surface;
14: end loop

Like others GPU-based algorithms, all data needed to simulation
and visualization processes are stored in GPU memory, mapped as
textures. The data flow of algorithm 2 is illustrated by Figure 2.

The GPU-based mass-spring simulation follows the reference
[Mosegaard and Sorensen 2005]. At each interaction of the main
loop a 2D texture, represented in Figure 2 as Properties texture,
encoding the automaton configuration is generated as follows. To
each texture point (i, j) it is associated the index k, such that
each color channel represents a different data: the terrain eleva-
tion ϕ(i, j) and a particle counter, respectively channels R and B.
The connectivity among masses can be implicitly represented be-
cause surface samples are organized in a regular lattice with a sim-
ple fixed 4-connected neighborhood rule. Surface textures stores

the particles positions. In fact, as long as Verlet integration method
is used (equation 6)), three surface stages must be stored during the
simulation, each one representing a different time step: current (t),
backward (t−1) and forward (t+1). The output of the spring-mass
simulation includes the new surface geometry (t + 1) and the flow
texture. The Flow data encodes the four flow directions in each
node (i, j) of the lattice, as described in section 3 and algorithm 1.
Based on the flow directions and the particle counters from previous
simulation step, the fluid simulation begins.

Figure 2: The data flow involved in the simulation and visualization
processes. The gray boxes represent data mapped in GPU using
texture memory.

During the fluid simulation an Upward Flow is build, where the
nk(i, j) bit string associated with each lattice node is generated as
described in section 3. In this process, given a lattice node (i, j),
we sequentially check the Flow Direction texture values and take
the first one, say k, that satisfies f(Vk, t) < f(i, j, t).

Using the Upward Flow and the Particle Counter at interaction t,
a new Particle Counter is generated at time t + 1. The elevations
of the free surface flow f(i, j, t) at each (i, j) node of the lattice is
also calculated, as Figures 2 illustrate.

The particle counters are updated evaluating the number of particles
that the node (i, j) receives and sends, respectively. The value of
received particles in a node (i, j) is computed by adding the suitable
values of the Upward Flows at the neighbors (V1, V2, V3, V4). The
number of particles the node (i, j) sends is obtained by adding the
nk(i, j) values.

The elevation of the free surface at a lattice node (i, j) is finally
obtained by adding the terrain elevation and the particle counter
value, weighted by a scale factor at that node (equation 1). The new
elevation is used to generate the Free Surface texture.

The two textures Surface(t+1) and Free Surface, which contains,
respectively, the terrain and the water surfaces, must be sent to an
Frame-Buffer Object (FBO) [Woo et al. 1999], in order to be used
to update data for visualization process.

It is important to emphasize that we need a new Particle Counter
Texture to encode the configuration at time t+ 1 due to the restric-
tion of the shader-based implementation, using GLSL (OpenGL
Shading Language) [Rost 2004]. In context of a shader, a texture
can be strictly read-only or write-only, and the GPU parallel ar-
chitecture uses several processing units to compute a field. Also,
the fragment processors are able to update more than one texture in
parallel through the technique called Multiple Render Target [Rost
2004].

The Surface and the Free Surface textures are used as input to the
Vertex Buffer Object (VBO). The VBO will be managed as a Ver-
tex Array to render the final visualization of the free surface of the

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

122



fluid. Therefore, the whole computation (simulation and visualiza-
tion) is performed in the GPU. This scheme allows us to minimize
the information flow between the CPU and the GPU and improves
the performance of the application.

5 Experimental Results

We developed a software in C + + language that allows a user to
deposit densities on the surfaces as well as to control parameters
of the simulation. The pictures included in this paper are snap-
shots obtained from that program. The corresponding videos can
be found in: http://virtual01.lncc.br/˜barcellos/
videosSBGames2009.zip. The rendering is implemented by
standard OpenGL calls and the shaders with OpenGL Shading Lan-
guage. The experiments were performed in a Intel Core 2 Duo 2.66
GHz, with 4 GB of RAM and a Video Card NVidia GeForce 8800
GTX, running Windows XP.

In these experiments we highlight aspects of our model that can
be useful for computer graphics applications: simple to simulate
complex configurations and computational efficiency.

We apply 2 kinds of external forces: vertical ones and wave-like
forces (Section 5.1). Surface configurations include multiply con-
nected domains (Section 5.2) and complex geometries (Section
5.3). Besides we simulate effects like evaporation and precipitation
(Section 5.3) and present the CPU and GPU performance compari-
son (section 5.4).

The lattice resolution is 256 × 256 and the number of particles
used in each test is given in Table 1. The intensity of the vertical
forces are scaled according to the requirements of each example.
The masses and springs located at the boundary of the domain are
kept rigid and we set m = 1.0 everywhere. The time step h of the
simulation was set to h = 0.1. We render the terrain and the wa-
ter surface as height fields. The visualization was implemented in
OpenGL. To increase the scene realism we applied the environment
mapping technique and Fresnel effects to incorporate the physical
laws of reflection and refraction for the water free surface render-
ing. The shaders was implemented in OpenGL Shading Language.

Table 1: Number of particles for the experiments of Sections 5.1,
5.2, 5.3.

Configuration Particles
Figure 4 2377092
Figure 5 2005169
Figure 6 218700
Figure 7 218700
Figure 8 364500
Figure 9 211200

Figure 10 53550
Figure 11 218700

5.1 Vertical Forces

In this section we consider elastic surfaces over the influence of
vertical external forces, like the gravitational one, that are applied
during a time interval [t1, t2] along the simulation, as follows:

fv(t) =

{
T · z : t1 ≤ t ≤ t2

0 : otherwise
(8)

where z is the unitary vector in the vertical direction and T is a
scale factor. The Figures 3.a-b show the initial configurations used
in the experiments. Each spring has a spring rest length lij (see
Expression (2)) equal to its length at the initialization.

The Figure 4 shows some snapshots of the animation which is
generated starting from the initial configuration pictured in Figure
3.a. In this case, we apply a force given by Expression (8) with
T = 0.025 t1 = 0, t2 = 3200. Then, we turn off this force and
apply a descending one, given by T = −0.025 for t ≥ 3201 .
The mass-spring parameters are: γ = 0.05 (damping); k = 1.0

(a) (b)

Figure 3: Initial configurations that are used in the computational
experiments: (a) Flat surface with a gaussian fluid distribution. (b)
Mexican Hat surface with a uniform fluid distribution.

(stiffness). Besides force (8) we add a gravitational force computed
by:

figrav = (ρ ∗ counter(i))z. (9)

with ρ = −0.00005. At the beginning of the simulation, we ob-
serve that the fluid remains at the center of the deformable surface
because the surface deformation generates a lake (Figure 4.a). The
force fv deforms the surface in the upward direction generating a
pyramid-like surface due to the fact that the surface boundary is
rigid, as it can be seem in Figures 4.a-b. The descending force
is applied and soon the surface starts a contraction process. The
Figure 4.c shows the configuration at time t = 4650 in which the
fluid spills out the top of the surface and deforms the surface at
the same time. We observe a fully coupled interactions between
three-dimensional deformation and fluid evolution. The surface ge-
ometry is modified resulting a fluid redistribution which then feed
back and influence subsequent deformation. For instance, in Figure
4.d we observe the system configuration at t = 5950 showing new
regions of fluid accumulation due to surface deformation. In these
examples, the fluid particles are not allowed to go out the simula-
tion domain. So, particles accumulate in the boundary nodes until
the surface slope points inside the domain. That is why we observe
some accumulations of fluid in the boundary of the surface.

Figure 5 shows the evolution of the same initial configuration de-
picted on Figure 3.a. However, in this case we set the damping zero
and apply the force (8) at time t = 750 with T = −20.0. Each
spring has a spring rest length lij (see Expression (2)) equal to its
length at the initialization and k = 50.0.

Figures 5.a-b depicts the time step in which the fluid volume is sus-
pended by the surface generating interesting effects of transparency
and downhill flows. This configuration needs special comments.
The mechanical behavior acts like a viscous fluid, such a gelatin,
which flows slowly and generates pics of accumulations like the one
observed. This is a consequence of our heuristic for fluid particles
motion which imposes a constant horizontal velocity for particles
displacements: the velocity of the particle projection is equal the
ratio between the lattice edge and the time step which are constants
in the model. Figure 5.c depicts the system configuration at inter-
action t = 3440. We observe a lake formation at the center of the
surface as well as a large portion of fluid going down towards the
central lake. The configuration shown in Figure 5.d occurs at time
step t = 4200 and presents a portion of the fluid volume suspended
by the surface, similarly to Figure 5.a. In fact, the video sequence
shows periodic formations as a consequence of the symmetries in
the initial configuration, the fact that we do not consider friction
between the fluid and the surface and that the damping is zero in
this case.

The Figure 6 shows a sequence of snapshots generated from the
initial configuration depicted in Figure 3.b. We applied the force
(8) with T = −30.0 at time t = 1000 and T = 35.0 at time
t = 3200. The mass-spring parameters are: γ = 0.075 (damping);
k = 20.0 (stiffness), lij is the length at the initial step. Besides

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

123



(a) (b)

(c) (d)

Figure 4: (a) Flat surface with a gaussian fluid distribution at time
step t = 1400. (b) The spring-mass system evolves generating
a pyramid-like figure due to the fact that springs at the domain
boundary are kept rigid and the force given by Expression (8) is
applied. (c) Down hill surface flow at simulation time t = 4650.
(d) Configuration at time t = 5950.

(a) (b)

(c) (d)

Figure 5: Evolution of the initial configuration depicted in Figure
3, but without damping. (a) Frame at time step t = 1910. (b) Con-
figuration with the fluid volume suspended by the elastic surface
(time t = 2610); (c) Lake formation at time t = 3440. (d) System
evolution at time t = 4200. Energy conservation and symmetries
of the initial configuration implies periodic structures during the
evolution.

force (8) we add a gravitational force computed by expression (9)
with ρ = −0.0000025.

The Figure 6.a shows a portion of the fluid flowing towards the
boundary and another portion that generates a lake in the valley of
the surface. The Figure 6.b shows this configuration some time
further (t = 448) now depicting the fluid accumulation nearby
the surface boundary and at the center. The system evolves and
achieves the configuration shown in Figure 6.c in which the fluid
is concentrated nearby the boundary and in the valley. Then, at the
time t = 1000 the force (8) is applied with T = −30.0 deforming
the system which achieves the configuration pictured on Figure 6.d.
When the mass-spring system achieves zero kinetic energy, it starts
to go up achieving the configurations shown in Figure 6.e and 6.f at
times t = 4648 and t = 7084, respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 6: (a) Mexican hat surface with a uniform fluid distribution
at time step t = 84. (b) Configuration at time t = 448 show-
ing the deformation of the surface nearby the surface valley; (c)
Fluid concentration nearby the domain boundary and in the valley
at time 1092. (d) Configuration at t = 1232 generated after the
descending force is applied. (e) System in ascending movement:
configuration at time t = 4648. (f) Snapshot obtained at time step
7084 of the simulation.

The Figure 7 shows some snapshots for the evolution of the initial
configuration depicted in Figure 3.b, but without damping. In this
case we set the spring rest length lij = 1.0 at the initialization.
The mass-spring parameters are: γ = 0.0 (damping); k = 50.0
(stiffness). We apply the force (8) with T = −40.0 at time t =
1500 and we add a gravitational force computed by equation (9)
with ρ = −0.00025.

Once the rest length of the springs is lij = 1.0, the elastic energy at
time t = 0 is not null. That is way we observe a little hill formation
at the center in Figure 7.a, which dissipates as shown in Figure 7.b.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

124



At time t = 1500 it is applied the force (8) with T = −40.0 gen-
erating the configuration pictured on Figure 6.c at time t = 2260.
When the kinetic energy becomes null, the system starts ascending
movement generating the configuration pictured on Figures 7.d.

(a) (b)

(c) (d)

Figure 7: (a) Mexican hat surface with a uniform fluid distribution
at time step 364. (b) Configuration at time 560; (c) 2260. (d) 2772.

The next example applies a force given by a periodic wave form
namely a harmonic wave:

fw (x, y, t) = A0 sin (bx− ωt) , (10)

where b is the wave number and ω is the angular frequency. This
expression represents an unaltered propagation through a linear
media in the electromagnetic theory [Corson and Lorrain 1970].
The parameters are: γ = 0.2 (damping), k = 20.0 (stiffness),
b = ω = 0.1 and A0 = 0.375. We turned off the gravitational
force ( ρ = 0.0 in expression (9)).

The obtained patterns of the surface flow can be seen in the Figure
8. The initial configuration is similar the one pictured on Figure 3.a
but now we take a uniform fluid distribution at the time t = 0. As
we turned off the influence of the weight of the fluid in the spring-
mass system we avoid surface deformation due the fluid weight. So,
the fluid is carried by the surface waves spreading a bit due to fluid
concentration (Figure 8).a. In this case the fluid is allowed to flow
out the surface domain. So we do not have mass conservation, as it
can be observed on Figure 8.b,d.

5.2 Complex Domains

Let us consider the simulation technique for a multiply connected
domain, like the one pictured in Figure 9.a. To define the initial
configuration it was generated a circular hole with radius 35.0 on
the surface and an uniform fluid distribution composed by 211200
particles. We use a texture channel in order to distinguish the lattice
nodes that are inside the surface domain from the outside nodes.

In this case, we have a boundary with two disconnected compo-
nents. It is not required any extra mathematical machinery to deal
with such topology because system rules do not undergo modifica-
tions. The parameters are: γ = 0.125 (damping), k = 5.0 (stiff-
ness). We apply the force (8) with T = −30.0 at time t = 200,
T = 45.0 at time t = 1200, T = −45.0 at time t = 2900
and we add a gravitational force computed by expression (9) with
ρ = −0.0000025.

Figure 9.b shows the fluid distribution at time t = 1120 when sys-
tem is going down. We observe a lake formation and the spring

(a) (b)

(c) (d)

Figure 8: (a) Flat surface with a uniform fluid distribution and har-
monic waves at time step 220. (b) Configuration at time 1150 with
fluid going out the domain; (c) Surface flow pattern at simulation
time 5040. (d) Snapshot at time step 6104.

mass deformation. Then, we apply the ascending force, at the time
t = 1200. The Figure 9.c pictures a snapshot of the corresponding
sequence showing a surface flow towards the surface hole. In this
case the fluid is not allowed to go out the surface. Finally, at time
t = 2900 we apply the force (8) with T = −45.0. As a result, the
fluid nearby the inner boundary flows out and lake formations are
observed, as it can be seen in Figure 9.d. If we want to predict such
effects, we need to consider Navier-Stokes equations with suitable
boundary conditions. However, if the aim is to explore the visual
effect, we can just simulate and take the desired result at its time.

5.3 Erosion and Deformation

This section illustrates the erosion effects that can be obtained with
the proposed technique. The mechanical behavior of the inviscid
substrate under erosion is modeled by the spring-mass system cou-
pled with the surface flow. The system dynamics generates a fluid
redistribution that indicates high consequence areas and influence
subsequent erosion modeled as deformation. A similar approach
was presented in [Simpson 2004] but using a continuous thin-plate
formulation.

The Figure 10 illustrates an example of erosion simulation caused
by a constant rainfall. The original surface topography is pictured
on Figure 10.a. We model the rainfall as a precipitation distri-
bution over the terrain, or some part of it, as depicted in Figure
10.b. The precipitation is constant and applied during the first time
step (P (i, j, 0) = 12 in Equation (7)). There is no evaporation
(E(i, j, t) = 0 in expression (7) ) and the parameters are: γ = 0.15
(damping), k = 1.0 (stiffness).

We observe in Figures 10.c-e the evolution of the terrain topography
and the formation of flooded areas over the terrain. The Figure
10.f pictures the surface topography at time t = 5300. We can
compare it with the initial configuration in Figure 10.a and observe
the deformation generated.

The model can predicts high erosion potential at the lower, concave
parts of hillslopes. If an almost flat area is encountered then the wa-
ter simply spreads out into the flat area, deforming it, without any
extra machinery. We observe this effect in the region nearby the
left-hand corner of Figures 10.c-d. We shall observe that the parti-
cle model does not incorporates dissipative forces between the flow

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

125



(a) (b)

(c) (d)

Figure 9: (a) Multiply connected domain: Initial configuration.
(b) System is going down at time step 2380 due to the application
of force (8) with T = −30.0; (c) Configuration at time step 2380
when system is going up. (d) Snapshot at time step 4676 when
system is going down again due to application of force (8) with
T = −45.0.

and the terrain. Besides, mass transport effects are not considered
in our model.

Also, we can apply Expression (7) to include evaporation in the
simulation. The Figure 11 shows six snapshots of such animation
over the Grand Canyon topography, depicted in Figure 11.a. The
evaporation is constant (E(i, j, t0 + ∆t) = 1), for all (i, j) ∈ D,
with t0 = 2800 and ∆t = 40. The precipitation is modeled like
in the previous example. The Figure 11.b is the initial step of the
simulation. Figures 11.c-e show the fluid evolution and the sur-
face deformation. In this case, there is no mass conservation due
to the evaporation. So, the simulation stops when the fluid mass
is null, that means, in the time step t∗ in which the particle coun-
ters are zero: counter(i, j, t∗) = 0. Figure 11.f shows a snapshot
closer to the final step. The parameters are: γ = 0.15 (damping),
k = 1.0 (stiffness). In this example as well as in the Figure 10
each spring has a rest length given by its length at the time t = 0.
When the fluid volume becomes null, the spring-mass will evolve
towards its equilibrium configuration. That is way we stop the evo-
lution when the fluid vanishes. More efficient mechanisms must be
implemented to control the deformation in order to mimic erosion
more efficiently.

5.4 CPU versus GPU Animation and Real Time

In this section we compare the performance of the CPU implemen-
tation with the performance of the GPU implementation of the ani-
mation algorithm. The Table 2 shows the rate of frames per second
(FPS) obtained through these implementations, for the above ex-
amples. We observe a substantial improvement in the performance
(more than 13 times better in all cases) with frame rates suitable for
real time applications.

A major concern about using graphics hardware for general compu-
tation is the accuracy. The graphics hardware used supports 4 bytes
per color channel which fits the requirement on the accuracy of the
computation.

(a) (b)

(c) (d)

(e) (f)

Figure 10: (a) Puget Sound Model. (b) Fluid precipitation; (c)
Modified terrain topography and surface flow at time 196. (d) Con-
figuration at time step 1500. (e) Configuration at time step 3800.
(f) Snapshot at time step 5300 showing the deformed surface topog-
raphy.

Table 2: Frames per second rates (FPS) and number of particles
for the experiments of Sections 5.1, 5.2, 5.3.

Configuration Particles FPS in CPU FPS in GPU
Figure 4 2377092 5.7 81.6
Figure 5 2005169 5.6 78.3
Figure 6 218700 5.5 83.2
Figure 7 218700 5.4 81.6
Figure 8 364500 5.3 81.6
Figure 9 211200 5.7 82.0

Figure 10 53550 5.7 78.4
Figure 11 218700 5.4 83.2

Table 3: This table shows the FPSs for different numbers of parti-
cles when we use the same configuration of Figure 5.

Configuration Particles FPS in CPU FPS in GPU
Figure 5 2138306 5.5 79.9
Figure 5 706754 5.5 80.0
Figure 5 229522 5.5 80.1

6 Conclusions

In this work, we focused on surface flow animation in deformable
surfaces described by mass-spring models for computer graphics
applications. We proposed the combination of an efficient particle
model for fluid simulation with a mass-spring approach to perform
the animation. Both the CPU and GPU implementations were con-

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

126



(a) (b)

(c) (d)

(e) (f)

Figure 11: (a) Grand Canyon model. (b) Initial precipitation area;
(c) Snapshot at simulation time 1568 showing fluid distribution and
surface deformation. (d) Configuration at time step 2500. (e) Snap-
shot at time step 4060: we observe the loss of fluid volume due to
evaporation. (f) Terrain topography when fluid mass almost be-
comes null.

sidered. In the experimental results we emphasize the abilities of
our animation technique and the real time capabilities of the GPU
implementation. Besides, we notice that the bottleneck of the whole
simulation is the mass-spring system. In fact, as we can observe in
Table 3, when the number of particles used is 2138306, 706754
or 229522, for the configuration picture on Figure 5, the measured
FPS is almost the same.

Future directions in this work are the extension of the combined
technique for general 2D manifolds represented by subdivision sur-
faces with local parameterization with special care to handle cross-
patch boundary conditions. Besides, the introduction of random
variables, to incorporate viscosity, and the comparison with a PDE-
based technique will be performed soon.

Acknowledgements

The authors would like to thank the support provided by PCI-LNCC
for this work.

References

ADABALA, N., AND MANOHAR, S. 2002. Techniques for realistic
visualization of fluids: A survey. Comput. Graph. Forum 21, 1,
65–81.

BARCELLOS, B., GIRALDI, G. A., SILVA, R. L., APOLINRIO,
A. L., AND RODRIGUES, P. S. S. 2007. Surface flow animation

in digital terrain models. In SVR 2007 - IX Symposium on Virtual
an Augmented Reality.

BATTY, C., BERTAILS, F., AND BRIDSON, R. 2007. A fast varia-
tional framework for accurate solid-fluid coupling. ACM Trans.
Graph. 26, 3.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact and friction for cloth animation.
In SIGGRAPH ’02, 594–603.

BUICK, J. M., EASSON, W. J., AND GREATED, C. A. 1998.
Numerical simulation of internal gravity waves using a lattice
gas model. Int. J. Numer. Meth. fluids 26, 657–676.

CHEN, S., AND DOOLEN, G. D. 1998. Lattice boltzmann method
for fluid flows. Annual Review of Fluid Mechanics 30, 329–364.

CHENTANEZ, N., GOKTEKIN, T. G., FELDMAN, B. E., AND
O’BRIEN, J. F. 2006. Simultaneous coupling of fluids and
deformable bodies. In SCA ’06: Proc. of the 2006 ACM SIG-
GRAPH/Eurographics, Eurographics Association, 83–89.

CORSON, D., AND LORRAIN, P. 1970. Electromagnetic fields and
waves. W.H. Freemann, New York, USA.

DEBUNNE, G., CANI, M.-P., DESBRUN, M., AND BARR, A.
2000. Adaptive simulation of soft bodies in real-time. In CA
’00: Proc. of the Comp. Animation, IEEE Computer Society, 15.

DEBUNNE, G., DESBRUN, M., CANI, M.-P., AND BARR, A. H.
2001. Dynamic real-time deformations using space & time adap-
tive sampling. In SIGGRAPH ’01, 31–36.

DELINGETTE, H. 2008. Triangular springs for modeling nonlinear
membranes. IEEE Trans. on Vis. and Comp. Graph. 14, 2, 329–
341.

DESBRUN, M., AND GASCUEL, M.-P. 1996. Smoothed particles:
a new paradigm for animating highly deformable bodies. In Pro-
ceedings of the Eurographics workshop on Computer animation
and simulation ’96, Springer-Verlag New York, Inc., New York,
NY, USA, 61–76.

DEUSEN, O., EBERT, D. S., FEDKIW, R., MUSGRAVE,
F. K., PRUSINKIEWICZ, P., ROBLE, D., STAM, J., AND
TESSENDORF, J. 2004. The elements of nature: interactive and
realistic techniques. In ACM SIGGRAPH 2004 Course Notes,
32.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Ani-
mation and rendering of complex water surfaces. ACM Trans.
Graph. 21, 3, 736–744.

ETZMUSS, O., GROSS, J., AND STRASSER, W. 2003. Deriving a
particle system from continuum mechanics for the animation of
deformable objects. IEEE Trans. on Vis. and Comp. Graph. 9, 4,
538–550.

FAN, Z., ZHAO, Y., KAUFMAN, A., AND HE, Y. 2005. Adapted
unstructured lbm for flow simulation on curved surfaces. In Proc.
of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comp.
Anim., 245–254.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liq-
uids. In SIGGRAPH ’01.

FOSTER, N., AND METAXAS, D. 1997. Modeling the motion
of a hot, turbulent gas. In SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley Publishing Co., 181–
188.

FRISCH, U., D’HUMIÈRES, D., HASSLACHER, B., LALLE-
MAND, P., POMEAU, Y., AND RIVET, J.-P. 1987. Lattice gas
hidrodynamics in two and three dimension. Complex Systems,
649–707.

GENEVAUX, O., HABIBI, A., AND DISCHLER, J.-M. 2003. Sim-
ulating fluid-solid interaction. In Graphics Interface.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

127



GUENDELMAN, E., SELLE, A., LOSASSO, F., AND FEDKIW, R.
2005. Coupling water and smoke to thin deformable and rigid
shells. In SIGGRAPH ’05, 973–981.

HECKBERT, P. S. 1990. Adaptive radiosity textures for bidirec-
tional ray tracing. In SIGGRAPH ’90, 145–154.

HOUSE, D. H., AND BREEN, D. E., Eds. 2000. Cloth Modeling
and Animation. A K Peters, Ltd.

IGLESIAS, A. 2004. Computer graphics for water modeling and
rendering: a survey. Future Gener. Comput. Syst. 20, 8, 1355–
1374.

JAMES, D. L., AND PAI, D. K. 1999. Artdefo: accurate real time
deformable objects. In SIGGRAPH ’99, ACM Press/Addison-
Wesley Publishing Co., 65–72.

JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Efficient simu-
lation of light transport in scences with participating media using
photon maps. In SIGGRAPH ’98, ACM, 311–320.

JUDICE, S. F., BARCELLOS, B., AND GIRALDI, G. 2008. A
cellular automata framework for real time fluid animation. In
Proceedings of SBGames 08: Computing Track., 169–176.

KASS, M., AND MILLER, G. 1990. Rapid, stable fluid dynamics
for computer graphics. In SIGGRAPH ’90, 49–57.

KEISER, R., ADAMS, B., GASSER, D., BAZZI, P., DUTRE, P.,
AND GROSS, M. 2005. A unified lagrangian approach to solid-
fluid animation. In Point-Based Graphics, 2005. Eurograph-
ics/IEEE VGTC Symposium Proceedings, 125–148.

LIU, G. R., AND LIU, M. B. 2003. Smoothed particle hydro-
dynamics : a meshfree particle method. World Scientific, New
Jersey.

MOSEGAARD, J., AND SORENSEN, T. S. 2005. Gpu accelerated
surgical simulators for complex morphology. In VR ’05: Pro-
ceedings of the 2005 IEEE Conference 2005 on Virtual Reality,
IEEE Computer Society, Washington, DC, USA, 147–154, 323.

MÜLLER, M., DORSEY, J., MCMILLAN, L., JAGNOW, R., AND
CUTLER, B. 2002. Stable real-time deformations. In SCA ’02:
Proc. of the 2002 ACM SIGGRAPH/Eurographics, 49–54.

MÜLLER, M., SCHIRM, S., TESCHNER, M., HEIDELBERGER,
B., AND GROSS, M. 2004. Interaction of fluids with deformable
solids: Research articles. Comput. Animat. Virtual Worlds 15, 3-
4, 159–171.

NEALEN, A., MULLER, M., KEISER, R., BOXERMAN, E., AND
CARLSON, M. 2005. Physically based deformable models in
computer graphics. In Eurographics 2005, State of The Art Re-
port (STAR).

PREMOZE, S., TASDIZEN, T., BIGLER, J., LEFOHN, A., AND
WHITAKER, R. 2003. Particle-based simulation of fluids. Com-
puter Graphics Forum 22, 3.

ROST, R. J. 2004. OpenGL(R) Shading Language. Addison-
Wesley Professional, Boston, MA, USA.

ROTHMAN, D. H., AND ZALESKI, S. 1994. Lattice-gas models
of phase separation: Interface, phase transition and multiphase
flows. Rev. Mod. Phys 66, 1417–1479.

SIMPSON, G. 2004. A dynamic model to investigate coupling
between erosion, deposition, and three-dimensional (thin-plate)
deformation. JOURNAL OF GEOPHYSICAL RESEARCH 19.

SOLENTHALER, B., SCHLAFLI, J., AND PAJAROLA, R. 2007.
A unified particle model for fluid-solid interactions. Comput.
Animat. Virtual Worlds 18, 1, 69–82.

STAM, J. 1999. Stable fluids. In Siggraph 1999, Addison Wesley
Longman, 121–128.

STAM, J. 2003. Flows on surfaces of arbitrary topology. In SIG-
GRAPH ’03, 724–731.

TERZOPOULOS, D., AND WITKIN, A. 1988. Physically based
models with rigid and deformable components. IEEE Comput.
Graph. Appl. 8, 6, 41–51.

THÜREY, N., RÜDE, U., AND STAMMINGER, M. 2006. Ani-
mation of open water phenomena with coupled shallow water
and free surface simulations. In Proc. of the 2006 ACM SIG-
GRAPH/Eurographics Symp. on Comp. Anim. (SCA ’06), 157–
164.

VANGELDER, A., AND WILHELMS, J. 1997. Simulation of elas-
tic membranes and soft tissue with triangulated spring meshes.
Tech. rep.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light transport.
In SIGGRAPH ’97, 65–76.

VOLINO, P., AND MAGNENAT-THALMANN, N. 2000. Virtual
Clothing: Theory and Practice. Springer.

WEI, X., LI, W., MUELLER, K., AND KAUFMAN, A. 2004.
The lattice-boltzmann method for simulating gaseous phenom-
ena. IEEE Trans. on Vis. and Comp. Graphics 10, 2, 164–176.

WOO, M., DAVIS, AND SHERIDAN, M. B. 1999. OpenGL
Programming Guide: The Official Guide to Learning OpenGL,
Version 1.2. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

YE, Z., MAIDMENT, D., AND MCKINNEY, D. 1996. Map-
based surface and subsurface flow simulation models: An object-
oriented and gis approach. Tech. rep., Center for Research in
Water Resources, University of Texas at Austin, Tec. Report:
http://www.crwr.utexas.edu/reports/pdf/1996/rpt96-5front.pdf.

YE, X. W., ZHAO, Y., FAN, Z., LI, W., QIU, F., YOAKUM-
STOVER, S., AND KAUFMAN, A. 2004. Lattice-based flow
field modeling. IEEE Trans. on Vis. and Comp. Graphics 10,
719–729.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
ACM Trans. Graph. 24, 3, 965–972.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

128



GpuWars: Design and Implementation of a GPGPU Game
Mark Joselli

UFF, Medialab
Esteban Clua

UFF, Medialab

Figure 1: Teaser of the GpuWars Game.

Abstract

The GPUs (Graphics Processing Units) have evolved into extremely
powerful and flexible processors, allowing its usage for processing
different data. This advantage can be used in game development
to optimize the game loop. Most GPGPU works deals only with
some steps of the game loop, allowing to the CPU to process most
of the game logic. This work differ from the traditional approach,
by presenting and implementing practically the entire game loop
inside the GPU. This is a big breakthrough on game development,
since the CPUs are evolving to multi-core, and future games will
need similar parallelism as the GPUs programs.

Keywords:: Digital Games, Game Architecture, GPGPU, Game
Physics, Game AI

Author’s Contact:

{ mjoselli, esteban }@ic.uff.br

1 Introduction

The increase of the level of realism in games depends not only on
the enhancement of modeling and rendering effects, but also on
the improvement of different aspects such as animation, artificial
intelligence of the characters and physics simulation.

Computers, new video game consoles (such as the Microsoft Xbox
360 and the Sony Playstation 3) and GPUs feature multi-core pro-
cessors. For this reason, paralleling the game tasks is getting more
and more important. This work has make a game with its tasks exe-
cution in parallel, with the sequential execution kept to a minimum.

The development of programmable GPUs has enabled new possi-
bilities for general purpose computation (GPGPU) which can be
used to enhance the level of realism of virtual simulations. Some
examples of works in GPGPU that address these issues are Quan-
tum Monte Carlos [Anderson et al. 2007], finite state machines
[Rudomn et al. 2005] and ray casting [Muller et al. 2007].

A lot of games and works that uses GPGPU to process some parts of
its tasks in the GPU and another on the CPU. This causes limitation
on the simulation, because it requires a lot of data transfers between
the CPU and GPU, and this can be the bottleneck of the simulation
[Krueger 2008]. This work implements all the methods of the game
entirely on the GPU with the use of CUDA architecture keeping the
GPU-CPU communication to a minimum.

This work is particular important in order to present a paradigm that
can be used in currently GPUs and video games (Xbox 360 and
Playstation 3), but also in future CPU architectures [Intel 2009],
where a massively cores are available.

The paper is organized as follows: Section 2 presents the GPGPU
concepts. Section 3 presents some related works on GPGPU that
can be applied to games. Section 4 presents the design of the
GpuWars game. Section 5 presents the architecture and section 6
present the physics aspects of the architecture. Section 7 presents
the game logic aspects of the architecture and section 8 presents the
results. Finally section 9 presents the conclusions and future works.

2 GPGPU

GPUs are powerful processors dedicated to graphics computation
which are much faster than CPU when considered all the paral-
lel processors available. A nVidia 8800 ultra [NVIDIA 2006],
for instance, can sustain a measured 384 GFLOPS/s against 35.3
GFLOPS/s for the 2.6 Ghz dual core Intel Xeon 5150 [NVIDIA
2008b].

GPUs are very good for processing applications that require high
arithmetic rates and data bandwidths. Because of the SIMD paral-
lel architecture of the GPU (the nVidia GeForce 9800 GX2 [nVidia
2009b], for example, has 256 unified stream processors), the devel-
opment of this kind of application requires a different programming
paradigm than the traditional CPU sequential programming model.

Nvidia and AMD/ATI are implementing unified architectures in
their GPUs. Each architecture is associated with a specific lan-
guage: Nvidia has developed CUDA (Compute Unified Architec-
ture) [nVidia 2009a] and AMD developed CAL (Compute Abstrac-

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

129



tion Layer) [AMD 2008]. One main advantage in the use of these
languages is that they allow the use of the GPU in a more flexible
way (both languages are based on the C language) without some of
the traditional shader languages limitations such as “scatter” mem-
ory operations, i.e. indexed write array operations, and others that
are not even implemented as integer data operands like bit-wise log-
ical operations AND, OR, XOR, NOT and bit-shifts [Owens et al.
2007]. Nevertheless, the disadvantage of these architectures is that
they are only available for the vendors of the software, i.e., CUDA
only works on Nvidia and CAL only works on AMD/ATI cards. In
order to have GPGPU programs that work on both GPUs it is nec-
essary to implement them in shader languages like GLSL (OpenGL
Shading Language), HLSL (High Level Shader Language) or CG
(C for Graphics) with all the vertex and pixel shader limitations and
idiosyncrasies. In the near future it will be possible to use OpenCL
(Open Computing Language) [Group 2009] which is available in
beta for both nVidia and AMD graphics cards at the moment of the
writing of this paper.

In addition, Intel has recently presented a new architecture for
GPUs called Larrabee [Seiler et al. 2008]. It is made up of sev-
eral x86 processors in parallel which can be used to process both
graphics and non-graphics data. The advantage of this architecture
is that it does not need a special language, just plain C. Neverthe-
less, it will only be available in 2010.

3 Related Work

There are a lot of works that deals with the GPGPU field, but the
application of these works on game fields are mostly concentrated
on the game physics.

Physics on the GPGPU is a potential field and many works could
achieve considerable speedup by taking the physics calculations
from the CPU and processing on the GPU. All the major physics en-
gine for games in the market has make, or is making, attempts to use
of the GPU to process its calculations. The work of Green [Green
2007] presents an implementation on the GPU of some methods
of the commercial physics engine called Havok FX which was be-
ing constructed to be a GPGPU version of Havok Physis [Havok
2009]. The Havok FX was discontinued when Havok was bought
by Intel, but there are rumors that it will be continued with the re-
lease of Intel new architecture for GPU [Seiler et al. 2008]. Also
the PhysX of nVidia [NVIDIA 2009c] is a physics engine that uses
the CUDA architecture to optimizate its calculation [Harris 2009].
Also Bullet [Coumans 2009], an open source physics engine, is also
investing in porting it to the GPU and has release some demos with
some aspects of the engine running on the GPU. Also in [Joselli
et al. 2008b] a hybrid physics engine that has some of its calcu-
lations on the GPU is present. Besides the physics engines, there
are other works related to the implementation of physics simulation
processes on the GPU like: particle system [Kipfer et al. 2004],
deformable bodies system [Georgii et al. 2005], and collision de-
tection [Govindaraju et al. 2003].

Physics simulation works very well on the GPU because of the
high performance of the stream processors, which allows high par-
allelism of the physics problems that can be solved in this structure.
With that, it is possible to have faster physics simulation on games,
and also more physics realistic games.

Another field that could be implemented in the GPGPU and can
be used by game is the game AI or game logic. This field is not
very explored and there are very simple works on the field. There
are implementation of finite state machine on the GPU [Rudomn
et al. 2005], but this work implements very primitive behavior that
cannot be used for games.

Another field that can be used for game that explores GPGPU is
crowd simulation, like the works [Shopf et al. 2008; Passos et al.
2008; Silva et al. 2008; Chiara et al. 2004]. Crowd simulation
can be used in games for simulating: the behavior of herbs of ani-
mals [Passos et al. 2008; Silva et al. 2008], people walking on the
street [van den Berg et al. 2008], soldiers fighting in a battle [Jin
et al. 2007], spectators watching a performance [nVidia 2008c] and
also to populate game worlds [Shopf et al. 2008], like a GTA game

[North 2008]. These works are particularly important since they
propose a simple AI model implementation into a GPU architec-
ture.

There are also some works that deals with the distribution of task
between the CPU and GPU, like [Zamith et al. 2007; Zamith et al.
2008; Joselli et al. 2008a; Joselli et al. 2008b; Joselli et al. 2009].
These works concentrate on the GPU most the physics tasks of the
game and these tasks can be distributed to the CPU. Even though
these works presents some aspects of the game tasks inside the
GPU, the present work differs from the latter, since it presents
all the game tasks that needs to be processed developed inside the
GPU.

There are no available work on the literature that use the GPU to
process the entire game logic, like the one present in this work, just
some tasks of the game.

4 The Design of the Game

The GpuWars is a massive 2D prototype shooter with a top-down
2D perspective. The game is similar to a 2D shooters like Geomet-
ric Wars [Creations 2009] and E4 [Inc. 2009]. The main enhance-
ments of GPUWars is that it uses GPU to process its calculations,
allowing to process and render thousands of enemies, while similar
games only process hundreds.

The game play is very simple: the player plays as a GPU card
(which is called “GPUship”) inside the “computer universe”, and
he needs to process (by shooting them) polygons, shaders and data
(the enemies) from a game. Every time the “GPUship” make physi-
cal contact with a enemy it looses time and in consequence it looses
FPS. The objective is to process the maximum number of data in
the smaller amount of time, and keep the game interactive with a
minimum 12 frames per second.

The GpuWars uses the keyboard as the input device of the game,
one set of controls are used to control the movement of the “GPU-
ship”, and another set to control the direction of the shots.

5 The Architecture

Computer games are multimedia applications that employ knowl-
edge of many different fields, such as Computer Graphics, Artifi-
cial Intelligence, Physics, Network and others [Valente et al. 2005].
More, computer games are also interactive applications that exhibit
three general classes of tasks: data acquisition, data processing, and
data presentation. Data acquisition in games is related to gathering
data from input devices as keyboards, mice and joysticks. Data pro-
cessing tasks consist on applying game rules, responding to user
commands, simulating Physics and Artificial Intelligence behav-
iors. Data presentation tasks relate to providing feedback to the
player about the current game state, usually through images and
audio. In this architecture practically all game logic is processed in
the GPU, i.e all the data processing tasks, only using the CPU for
tasks that need to make use of CPU like data acquisition.

This architecture was implemented using CUDA technology
[nVidia 2009a] for GPGPU processing; OpenGL for rendering;
GLSL (OpenGL Shading Language) for shaders; and GLUT
(OpenGL Utility Toolkit) for window creation and input gathering.

The game loop of the GpuWars work as follows. First the CPU
gather the input and sends it to the GPU. The GPU treat this data,
making the necessary adjustments,i.e, the transformation of the
player’s position and the creation of the players shots. The GPU
starts updating the bodies by applying the physics behavior on them
and their logic behavior, which corresponds to the artificial intelli-
gence step. These updates are put on a VBO (Vertex Buffer Object)
and sended to the shaders for rendering. The GPU also sends vari-
ables to the CPU in order to tell if it should terminate the applica-
tion. This game loop is illustrated in figure 2.

To resume, the CPU is responsible for:

• creating a window;

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

130



Figure 2: Game Loop of GpuWars.

• gather the players input and send it to the GPU;

• make the GPU calls;

• execute the music and sound effects;

• and terminate the application, i.e, destroy the windows and
release the data.

While the GPU is responsible for:

• applying the physics on the bodies;

• process the artificial intelligence;

• determinate the game status, like the player scores;

• and determinate the end of the game.

The data that is exchanged between the CPU and GPU is encap-
sulate in special structure, in order to keep the communication be-
tween the CPU and the GPU to a minimum, since this process can
be a bottleneck of any simulation that has communication between
CPU and GPU [Krueger 2008].

GPGPU programs are divided in threads. In order to process the
main game logic which needs to be executed sequentially, the pro-
posed architecture have a special CUDA thread which is responsi-
ble for it, and is the same that treats the “GpuShip” data and inputs.
This processing includes: update the position of the “GpuShip” ac-
cordingly to the input; creation of shots, which are created in other
CUDA threads; determinate the scores; determinate the game over;
and determinate the creation of new enemies. The others threads
are responsible for updating the enemies and the shots, like colli-
sion detection and response and the individuals behavior. The posi-
tions and type are put in a VBO and sent to a vertex shader in order
to render the individuals without using the CPU. Also to deal with
the creation of the shots and enemies, the architecture keeps a list
with the values to indicate available positions for individuals cre-
ation. Using this structure the GPU processes some empty threads,
threads that practically does not process anything, and also differ-
ent codes in different threads, which can affect the performance
because of the threads synchronization inside the CUDA block. In
order to avoid this, the architecture groups similar threads together

in a CUDA block, avoiding the lost in performance caused by the
thread synchronization. Figure 3 illustrate the process of the differ-
ent threads.

GPGPU programs does not have native pseudo random number
generation. In order to fulfill that need this work developed a
pseudo-random number generation based on nVidia demo [Pod-
lozhnyuk 2007].

In order to implement this architecture some data structure are
needed, these are the data that are required for each individual:

• one vector with the individual position;

• one vector with the individual force;

• one vector with the individual direction/orientation;

• one integer as the individual type, which can be player, shot
or enemy types;

• one integer with the individual energy;

• one float for the individual mass;

This architecture is build in a way that it can be also used, with
proper modifications, in 3D games. In the next sections the most
important steps there are processed on the GPU, the physics step
and the AI step, are present.

6 Physics Step

This step is responsible for the physics behavior, i.e, how the bod-
ies process and resolve all bodies collisions and response. The
physics of this architecture is based on the physics on particle sys-
tems [nVidia 2008a; Microsoft 2007; Kipfer et al. 2004] and in a
hybrid physics engine [Joselli et al. 2008b].

Collision detection is a complex operation. For n bodies in a sys-
tem, their must be a collision detection check between the O(n2)
pairs of bodies. Normally, to reduce this computation cost, this
task is performed in two steps: first, the broad phase, and second,
the narrow phase. In the broad phase, the collision library detects
which bodies have a chance of colliding among themselves. In the
narrow phase, a more refined algorithm to do the collisions tests
are performed between the pairs of bodies that passed by the broad
phase.

The physics step is responsible for:

• Make the broad phase of the collision detection;

• Calculate the narrow phase of the collision detection, i.e, ap-
ply the collision in each body;

• Forwarding the simulation step for each body by computing
the new position and velocities according to the forces and the
time step, i.e., integrating the equations of motion;

6.1 The broad phase

This phase is responsible for avoiding the n2 comparison between
all the individuals, and also avoid doing a narrow phase of the col-
lision detection between the n2 individuals which is normally done
by spatial hashing.

There are many ways to do a spatial hashing for the broad phase of
the collision detection. This work uses a uniform grid, which has a
constant building cost (which makes the simulation more constant)
and is very suitable for the parallel structure of the GPU. Also this
structure is used in the AI step in order to determinate the vision of
the bodies.

This work has based its implementation on the spatial hashing with
sort of the nVidia particles demo [nVidia 2008a] and the CUDA
broad phase implementation [Le Grand 2007]. This work differs
from such implementation because it is adapted and optimize the
structure and methods to be used with the GPGPU game loop pro-
cess and to fill the requirements of the GpuWars game, which needs
bigger grids and larger number of objects in the grid in order to be

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

131



Figure 3: The Different Process of the CUDA Threads of GpuWars.

faster for the AI steps, which uses the grid to simulate the vision of
the enemies.

6.2 The narrow phase of the collision detection

The narrow phase of the collision detection is responsible for doing
the collision detection among the rigid bodies. In this work, instead
of doing the collision check between all the polygons of the individ-
uals, it is implemented a basic primitive area element, that complex
models are put inside.

There are two types of bounds that this work implements, used to
surround every model, simplifying the narrow phase of the collision
detection: a circle bounds and a bounding rectangle. The circle
bound is used whenever is possible. This is done in order to save
memory, since the circle bound only needs the position vector and
a radius, while the bounding rectangle needs four variables.

6.3 The Integrator

This method is responsible for integrating the equations of motion
of a rigid body [Eberly 2004]. In this work it consist on a simple
step, since it does not takes into account the angular velocities and
torque. This method updates crowd individual velocity based on
the forces that are applied to it, which are sent to the integrator,
and then it updates the position based on its velocities, using an
integration method based on Euler integration. Euler integration is
one of the simplest form of integration. Mathematically, it evaluates

the derivative of a function at a certain time, and linearly extrapolate
based on that derivative to the next time step.

7 AI Step

Game AI is used to produce the illusion of intelligence in the behav-
ior of non-player characters (NPC), and in the case of GpuWars, the
enemies. There are a lot of ways to implement the game AI such as
finite state machines, fuzzy logic, neural networks, and many oth-
ers [Bourg and Seemann 2004]. This work uses finite state machine
(FSM). Finite state Machines are powerful tools used in many com-
puter game implementations [Dybsand 2000; Rankin and Vargas
2009; Li and Woodham 2009], like the NPC behavior, the charac-
ters animation states and the game menu states.

A finite state machine is a model of behavior composed of a states,
the transitions between those states, and the actions. This work
implements 3 different behaviors using FSM, the kamikaze, group
and tricky behaviors, which are present in the next subsections.

The behaviors are affected by the size of vision (which uses the
grid made by the broad phase of the collision detection), velocity
and energy, which are variables available for each type of enemy.
With the modification of these values, this work implements seven
different types of enemies.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

132



7.1 Kamikaze Behavior

The kamikaze approach is a behavior that simulates suicidal attacks.
It uses a state machine that has only four state, wandering, attack-
ing, checking energy and dead, and can be seen on figure 4.

Figure 4: The Kamikaze State Machine.

The kamikaze is a very simple behavior. It wanders until it sees
the “GPUShip”, then it goes attacking it by throwing itself against
it. This approach is well suited for a GPU architecture, since few
information about the scene is necessary.

7.2 Group Behavior

The group behavior is a behavior that make groups, avoid bullets
and attacks. It has a state machine that has six state, wandering,
grouping, attacking, checking energy, avoiding bullets and dead,
and can be seen on figure 5.

Figure 5: The Group State Machine.

This behavior is also very simple. The individual wanders trying to
find similar individuals, i.e, individuals of the same type, and the
“GPUShip”. If it sees a similar individual, it goes close to it and
make a group. And if it can see the player, it attacks the player by
throwing itself against it. If the individual sees a bullet coming in
its direction it tries to avoid it.

7.3 Tricky Behavior

The tricky behavior is the most complex behavior of the game. This
behavior tries also groups similar individuals and it is the only that
recoveries energy. It has a state machine that has seven states, wan-
dering, grouping, attacking, avoiding bullets, checking energy, es-
caping and dead, and can be seen on Figure 6.

Figure 6: The Tricky State Machine.

The enemy wanders trying to find the “GPUShip” or similar indi-
viduals. If it sees a similar individual, it goes close to it and make
a group. If it is seeing the player, it throws itself against it. If the
individual sees a bullet coming in its direction it tries to avoid it. If
it has little energy it tries to scape to recover the lost energy.

8 Results

This work has decided to make the tests in the minimum hardware
that can run CUDA, a notebook with an AMD Turion Dual-core
with 3GB RAM memory and equipped with nVidia Geforce mobile
8200M GPU card (which has only 8 stream processors), running on
Windows Vista.

The number of enemies determines the performance of the game.
This work has decided to have a maximum bound of 8192 enemies.
A screenshot of the game can be seen of figure 7.

Figure 7: A Screenshot of the game.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

133



Figure 8: Performance of the game

To better view the performance, figure 8 show a graph with the
performance in FPS of the game in 5 minutes of the application.

From this figure can be seen that the performance of the game
ranges from 45 to 58 frames per second. This performance is con-
sidered optimal in a game [Joselli et al. 2009].

The game was also tested with a more powerful hardware, a quad-
core with a nVidia GeForce 8800GS GPU card (which has 96
stream processors), with similar results but with a speedup of three
times (the FPS ranges from 130 to 170).

9 Conclusions and Future Work

The GPUs have evolved and can be used to process different tasks
of the game loops. Most works deals with some aspects of the
game loop, with more focus on the game physics. This work differ
from the related GPGPU works, presenting a game that has all the
game logic inside the GPU. This can make a new trend on game
development.

Future works will focus on creating more complex behavior of ene-
mies, by implementing other game AI techniques, like hierarchical
state machines, fuzzy logic and neural networks. Also the authors
will proceed by evolving the architecture so it can be used in other
type of games.

References

AMD, 2008. Amd stream computing. Avali-
ble at: http://ati.amd.com/technology/
streamcomputing/firestream-sdk-whitepaper
.pdf. 20/02/2008.

ANDERSON, A., III, W. G., AND SCHRDER, P. 2007. Quantum
monte carlo on graphical processing units. Computer Physics
Communications 177(3).

BOURG, D. M., AND SEEMANN, G. 2004. AI for Game Develop-
ers. O’Reilly Media, Inc.

CHIARA, R. D., ERRA, U., SCARANO, V., AND TATAFIORE, M.
2004. Massive simulation using gpu of a distributed behavioral
model of a flock with obstacle avoidance. In Vision, Modeling,
and Visualization (VMV), 233–240.

COUMANS, E., 2009. Bullet physics library. Disponvel em:
http://www.bulletphysics.com.

CREATIONS, B., 2009. Geometry wars retro evolve. Avali-
ble at: http://www.bizarrecreations.com/games/
geometry wars retro evolved/.

DYBSAND, E. 2000. A finite state machine class. Game Program-
ming Gems, 237–248.

EBERLY, D. H. 2004. Game Physics. Morgan Kaufmann.

GEORGII, J., ECHTLER, F., AND WESTERMANN, R. 2005. Inter-
active simulation of deformable bodies on gpu. In Proceedings
of Simulation and Visualization 2005, 247–258.

GOVINDARAJU, K. N., REDON, S., LIN, M. C., AND
MANOCHA, D. 2003. CULLIDE: interactive collision detection
between complex models in large environments using graphics
hardware. In Graphics Hardware 2003, 25–32.

GREEN, S., 2007. Gpgpu physics. Siggraph07 GPGPU Tutorial.

GROUP, K., 2009. Opencl - the open standard for paral-
lel programming of heterogeneous systems. Avalible at:
http://www.khronos.org/opencl/.

HARRIS, M., 2009. Cuda fluid simulation in nvidia physx. Sig-
graph Asia 2009: Beyond Programmable Shading course.

HAVOK, 2009. Havok physics. Avalible at:
http://www.havok.com/content/view/17/30/.

INC., Q. E., 2009. Every extend extra extreme. Avali-
ble at: http://www.qentertainment.com/eng/
2007/09/every extend extra extreme.html.

INTEL, 2009. Intel multi-core technology. Avalible at:
http://www.intel.com/multi-core/.

JIN, X., WANG, C. C. L., HUANG, S., AND XU, J. 2007. Inter-
active control of real-time crowd navigation in virtual environ-
ment. In VRST ’07: Proceedings of the 2007 ACM symposium on
Virtual reality software and technology, ACM, New York, NY,
USA, 109–112.

JOSELLI, M., ZAMITH, M., VALENTE, L., CLUA, E. W. G.,
MONTENEGRO, A., CONCI, A., FEIJÓ, B., DORNELLAS, M.,
LEAL, R., AND POZZER, C. 2008. Automatic dynamic task
distribution between cpu and gpu for real-time systems. IEEE
Proceedings of the 11th International Conference on Computa-
tional Science and Engineering, 48–55.

JOSELLI, M., CLUA, E., MONTENEGRO, A., CONCI, A., AND
PAGLIOSA, P. 2008. A new physics engine with automatic pro-
cess distribution between cpu-gpu. Sandbox 08: Proceedings of
the 2008 ACM SIGGRAPH symposium on Video games, 149–
156.

JOSELLI, M., ZAMITH, M., VALENTE, L., CLUA, E. W. G.,
MONTENEGRO, A., CONCI, A., AND FEIJÓ, PAGLIOSA, P.
2009. An adaptative game loop architecture with automatic dis-
tribution of tasks between cpu and gpu. Proceedings of the VII
Brazilian Symposium on Computer Games and Digital Enter-
tainment, 115–120.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

134



KIPFER, P., SEGAL, M., AND WESTERMANN, R. 2004. Uber-
flow: a gpu-based particle engine. In Graphics Hardware 2004,
115–122.

KRUEGER, J. 2008. A gpu framework for interactive simulation
and rendering of fluid effects. IT - Information Technology 4,
(accepted).

LE GRAND, S. 2007. Broad-phase collision detection with cuda.
In GPU Gems 3, H. Nguyen, Ed. Addison Wesley Professional,
August, ch. 32.

LI, F., AND WOODHAM, R. J. 2009. Video analysis of hockey
play in selected game situations. Image Vision Comput. 27, 1-2,
45–58.

MICROSOFT, 2007. Advanced particles. Siggraph 2007: Real-
Time Rendering in 3D Graphics and Games course.

MULLER, C., STRENGERT, M., AND ERTL, T. 2007. Adaptive
load balancing for raycasting of non-uniformly bricked volumes.
Parallel Computing 33(6), 406–419.

NORTH, R. G., 2008. Grand theft auto iv, rockstar games. Avalible
at: http://www.rockstargames.com/IV/.

NVIDIA. 2006. Geforce 8800 gpu architecture overview. tb-
02787-001 v0.9. Technical report, NVIDIA.

NVIDIA, 2008. Cuda particles. Avalible at:
http://developer.download.nvidia.com/
compute/cuda/1 1/Website/projects/
particles/doc/particles.pdf.

NVIDIA. 2008. Nvidia - cuda compute unified device architecture.
Programming guide, NVIDIA.

NVIDIA, 2008. Skinned instancing. Avalible at:
http://developer.download.nvidia.com/SDK/10/
direct3d/Source/SkinnedInstancing
/doc/SkinnedInstancingWhitePaper.pdf.

NVIDIA, 2009. Nvidia cuda compute unified device ar-
chitecture documentation version 2.2. Avalible at:
http://developer.nvidia.com/object/cuda.html.

NVIDIA, 2009. nvidia geforce 9800 gx2 specification. Aval-
ible at: http://www.nvidia.com/object/product
geforce 9800 gx2 us.html.

NVIDIA, 2009. Nvidia physx. Avalible at:
http://www.nvidia.com/object/nvidia
physx.html.

OWENS, J. D., LEUBKE, D., GOVINDARAJU, N., HARRIS, M.,
KRGER, J., LEFOHN, A. E., AND PURCELL, T. J. 2007. A
survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26(1), 80–113.

PASSOS, E., JOSELLI, M., ZAMITH, M., ROCHA, J., MONTENE-
GRO, A., CLUA, E., CONCI, A., AND FEIJÓ, B. 2008. Su-
permassive crowd simulation on gpu based on emergent behav-
ior. In Proceedings of the VII Brazilian Symposium on Computer
Games and Digital Entertainment, 81–86.

PODLOZHNYUK, V., 2007. Parallel mersenne twister. Avalible
at: http://developer.download.nvidia.com/
compute/cuda/sdk/website/projects/
MersenneTwister/doc/MersenneTwister.pdf.

RANKIN, J. R., AND VARGAS, S. S. 2009. Fps extensions mod-
elling esgs. In ACHI ’09: Proceedings of the 2009 Second Inter-
national Conferences on Advances in Computer-Human Interac-
tions, IEEE Computer Society, Washington, DC, USA, 152–155.

RUDOMN, T., MILLN, E., AND HERNNDEZ, B. 2005. Fragment
shaders for agent animation using finite state machines. Simula-
tion Modelling Practice and Theory 13(8), 741–751.

SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T.,
ABRASH, M., DUBEY, P., JUNKINS, S., LAKE, A., SUGER-
MAN, J., CAVIN, R., ESPASA, R., GROCHOWSKI, E., JUAN,

T., AND HANRAHAN, P. 2008. Larrabee: A many-core x86 ar-
chitecture for visual computing. ACM Transactions on Graphics
27, 3.

SHOPF, J., BARCZAK, J., OAT, C., AND TATARCHUK, N. 2008.
March of the froblins: simulation and rendering massive crowds
of intelligent and detailed creatures on gpu. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 classes, ACM, New York, NY, USA, 52–
101.

SILVA, A. R., LAGES, W. S., AND CHAIMOWICZ, L. 2008. Im-
proving boids algorithm in gpu using estimated self occlusion. In
Proceedings of SBGames’08 - VII Brazilian Symposium on Com-
puter Games and Digital Entertainment, Sociedade Brasileira de
Computação, SBC, 41–46.

VALENTE, L., CONCI, A., AND FEIJÓ, B. 2005. Real time game
loop models for single-player computer games. In Proceedings
of the IV Brazilian Symposium on Computer Games and Digital
Entertainment, 89–99.

VAN DEN BERG, J., PATIL, S., SEWALL, J., MANOCHA, D., AND
LIN, M. 2008. Interactive navigation of multiple agents in
crowded environments. In I3D ’08: Proceedings of the 2008
symposium on Interactive 3D graphics and games, ACM, New
York, NY, USA, 139–147.

ZAMITH, M., CLUA, E., PAGLIOSA, P., CONCI, A., MONTENE-
GRO, A., AND VALENTE, L. 2007. The gpu used as a math
co-processor in real time applications. Proceedings of the VI
Brazilian Symposium on Computer Games and Digital Enter-
tainment, 37–43.

ZAMITH, M. P. M., CLUA, E. W. G., CONCI, A., MONTENEGRO,
A., LEAL-TOLEDO, R. C. P., PAGLIOSA, P. A., VALENTE, L.,
AND FEIJÓ, B. 2008. A game loop architecture for the gpu
used as a math coprocessor in real-time applications. Comput.
Entertain. 6, 3, 1–19.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

135



gRmobile: A Framework for Touch and Accelerometer Gesture
Recognition for Mobile Games

Mark Joselli
UFF, Medialab

Esteban Clua
UFF, Medialab

Abstract

Mobile phone games are usually design to be able to play using the
traditional number pads of the handsets. This is stressfully difficult
for the user interaction and consequently for the game design. Be-
cause of that, one of the most desired features of a mobile games
is the usage of few buttons as possible. Nowadays, with the evo-
lution of the mobile phones, more types of user interaction are ap-
pearing, like touch and accelerometer input. With these features,
game developers have new forms of exploring the user input, being
necessary to adapt or create new kinds of game play. With mo-
bile phones equipped with 3D accelerometers, developers can use
the simple motion of the device to control the game or use com-
plex accelerated gestures. And with mobile phones equipped with
the touch feature, they can use a simple touch or a complex touch
gesture recognitions. For the gesture to be recognized one can use
different methods like simple brute force gestures, that only works
well on simple gestures, or more complex pattern recognition tech-
niques like hidden Markov fields, fuzzy logic and neural networks.
This work presents a novel framework for touch/accelerometer ges-
ture recognition that uses hidden Markov model for recognition of
the gestures. This framework can also be used for the development
of mobile application with the use of gestures.

Keywords:: Mobile Games, Gesture Recognition, Motion Sen-
sors, Touch Phones,Tangible User Interfaces

Author’s Contact:

{ mjoselli, esteban }@ic.uff.br

1 Introduction

Digital games are defined as real-time multimedia applications that
have time constraints to run their tasks. If the game is not able
to execute its processing under some time threshold, it will fail
[Joselli et al. 2008]. Mobile games are also real-time multimedia
application that runs on mobile phones that have time constraints
and many others constraints [Chehimi et al. 2008], when compared
to PC or console games, like: hardware constraints (processing
power and screen size); user input, (buttons, voice, touch screen
and accelerometers); and different operating systems, like Android,
iPhone OS, Symbian and Windows Mobile. This makes streamilly
difficult for the design and development of mobile games.

On the other hand, mobile games can have unique characteristics,
making unique type of games: location based games [M1ndLab
2007; De Souza E Silva 2009], voice based games [Zyda et al.
2008], accelerometer based games [Chehimi and Coulton 2008],
camera based games [Park and Jung 2009] and touch based games
[Rohs 2007]. In order to develop good mobile games, they must be
design to take advantages of such unique characteristics into game-
play [Zyda et al. 2007].

Mobile game phones are a growing market [Koivisto 2006] and in
2010 the sales of smartphones is expected to suppress the laptops
sales [Oliver 2008]. More than 10 million of people worldwide
play games on mobile phones and handheld devices [Soh and Tan
2008] and the world-wide mobile gaming revenue is expected to
reach $9.6 billion by 2011 [Gartner 2007]. These are important mo-
tivations for game developers and designer to create blockbusters
games.

One special characteristic of most mobile phones is that the user in-
teraction is made mostly through number input [Chehimi and Coul-
ton 2008; Gilbertson et al. 2008]. Because of that, the design of

games must deal with this fact and design the game to use as few
buttons as possible, like just one button games [Nokia 2006] and
no-buttons at all games [Gilbertson et al. 2008].

The evolution of mobile phones increase the processing power of
such devices and also new forms of input, like touch screen devices
and devices equipped with accelerometers. With the development
of touch phones, like Motorola a1200, Htc Diamond, Sony Ericson
w960i, Samsung Ultra Smart F520 and Nokia N810, new forms of
user interaction has appeared through the use of the finger or pen.
This innovation has led to change the way users interact with the
mobile operation system and with the mobile games.

With the popularization of the use of accelerometer by the Nintendo
Wiimote, the major mobile phone manufactures had also equipped
their hardware with accelerometer, like Nokia N95, Sony ericson
F305, Samsung Omnia and Motorola W7, among others. But this
new form of user interaction has not led to major change on the
interaction. This is mostly because programs/games only uses the
accelerometer data as orientation.

The iPhone was one of the first devices that is equipped with touch
screen and accelerometer that has mostly of the user input made
though touch or motion, soon others companies followed this ten-
dency, like: RIM Blackberry Storm, Nokia 5800, LG Arena, and
many others. They basically use touch for user interaction, and the
use of the accelerometer data is restricted for orientation, just like
the others phones equipped with accelerometer. This paper tries to
fulfill a gap on user interaction by providing a framework for ges-
ture recognition though touch input or motion input, that can be
used for games or programs.

The gesture recognition is a type of pattern recognition and can
be made by different ways like: brute force [Wobbrock et al.
2007], fuzzy logic [Anderson et al. 2004], Gabor wavelet trans-
form [Mena-Chalco et al. 2008], hidden Markov model [Westeyn
et al. 2003], Support Vector Machine [Prekopcsák et al. 2008a] and
neural networks [King et al. 2004; Bailador et al. 2007]. This work
has developed a framework that can be used for gesture recognition
using hidden Makov model. In order to generate and recognize the
gestures database the proposed framework is divided in two parts:
one for database constriction and another for the gesture recogni-
tion.

Summarizing, this work provides the following contributions:

• A novel architecture for touch/motion gesture recognition on
mobile phones;

• Presentation of performance and tests of the framework show-
ing that it can be used in real-time;

• Recognition test showing a high accuracy rate;

The paper is organized as follows: Section 2 presents some related
works on the mobile development and gesture recognition on de-
vices equipped with touch screen and devices equipped with ac-
celerometers. Section 3 presents and explain the gesture recogni-
tion framework. Section 4 present and discuss some results of the
use of the framework. Section 5 presents the conclusions and future
works.

2 Related Work

Since the gRmobile has two kinds of gestures recognition (thought
touch input or accelerometer motion input), this section is divided
in two subsections: one for touch screen devices were user inter-
action and gesture recognition for this kind of device works; and

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

136



another for accelerometer devices presenting user interaction works
and gesture recognition approaches.

This work does not cover the related work on mobile game develop-
ment. For this purpose the authors suggest the works [Capin et al.
2008; Chehimi et al. 2008] which covers state of the art for this
topic.

2.1 Touch Devices

Nowadays, more and more devices are coming with touch screen,
and most of this is because of the decreased in the respective price
[Vaughan Nichols 2007]. Touch screen phone devices has the char-
acteristics of having very few buttons and most of its users input
interfaces are made through touch by finger or pen. For example
the Blackberry Storm has about only 8 buttons and almost all of its
user interaction is made by touch.

Most touch screen devices can have two kinds of input: dragged and
pressed. The first is used when the user touches softly and can be
used as a mouse being dragged. The second is when the user press
hard on the device, and can be used as a mouse buttons pressed.
Also modern devices has multi-touch screen devices like iPhone,
Android T-G1 and Blackberry Storm, among others.

Some of these devices have used some of this types of input as ges-
tures to enable friendly user interaction: like dragging for changing
the web page, zooming options on photo view and many others fea-
tures. But in third-party mobile software and games this use is very
restrict.

Narayanaswamy et al [Narayanaswamy et al. 1999] shows an im-
plementation of handwrite recognition on PDAs using Hidden
Markov Model. Wei et al. [Wei et al. 2008] presents a study about
using pen gestures instead of buttons in a mobile FPS game. They
showed that users have little preference in using buttons over ges-
tures and sometimes prefer the use of gestures. The gRmobile also
could be used for handwrite recognition and gesture for games but a
gesture database must be constructed in order to have the this func-
tionality in the framework (in the case of handwrite recognition all
the alphabet must be in the database).

Since the touch screens have similar behavior as the mouse, mouse
gesture recognizer [Moyle and Cockburn 2002; Lombardi and Porta
2007; Buckland 2002] could be adapted in order to be used by
touch screen devices. But this could be very hard since they are
not adapted for the low processing power and memory constraints
of such devices. The gRmobile is very adapted to such devices hav-
ing a very good performance as will be showed in the performance
evaluation section.

Even tough touch devices enables much more freedom when com-
pared with buttons based phones, the input error by those devices
are higher, as shows by Hoggan et al. [Hoggan et al. 2008] using
keyboard input tests.

2.2 Accelerometer Devices

Accelerometer devices are getting more and more popular. This
allows the interaction though the form of gestures recognition, be-
ing the Nintendo Wii game console the most prominent example
of this new form of interaction. This approach allows users to be-
come more engaged to video games [Crampton et al. 2007], whose
experience is not only affected by button pressing and timing but
also by movement. Also Sony’s Playstation 3 has a controller that
is equipped with accelerometers.

Nowadays, most smartphones, and also some mobile phones, come
equipped with accelerometer. This allows the use of motion and
gestures as user input, but very little has been done in the field.
Most mobile operating systems [Oliver 2008] only uses the motion
to choose the screen orientation. And also most games only uses
the “tilt” of the screen and not gestures as input, like the works
[Gilbertson et al. 2008; Chehimi and Coulton 2008; Valente et al.
2008] represents.

There are many relevant work related to gestures recognition for
accelerometer devices. With the usage of the Wiimote can be high-
lighted the works [Mlch 2009; Schlömer et al. 2008]. These works
use Hidden Markov Models (HMM) as the recognition algorithm
and the [Mlch 2009] presents a lower recognition of 66 % and
[Schlömer et al. 2008] shows a lower recognition rate of 84 %. This
work also uses HMM as the recognition algorithm, but it is adapted
for the lower processing power of mobile devices.

Accelerometer gesture recognition requires an intensive task to be
achieved on a mobile phone. The work by Choi et al. [Choi et al.
2005] presents a Bayesian network algorithm with its computation
performed in the PC to recognize numbers written on the air by
accelerometer mobile phones with an average recognition rate of
97 %. Also [Pylvänäinen 2005] shows a HMM recognition al-
gorithm also implemented on the PC with the gestures done by
mobile phones with a recognition rate of more than 99 %. There
are also some work in development like [Prekopcsák et al. 2008a;
Prekopcsák et al. 2008b] shows two recognition algorithms imple-
mented on the PC, a HMM and a Support Vector Machine, which
can have an average recognition rate of 96 %.

Without the use of the PC, MobiToss [Scheible et al. 2008] presents
the use of mobile phone to use simple gestures to interact with large
public displays with all the processing made on the phone.

3 Framework Overview

The framework is build using Java language. The choice to use Java
was to achieve a higher number of devices with the same frame-
work, allowing its usage by any accelerated/touch device that can
handle the acceleration data and/or touch data, and that has a Java
virtual machine, like many devices from different manufacturers:
Blackberries, Nokias, Sony Ericson, Motorola, Android, LG and
Samsung. Also this framework can be used in a PC with a touch
device like Microsoft surface or an accelerometer device like the
Wiimote.

Gesture recognition with touch/accelerated devices are represented
by their patterns of the input data. The recognition is made by com-
paring the input pattern with the database pattern, checking if they
match. In order to extract the pattern from the input data stream and
comparing with the database pattern, this data must be prepared and
analyzed. This work uses Hidden Markov Models in order to fulfill
that need. In order to build a database, the framework needs to train
and saves a set of gestures, which are also used by the mobile phone
for recognition.

The proposed framework has the following steps:

• Segmentation: is used to determine when the gesture begins
and when it ends;

• Filtering: is used in order to eliminate some parts of the data
stream that do not contribute to the gesture;

• Quantitizer: is used to approximate the stream of input data
into a smaller set of values;

• Model: is used to compute likelihood of analyzed gestures.

• Classifier: is used in order to identify the input gesture ac-
cordingly to the database.

All the steps from the mobile phone to the user feedback are illus-
trated in figure 1. It is possible to notice that the framework has two
distinct modes: one for gesture training, i.e, build the database, and
one for gesture recognition, i.e, comparing the input gesture with
the database.

3.1 Segmentation

Segmentation is used mainly to automatic determinate the begin
and end of the gesture. This identification in touch gestures is very
easy since the begin of the gesture is when the user first touch the
screen and it ends when the user release the finger/pen from the
screen. For the accelerometer gestures the segmentation is more
difficult since the data keeps coming in a frequency that normally

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

137



SegmentationSegmentation

Filter

Quantitizer

Gesture
 Database Classifier

RecognitionTrain

Model

Filter

Gesture
 Database Classifier

RecognitionTrain

Model

Touch Motion

Figure 1: System block diagram with major components of the framework.

varies from 20 Hz to 80 Hz. This data that comes from the ac-
celerometer is, normally, 3 numbers representing the acceleration
in three axis (X, Y, Z), as figure 2 illustrates, that ranges from -3G
to 3G (with G meaning the gravity).

Figure 2: The axis accelerometer

There are some accelerometer gesture recognition systems, like
[Schlömer et al. 2008], that does the segmentation by using a button
based segmentation, i.e, the user needs to press a button in order to
sign the beginning and the end of the gesture. This seems like an

easy approach, since it avoids computations to determine the begin
and the end of a gesture, like an automatic segmentation must have.
But on the other hand, the interaction is worst than a no-button seg-
mentation. In a mobile phones, sometimes, the pressing of buttons
in a game can be hard since it was designed for number dialing.
This comes as another reason why this work has implemented a
no-button segmentation. This work does a similar approach as the
works [Hofmann et al. 1998; Prekopcsák et al. 2008a].

In order to correct segmentate an accelerometer gesture, a definition
of this kind of gesture is needed. This definition is made during the
observation of the accelerated data and the movement of user dur-
ing the recognition of different gestures. Normally, gestures begins
with a fast acceleration, a continuous direction change during the
gesture, and it ends with a stop of the movement. In this work, the
authors have observed that normally, a good gesture needs a dura-
tion of more than 0.6 seconds and less than 2 seconds.

To correct segmentate the accelerometer gesture based on the defi-
nitions some preprocessing of the accelerated data is needed. This
work uses a simple mechanism. It checks the size of a vector made
by the sums of the derivative, which is the difference between the
axis float and the last axis float, which is illustrated by equation 1.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

138



D =
√

(xk − xk−1)2 + (yk − yk−1)2 + (zk − zk−1)2 (1)

If the D value is bigger than 0.3, which was chosen during an ex-
tensively empirical study of gestures, the segmentation begins. And
if the gesture is happening and this values drops to bellow 0.1 the
gesture ends, i.e, it is assumed that the accelerometer device is in
an idle position.

3.2 Filtering

This pass is used in order to eliminate some parts of the data stream
that do not contribute to the gesture. This work uses two kinds of
filters in order to eliminate noises and data that are very similar.

When a gesture is made, the data stream of the gesture may contain
errors that if are sent to the HMM, some errors on the recognition
may occur. In order to avoid such errors, a low pass filter is applied
which is a very common filter used for noise remove.

When the gesture is made, there are a lot of data on the data stream
that does not contribute to the overall characteristic of the gesture.
In order to diminished the data passed to the HMM, this work uses
an idle threshold filter. This uses the same equation 1, and if D
value is less than 0.2, it is not included in the gesture data stream.

3.3 Quantitizer

This step is only used for accelerated gestures. Because the ac-
celerometer continues sends its data to the processor, the amount of
data may be to big to for handling into a single HMM. Also, since
the amount of RAM memory of mobile phones are limited, the use
of a quantitizer keeps less information in the gesture database. This
work uses a k-mean algorithm which is a method of cluster ana-
lyzer. The algorithm aims to partition n observations into k clus-
ters in which each observation belongs to the cluster with the near-
est mean. This is a similar approach as the work [Schlömer et al.
2008].

For this approach, a k value must be chosen. For this work we
selected k = 14, since experiments from [Schlömer et al. 2008]
shows that this values is optimal for the Wiimote, which can be
extended to the phone accelerometers, since they have a similar ar-
chitecture.

3.4 Hidden Markov Model

A hidden Markov model (HMM) is a popular statistical tool for
gesture/pattern recognition. This work has based its implementa-
tion in an open source HMM implementation [Franois 2009] and in
an open source HMM Wii gesture recognition [Poppinga 2009].

This work uses left-to-right HMM with 8 states for each gesture.
The reason why this work choose this configuration is because it
is a very efficient for accelerometer recognition, following the tests
made in [Schlömer et al. 2008]. For the training process, the HMMs
with the iterative Baum-Welch algorithm was used. And for recog-
nition, the forward-backward algorithm was used. More informa-
tion on this algorithms can be obtained in [Rabiner and Juang 1986;
Rabiner 1990; Bilmes 2006].

3.5 Classifier

The classifier is used in order to identify gesture selecting the ges-
ture with more likehood between the input gesture and the database
gesture. This work uses a naive Bayes classifier also called simple
Bayesian classifier [Friedman et al. 1997]. Naive Bayes is simple
probabilistic classifier based on the so-called Bayesian theorem and
it is a well known algorithm both in statistics and machine learning.

The accelerometer stream data input has some noise movements,
i.e., movements that are not gestures. Because of that, a probability
threshold of 0.5 is included, so that any gesture probability below
that threshold is considered as a noise. The value of this threshold
was determined according to empirical values.

4 Results evaluation

All tests of this work were made in a BlackBerry Storm 9530 [Kao
and Sarigumba 2009] which has a 528 MHz Qualcomm proces-
sor with 128 MB of RAM, touch screen and accelerometer. In or-
der to evaluate properly the gRmobile framework an application to
train, recognize and save gestures were developed for the Black-
Berry Storm. A screenshot of the Blackberry application can be
seen on figure 3.

Figure 3: An Screenshot of the application.

Two types of tests were made in order to validate the architecture
performance, one for evaluating the impact that the architecture can
have on the mobile phone, and another for recognition, in order to
evaluate the accuracy of the gRmobile. These tests are presented in
the next two subsections.

4.1 Performance Evaluation

There are some available frameworks for accelerometer gesture
recognition but most of them cannot be used in mobile phones since
the processing power is very low when compared to a PC. gRmo-
bile was designed to be used with constraint hardware of mobile
phones.

The authors of this work have observed that the size of gesture
database influenciates on the total time of the recognition. Another
observation is that the time for touch gesture is lesser than motion
gestures, since it has much less data to analyze. Table 1 shows the
numerical results in average time with gesture different database
sizes.

The results shows that with a database with ten or less gestures,
the gRmobile can be used in real-time applications, such as games,

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

139



Table 1: Numerical results from performance evaluation with different database sizes in average time in milliseconds.

# of gesture in the database time accelerometer (ms) time touch (ms)
5 52 40
10 87 71
15 125 107
20 186 154

without major impact on the overall performance of the application.
Since more than ten gestures becomes inpratical due to the fact that
user must learn all different gestures, like [Pylvänäinen 2005] ar-
gue and the authors of this work agreed. These results shows that
gRmobile provides a good rate for real-time gesture recognition.

Also this architecture were tested in a PC with an 3500+ Athlon64
processor with 2GB RAM memory with the Wiimote as the ac-
celerometer device and the mouse simulating the touch device. This
tests shows that resource consumption is insignificant in a PC even
with a gesture database of twenty gestures.

4.2 Recognition Evaluation

In order to test the accuracy of the recognition, a dataset of gestures
have been created. These work have defined ten different gestures
for motion gestures, and ten gestures for touch gestures similar to
the motion gestures. These gestures can be seen on figure 4.

C

 Square

Rool
Left

Rool
Right

Z M U P

Circle
Clockwise

Circle
Counter

Clockwise

Figure 4: The gesture database used in tests.

All gestures were repeated ten times by a group of four differ-
ent users, which provided a four hundred examples overall. The
group consists of three men users (participants A, B and D) and one
women user (participant C) with age ranging between 21 and 42.
None of the participants was physically disabled. One participant
have major experience with touch/accelerometer device (participant
A), two have minor experience with such devices (participant B and
C) and one have none experience with the touch and accelerometer
mobile phone devices (participant D). The results can be seen on
table 2.

These results show a high fidelity recognition rate of the gRmo-
bile framework with an average recognition rate of 89% in motion
gestures and 98 % for touch gestures.

Also the results shows that the specialist participant (User A) ob-
tained 99.9 % of recognition in motion gestures and 100 % in touch
gestures. The low experience participants (User B and User C) have
an 88.5 % in motion gestures and 98 % in touch gestures. The no
experience participant (User D) have 79 % in motion gestures and
96 % in touch gestures. These results show that touch gestures are
easily to be performed and recognized. The tests also show that ges-
tures can be used with both user with big expertise and no expertise
on the subject.

Figure 5 shows the average recognition in % rate of motion ges-
tures. This results shows that the P gesture has the lowest recog-
nition rate, an average rate of 75%, and RollLeft gesture has the
highest recognition rate, an average rate of 97.5%.

Figure 5: Average Recognition Rate of the Motion Gestures.

Figure 6 shows the average recognition in % rate of touch gestures.
This results shows that the Square gesture has the lowest recogni-
tion rate, with an average rate of 95% and RollLeft, RollRight
and U gestures have the highest recognition rate, with an average
rate of 100%.

Figure 6: Average Recognition Rate of the Touch Gestures.

5 Conclusion

The mobile gaming market is a growing market, motivating game
developers to have more focus on mobile development. Also, nowa-
days, mobile phones have much more processing power, allowing
more complexity in mobile games.

Even with touch screens and accelerometers features becoming
available in most devices, current mobile games almost do not ex-
plore these features. This work has presented a novel framework,
the gRmobile, that can recognize touch and motion gestures in real-
time using the mobile phone limited hardware.

The gRmobile was designed to help developer to better explore this
new kind of input through gestures. This framework was built in
Java in order to address most mobile phones (Blackberries, Nokias,

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

140



Table 2: Recognition tests results in % of accuracy between all participants.

User A User B User C User D
Gesture Motion Touch Motion Touch Motion Touch Motion Touch

C 100 100 90 100 100 90 90 100
Circle Clockwise 100 100 100 100 80 100 80 90

Circle counter Clockwise 100 100 90 90 100 100 80 100
Roll Left 100 100 100 100 100 100 90 100

Roll Right 100 100 100 100 90 100 100 100
Square 100 100 80 100 90 100 70 80

Z 100 100 80 100 90 100 70 90
M 100 100 90 100 80 90 70 100
U 100 100 80 100 80 100 80 100
P 90 100 70 100 80 90 60 100

Sony Ericsons, Motorolas, Androids, LGs, Samsungs and others
phones that have the necessary features and a java virtual machine).

There are others frameworks for gesture recognition on accelerom-
eter and touch devices, but none of them provide the unique charac-
teristics of gRmobile like: providing both touch and accelerometer
recognition on the same platform; run in real time on the restricted
mobile phone hardware (others works that implements accelerom-
eter gesture recognition uses the CPU for processing the recogni-
tion); and it is developed in a way that can run in any system with
JVM.

This work also presented many performance tests with the frame-
work, showing that the solution can run in real-time on mobile
phone devices. Also recognition test were made, showing that the
gRmobile has a high recognition rate of 89% in motion gestures
and 98 % for touch gestures.

In the future work topics, it is included to porting the framework
to iPhone and Windows Mobile platforms. The authors also point
as future work, the study of how to substitute the key press process
for gestures in traditional mobile games and how this affects the
gameplay.

References

ANDERSON, L., PURDY, D. J., AND VIANT, W. 2004. Varia-
tions on a fuzzy logic gesture recognition algorithm. In ACE ’04:
Proceedings of the 2004 ACM SIGCHI International Conference
on Advances in computer entertainment technology, ACM, New
York, NY, USA, ACE, 280–283.

BAILADOR, G., ROGGEN, D., TRÖSTER, G., AND TRIVI NO, G.
2007. Real time gesture recognition using continuous time recur-
rent neural networks. In BodyNets ’07: Proceedings of the ICST
2nd international conference on Body area networks, ICST (In-
stitute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), ICST, Brussels, Belgium, Belgium,
BodyNets, 1–8.

BILMES, J. A. 2006. What hmms can do. IEICE - Trans. Inf. Syst.
E89-D, 3, 869–891.

BUCKLAND, M. 2002. AI Techniques for Game Programming (The
Premier Press Game Development Series). Course Technology
PTR.

CAPIN, T., PULLI, K., AND AKENINE-MÖLLER, T. 2008. The
state of the art in mobile graphics research. IEEE Comput.
Graph. Appl. 28, 4, 74–84.

CHEHIMI, F., AND COULTON, P. 2008. Motion controlled mobile
3d multiplayer gaming. In ACE ’08: Proceedings of the 2008 In-
ternational Conference on Advances in Computer Entertainment
Technology, ACM, New York, NY, USA, ACE, 267–270.

CHEHIMI, F., COULTON, P., AND EDWARDS, R. 2008. Evolution
of 3d mobile games development. Personal Ubiquitous Comput.
12, 1, 19–25.

CHOI, E. S., BANG, W. C., CHO, S. J., YANG, J., KIM, D. Y.,
AND KIM, S. R. 2005. Beatbox music phone: gesture-based

interactive mobile phone using a tri-axis accelerometer. In In-
dustrial Technology, 2005. ICIT 2005. IEEE International Con-
ference on, ICIT, 97–102.

CRAMPTON, N., FOX, K., JOHNSTON, H., AND WHITEHEAD, A.
2007. Dance dance evolution: Accelerometer sensor networks as
input to video games. In IEEE HAVE 2007, IEEE HAVE, 74–84.

DE SOUZA E SILVA, A. 2009. Hybrid reality and location-based
gaming: Redefining mobility and game spaces in urban environ-
ments. Simul. Gaming 40, 3, 404–424.

FRANOIS, J.-M., 2009. Jahmm: Java implementation of hid-
den markov model (hmm) related algorithms. Avalible at:
http://code.google.com/p/jahmm/.

FRIEDMAN, N., GEIGER, D., AND GOLDSZMIDT, M. 1997.
Bayesian network classifiers. Mach. Learn. 29, 2-3, 131–163.

GARTNER, 2007. Gartner says worldwide mobile gam-
ing revenue to grow 50 percent in 2007. Avalible
at: http://www.gartner.com/it/page.jsp?
id=507467.

GILBERTSON, P., COULTON, P., CHEHIMI, F., AND VAJK, T.
2008. Using “tilt” as an interface to control “no-button” 3-d mo-
bile games. Comput. Entertain. 6, 3, 1–13.

HOFMANN, F. G., HEYER, P., AND HOMMEL, G. 1998. Velocity
profile based recognition of dynamic gestures with discrete hid-
den markov models. In Proceedings of the International Gesture
Workshop on Gesture and Sign Language in Human-Computer
Interaction, Springer-Verlag, London, UK, International Gesture
Workshop, 81–95.

HOGGAN, E., BREWSTER, S. A., AND JOHNSTON, J. 2008. In-
vestigating the effectiveness of tactile feedback for mobile touch-
screens. In CHI ’08: Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems,
ACM, New York, NY, USA, CHI, 1573–1582.

JOSELLI, M., ZAMITH, M., VALENTE, L., CLUA, E. W. G.,
MONTENEGRO, A., CONCI, A., AND FEIJÓ, PAGLIOSA, P.
2008. An adaptative game loop architecture with automatic dis-
tribution of tasks between cpu and gpu. Proceedings of the VII
Brazilian Symposium on Computer Games and Digital Enter-
tainment, 115–120.

KAO, R., AND SARIGUMBA, D. 2009. BlackBerry Storm For
Dummies. For Dummies.

KING, D., LYONS, W. B., FLANAGAN, C., AND LEWIS, E. 2004.
Signal processing technique utilising fourier transform methods
and artificial neural network pattern recognition for interpreting
complex data from a multipoint optical fibre sensor system. In
WISICT ’04: Proceedings of the winter international synposium
on Information and communication technologies, Trinity Col-
lege Dublin, WISICT, 1–6.

KOIVISTO, E. M. I. 2006. Mobile games 2010. In CyberGames
’06: Proceedings of the 2006 international conference on Game
research and development, Murdoch University, Murdoch Uni-
versity, Australia, Australia, CyberGames, 1–2.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

141



LOMBARDI, L., AND PORTA, M. 2007. Adding gestures to or-
dinary mouse use: a new input modality for improved human-
computer interaction. In ICIAP ’07: Proceedings of the 14th In-
ternational Conference on Image Analysis and Processing, IEEE
Computer Society, Washington, DC, USA, ICIAP, 461–466.

M1NDLAB, 2007. Alien revolt: Location-based
massive-multiplayer online rpg. Avalible at:
http://www.alienrevolt.com.

MENA-CHALCO, J., CARRER, H., ZANA, Y., AND CESAR JR.,
R. M. 2008. Identification of protein coding regions using the
modified gabor-wavelet transform. IEEE/ACM Trans. Comput.
Biol. Bioinformatics 5, 2, 198–207.

MLCH, J. 2009. Wiimote gesture recognition. In Proceedings of
the 15th Conference and Competition STUDENT EEICT 2009
Volume 4, Faculty of Electrical Engineering and Communica-
tion BUT, Faculty of Electrical Engineering and Communication
BUT, 344–349.

MOYLE, M., AND COCKBURN, A. 2002. Analysing mouse and
pen flick gestures. In In Proc. of the SIGCHI-NZ Symposium On
Computer-Human Interaction, SIGCHI, 266–267.

NARAYANASWAMY, S., HU, J., AND KASHI, R. 1999. User in-
terface for a pcs smart phone. In ICMCS ’99: Proceedings of
the IEEE International Conference on Multimedia Computing
and Systems, IEEE Computer Society, Washington, DC, USA,
ICMCS, 9777.

NOKIA, F. 2006. Turn limitation into strength: Design one-button
games. Tech. rep., Nokia.

OLIVER, E. 2008. A survey of platforms for mobile networks
research. SIGMOBILE Mob. Comput. Commun. Rev. 12, 4, 56–
63.

PARK, A., AND JUNG, K. 2009. Flying cake: Augmented game
on mobile devices. Comput. Entertain. 7, 1, 1–19.

POPPINGA, B., 2009. wiigee:a java-based gesture
recognition library for the wii remote. Avalible at:
http://www.wiigee.org.

PREKOPCSÁK, Z., HALÁCSY, P., AND GÁSPÁR-PAPANEK, C.
2008. Accelerometer based real-time gesture recognition. In
Proceedings of the 12th International Student Conference on
Electrical Engineering, International Student Conference on
Electrical Engineering.

PREKOPCSÁK, Z., HALÁCSY, P., AND GÁSPÁR-PAPANEK, C.
2008. Design and development of an everyday hand gesture in-
terface. In MobileHCI ’08: Proceedings of the 10th international
conference on Human computer interaction with mobile devices
and services, ACM, New York, NY, USA, MobileHCI, 479–480.

PYLVÄNÄINEN, T. 2005. Accelerometer based gesture recognition
using continuous hmms. Pattern Recognition and Image Analy-
sis, 639–646.

RABINER, L., AND JUANG, B. 1986. An introduction to hidden
markov models. ASSP Magazine, IEEE [see also IEEE Signal
Processing Magazine] 3, 1, 4–16.

RABINER, L. R. 1990. A tutorial on hidden markov models and
selected applications in speech recognition. Readings in speech
recognition, 267–296.

ROHS, M. 2007. Marker-Based Embodied Interaction for Hand-
held Augmented Reality Games. Journal of Virtual Reality
and Broadcasting 4, 5 (Mar.). urn:nbn:de:0009-6-7939,
ISSN 1860-2037.

SCHEIBLE, J., OJALA, T., AND COULTON, P. 2008. Mobitoss:
a novel gesture based interface for creating and sharing mobile
multimedia art on large public displays. In MM ’08: Proceeding
of the 16th ACM international conference on Multimedia, ACM,
New York, NY, USA, MM, 957–960.

SCHLÖMER, T., POPPINGA, B., HENZE, N., AND BOLL, S. 2008.
Gesture recognition with a wii controller. In TEI ’08: Proceed-
ings of the 2nd international conference on Tangible and embed-
ded interaction, ACM, New York, NY, USA, TEI, 11–14.

SOH, J. O. B., AND TAN, B. C. Y. 2008. Mobile gaming. Com-
mun. ACM 51, 3, 35–39.

VALENTE, L., DE SOUZA, C. S., AND FEIJÓ, B. 2008. An ex-
ploratory study on non-visual mobile phone interfaces for games.
In IHC ’08: Proceedings of the VIII Brazilian Symposium on
Human Factors in Computing Systems, Sociedade Brasileira de
Computaç ao, Porto Alegre, Brazil, Brazil, SBC, 31–39.

VAUGHAN NICHOLS, S. J. 2007. New interfaces at the touch of a
fingertip. Computer 40, 8, 12–15.

WEI, C., MARSDEN, G., AND GAIN, J. 2008. Novel interface for
first person shooting games on pdas. In OZCHI ’08: Proceed-
ings of the 20th Australasian Conference on Computer-Human
Interaction, ACM, New York, NY, USA, OZCHI, 113–121.

WESTEYN, T., BRASHEAR, H., ATRASH, A., AND STARNER, T.
2003. Georgia tech gesture toolkit: supporting experiments in
gesture recognition. In ICMI ’03: Proceedings of the 5th inter-
national conference on Multimodal interfaces, ACM, New York,
NY, USA, ICMI, 85–92.

WOBBROCK, J. O., WILSON, A. D., AND LI, Y. 2007. Ges-
tures without libraries, toolkits or training: a $1 recognizer for
user interface prototypes. In UIST ’07: Proceedings of the 20th
annual ACM symposium on User interface software and technol-
ogy, ACM, New York, NY, USA, UIST, 159–168.

ZYDA, M., THUKRAL, D., JAKATDAR, S., ENGELSMA, J., FER-
RANS, J., HANS, M., SHI, L., KITSON, F., AND VASUDEVAN,
V. 2007. Educating the next generation of mobile game de-
velopers. IEEE Computer Graphics and Applications 27, 2, 96,
92–95.

ZYDA, M. J., THUKRAL, D., FERRANS, J. C., ENGELSMA, J.,
AND HANS, M. 2008. Enabling a voice modality in mobile
games through voicexml. In Sandbox ’08: Proceedings of the
2008 ACM SIGGRAPH symposium on Video games, ACM, New
York, NY, USA, Sandbox, 143–147.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

142



Hierarchical PNF Networks: A Temporal Model of Events for the 
Representation and Dramatization of Storytelling 

 
Erick B. Passos       Cesar T. Pozzer*       Anselmo A. Montenegro 

Flávio S. C. da Silva**  Esteban G. Clua 
 

UFF - MediaLab        *UFSM - LaCA  **USP - IME 
 
Abstract 
 
Storytelling is an important feature in games and also 
other types of (semi) automated entertainment systems 
such as machinima and digital-TV. The majority of the 
current research in storytelling use precedence-based 
directed acyclic graphs, or even linear sequences, to 
model the ordering of events in a story. This approach 
makes it easier to plan, recognize and perform these 
events in real-time, but it is also too simple to represent 
complex human actions, which form the basis of the 
most interesting stories in this niche. PNF-Networks 
and Interval Scripting are frameworks to represent, 
recognize and perform human action that was proposed 
in the context of computer-aided theatre. In this paper 
we describe two extensions to this framework that 
were designed and developed to enable its use in larger 
scale storytelling systems: Hierarchical PNF-Networks 
and a template-based definition. Hierarchical PNF-
Networks present lower complexity propagation 
heuristic while the definition language enables high-
level and abstract description of the temporal structure 
of the actions and events that compose an interactive 
story or game. 
 
Keywords: storytelling, PNF networks, interval 
algebra 
 
Authors’ contact: 
{epassos,anselmo,esteban}@ic.uff.br 
*pozzer@inf.ufsm.br 
**fcs@ime.usp.br 
 
1. Introduction 
 
A strong trend in game design is to include storytelling 
elements and narrative structures to enhance the player 
experience. However, being interactive applications, 
games put several challenges into this integration. 
These challenges are also present in other applications 
of interactive storytelling such as experiments on 
machinima [Riedl et al. 2008, Jahala et al. 2008] and 
interactive TV [Pozzer 2005], and can be divided into 
three main categories: story modeling, 
generation/planning, and dramatization. Story 
modeling tackles the problem of representing the 
events that make up a story, creating a solid framework 
for planning and dramatization tools. Planning 
algorithms have been used to create coherent story 
models and to keep it in this fashion, even in the 
presence of user generated events. Dramatization 
systems are designed to present the storyline and to 

interact with the user. Besides, the control of virtual 
actors or other agents such as camera systems still 
present opportunities to enrich the user experience. 
 

Many storytelling models are constructed as 
directed acyclic graphs (plans are an example of such 
graphs), which can represent only incomplete temporal 
relations such as precedence or causality [Charles et al. 
2003, Ciarlini et al. 2005, Barros and Musse 2005]. 
Since these temporal models are simple, the integration 
with planning and real-time dramatization systems 
becomes more straightforward. However, these models 
are a poor representation of complex human actions, 
which are the most common type of events in stories. 
This is due to the fact that these models are especially 
weak regarding temporal relations between events, 
being unable to directly represent certain types of 
parallelism such as mutual exclusion [Allen and 
Ferguson 1994]. We believe that a richer 
representation can lead to stories with higher 
complexity and consequently to a more interesting user 
experience. 
 

PNF Networks were introduced by Pinhanez 
[Pinhanez et al. 1998] as a human action recognition 
framework, which uses the qualitative temporal 
predicates of James Allen's interval algebra [Allen 
1983] to label the relations between the events that 
compose an action. Unlike precedence-based directed 
acyclic graphs, the constraints of a PNF network can 
represent all possible temporal relations that are 
present in the real world. The problem with interval 
algebra networks is that the propagation of the 
temporal constraints is NP-Hard. However, Pinhanez 
proposed a heuristic for this problem, called PNF-
Propagation, which is linear on the number of 
constraints for networks where the knowledge about 
the temporal status of each event is discrete, restricted 
to three possible values and their combinations: P 
(past), N (now) and F (future). For instance, an event 
that is known to have already happened is labeled P, 
while an event that is known to be happening is labeled 
N. An event labeled PN is currently happening or 
already happened, and an event whose status is 
unknown must be labeled PNF. 
 

This framework, augmented with real-time sensor 
output and past information, was used to represent and 
recognize complex human actions in the context of 
computer theatre. Pinhanez also proposed a script 
language [Pinhanez et al. 1997] that combines PNF-
Propagation with user-defined sub-actions to control 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

143



interactive experiments in real-time. The use of these 
techniques to storytelling purposes was mentioned but 
not implemented by the original authors. 
 

In this paper, we propose two extensions to 
Pinhanez's PNF-Networks that were developed to 
make them suitable as a model and dramatization tool 
for interactive storytelling. The main contributions of 
our work are: a template-based definition language that 
is used to compose high level stories by using abstract, 
reusable descriptions of actions; and a hierarchical 
version of PNF-Networks, that is augmented with an 
adaptation of the original restriction heuristic. The 
adapted heuristic aims to avoid unnecessary traversal 
of unaffected nodes in the network, leading to a lower 
complexity that enables the use of larger 
networks/stories. This Hierarchical PNF-Network was 
designed, implemented and integrated with a game 
engine to permit further research on interactive 
storytelling. 
 

The rest of the paper is organized as follows: 
Section 2 compares the proposed system with related 
work in the field. Section 3 explains PNF-Networks 
and the Interval Script paradigm in more detail, while 
section 4 explains the new features we are proposing to 
the original approach. Section 5 brings an analysis of 
how these features are related to common storytelling 
concepts and constructs, which is another contribution 
of the present work. Finally, section 6 concludes the 
paper and shows future directions of our research. 
 
2. Related Work 
 
This section is organized in two parts: the first covers 
some important previous research in storytelling 
modeling and planning techniques. But since this work 
is strongly based on the PNF-Networks temporal 
model and algorithms, we also include here the origins 
and more recent work in this subject. 
 

Chris Crawford created an interactive storytelling 
system, Erasmatron [Crawford 2004], in which the 
user generates stories by using verbs that define the 
actions of the characters. Each verb has an associated 
set of roles, which can be linked to the characters and 
objects in the particular setting. These verbs represent 
the same concept as the actions in our framework, 
while the roles are similar to the variables in our 
template definition language. Although Crawford´s 
approach is more align with character-based emergent 
storytelling and PNF-Networks fit better plot-based 
storytelling, his ideas can still benefit from PNF-
Networks to detect what actions a particular character 
has already performed. 

 
 Plans have become one the most common approach 
for storytelling research partly due to their similarities 
to story models that emerged from narratology studies 
[Barros and Musse 2007]. Several previous researches 
included planning as part of their storytelling systems 

[Riedl and Young 2003, Charles et al. 2003, Ciarlini et 
al. 2005, Barros and Musse 2005]. We consider our 
work complementary to these, since we are not 
proposing new planning algorithms, but the integration 
of the Hierarchical PNF-Networks framework with 
current planning approaches as a formal model for the 
real-time execution and detection of the events that 
compose an interactive story. 
 

PNF-Networks are a model and recognition 
framework for complex human action. It is been 
implemented and tested in several experiments and 
also with computer-aided theatre plays. We strongly 
recommend reading some of Claudio Pinhanez’s 
published work [Pinhanez 1999, Pinhanez et al. 1998, 
Pinhanez et al. 1997] to better understand the extended 
framework we propose in this paper. 
  

Meyer [Meyer 2002] further experimented with 
computer-aided theatre, introducing the use of XML as 
the definition language for the PNF-Networks. In this 
paper, we propose further extensions to Pinhanez’s 
work, and also analyze some challenges and 
opportunities that derive from its application in 
storytelling research. 
 
3. PNF Networks and Interval Scripts 
 
PNF-Networks are a symbolic framework for modeling 
high-level events such as human actions - and an 
algorithm for detecting the occurrence of such events 
in real-time - that is rich in its representation power 
and features linear computational complexity, making 
it suitable to runtime interactive systems. Such as other 
models for representing high-level events in a story, 
PNF-Networks decompose actions into simpler sub-
actions, but the detection of their occurrence is based 
on temporal reasoning about the state of the other 
actions in the network with a heuristic called PNF-
Propagation. 
 

Interval scripts are a proposal for the integration of 
PNF-Networks with user-scripted actions, which are 
activated by a real-time engine that uses the PNF-
Propagation heuristic to determine what actions should 
be started or stopped. In this section we explain some 
terminology and the main concepts behind PNF-
Networks: action representation by the means of 
networks of temporal constraints; the PNF-Propagation 
heuristic; and the interval script approach for complex 
action activation. 
 
3.1 Terminology 
 
Informally, an action is something performed by some 
being (character, animal, machine) that can have some 
consequences. An event can be understood as the 
perception of an action, its consequences or a natural 
phenomenon. In this paper, however, this subtle 
distinction is not so important to the mathematical 
formalism. More important is the perception that both 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

144



events and actions happen in intervals of time, which 
states that if enough information is available, one can 
distinguish if an event (or action) is currently 
happening (present), already happened (past) or has not 
happened yet (future). For now on, we may refer to an 
event or action with the term interval. 
 

The other important terminology is related to the 
temporal relations between these intervals. Each event 
or actions will be represented by a node in a graph 
corresponding to its interval. PNF-Networks are graphs 
where the nodes are connected by binary directional 
relations. Each relation represents a constraint that 
affect the temporal state of the restricted (the 
destination node of the directed edge) interval based on 
the state of the restrictor (the origin of the edge). 
 
3.1 Action composition 
 
Most human actions can be described by a composition 
of simpler sub-actions. This concept is key to 
storytelling systems and, for instance, lets describe the 
events that can form a common drama in love stories: 
the knight characters declares this love for the princess, 
who is to marry a prince from another kingdom. The 
component sub-events can be: a) establishing shot of 
the castle; b) knight declares love; c) prince comes and 
kisses the princess; and d) princess wonders about 
what just happened. In order to understand this drama, 
the viewer must see the characters perform each of 
these sub-events in some organized fashion. Even this 
simple example will be enough to show how different 
models drift in representation power. 
 

Since the occurrence of each one of these sub-
actions must happen in definite intervals of time, one 
must define temporal relations between them to 
properly model and control either its runtime execution 
or automatic detection. A simple approach to model the 
temporal relations of these intervals is to consider that 
the sub-actions always occur in sequence, which would 
lead to the directed acyclic graph shown in Figure 1, 
where each edge represent a precedence relation. When 
used to control automated characters and objects such 
as a virtual camera, this model shows the order in 
which the events must be performed. If used to 
detection purposes, the system must perceive that the 
events happened in the declared order, to properly 
conclude that the described drama has actually been 
presented to the viewer, in case a Finite State Machine 
will easily suffice. 
 

 
Figure 1: Sequential model for a common drama 

 

The sequence in Figure 1 is enough when one just 
wants to use it as a high level representation for 
scripting purposes, but in many cases, some of the 
component sub-events can happen in parallel or in 
unknown order. For instance, this concept can be 
naively represented by the graph in Figure 2, where the 
two events of the knight declaring its love and the kiss 
between the prince and the princess are not tied to a 
specific order. However, this simple parallel model 
fails to capture an important temporal restriction of the 
real world: the impossibility of these two events to 
happen at the same time, which would otherwise lead 
to a inconsistent performance. The overall conclusion 
is that models for temporal relations between events 
that are based solely in precedence are not able to 
represent mutual exclusion situations properly [Allen 
and Ferguson 1994]. 
 

 
Figure 2: Naive parallel model of the drama event 

 
Before coming back to the drama example, lets first 

introduce some concepts that are important to the 
understanding of PNF-Networks. 
 
3.2 Temporal constraints: IA-Networks 
 
To better represent high-level actions, one needs a 
richer model for temporal relations between the 
component sub-actions, which proper capture their 
complex nature. Instead of relying only in precedence 
and composition, the temporal relations defined by 
James Allen's Interval Algebra [Allen 1983] are a set 
of thirteen binary predicates, each representing a 
unique temporal relation between two intervals. Being 
an algebra, all possible knowledge about the temporal 
relation between any two events is proven to be a 
subset (empty included) of the predicates described by 
the Interval Algebra. These predicates are illustrated in 
Figure 3. One can notice that, except for the equal 
relation (the first on Figure 3), all other are pairs with 
an inverse version represented by an "i" at the 
beginning. For instance, the inverse of A <Before> B 
would be A <iBefore> B, which, concerning only the 
temporal relation, is the same as B <Before> A. 
However, the inverse relations are made necessary 
because the edges in an interval algebra graph are 
directed. 
 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

145



 
Figure 3: Allen's primitive temporal relations between two 

intervals 
 

Two illustrate how these predicates better represent 
temporal relations between sub-actions, we can use 
them to define the most common relation in 
storytelling models: precedence. Saying that interval A 
precedes interval B implies that the first must end its 
execution before the second starts its own. But the 
actual start of interval B can either immediately follow 
the end of interval A or take some time to begin. This 
means that two predicates in Allen's algebra can be 
used to represent precedence: Before or Meet, which 
leads to three possible interpretations for the 
precedence relation: 
 

• A <Before> B, where the start of interval B 
must take some time after the end of A to 
actually happen; 

• A <Meet> B, where the start of interval B 
immediately follows the end of A; 

• A <Before,Meet> B, where interval B either 
immediately follows or happens after some 
time A has finished, which is the usual 
meaning of precedence in more simple 
models. 

 
These three possible representations for precedence 

are impossible to distinguish unless a more powerful 
set of predicates is used. In Interval Algebra, high level 
events (or long chains, sequences or other arbitrary sets 
of events) are represented by directed (possibly cyclic) 
graphs called IA-Networks, where the nodes are the 
sub-events and each directed edge is a subset of the 
thirteen predicates that compose Allen's Interval 
Algebra. These networks are useful when one wants a 
richer and finer grained representation of temporal 
relations. Figure 4 uses a possible IA-Network to the 
drama event of previous examples. It is important to 
notice that in IA-Networks the relation between the 
high-level event and the same types of predicates also 
represent its component sub-events. The "castle shot" 
camera sub-event marks the start of the "drama" event, 
so it is restricted by a <iStart> (inverse start) relation. 
 

 
Figure 4 - Drama model represented by an IA-Network 

 
3.3 PNF Propagation 
 
The most important feature of an IA-Network is that it 
makes possible temporal reasoning, which means that 
one can use the knowledge about the temporal status of 
some nodes to infer about other nodes in the network. 
This is possible because each (directed) relation 
possibly restricts the status of the second node based 
on the temporal status of the first. For instance, if node 
A and B are related by the predicate Meet, and 
node/interval A is known to be happening now, one 
can conclude that node/interval B is yet to happen. 
 

The problem with temporal reasoning in IA-
Networks is that propagation algorithms for them are 
normally NP-Hard, which are not suitable for real-time 
systems, especially when used to represent complex 
stories (large IA-Networks). In order to solve this 
issue, Pinhanez [Pinhanez et al. 1998] proposed the 
simplification of IA-Networks by restricting the 
temporal knowledge about an interval to three discrete 
values and their combinations: P (past), N (now) and F 
(future). For instance, an event that is known to have 
already happened is labeled P, while an event that is 
known to be happening is labeled N. An event labeled 
PN is currently happening or already happened, and an 
event whose status is unknown must be labeled PNF. 
 

At the same time, the temporal relations defined by 
Allen's interval algebra can be mapped to 
correspondent constraints also using discrete PNF 
values. A PNF constraint is a three-valued tuple, where 
each value is a combination of the values P, N and F. 
The first value in the tuple marks the possible status of 
the restricted interval given that the restrictor has in its 
current state the value P, the second value marks the 
possible status values for the presence of N in the 
origin, and finally, the third value restricts the 
destination in presence of F in the origin. The complete 
restriction is given by the sum set of the restrictions of 
the tuple. A conversion table between interval algebra 
relations and PNF constraints is given in Figure 5. 
 
 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

146



  P  N  F  
E 
B 
iB 
M 
iM 
O 
iO 
S 
iS 
D 
iD 
F 
iF 

< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 

P 
PNF 
P 
PN 
P 
PN 
P 
PN 
P 
PN 
P 
P 
P 

, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 

N 
F 
P 
F 
P 
NF 
PN 
N 
PN 
N 

PNF 
N 
NF 

, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 

F 
F 

PNF 
F 
NF 
F 
NF 
F 
F 
NF 
F 
NF 
F 

> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 

Figure 5 - Mapping of Allen's primitives into PNF 
constraints, which defines a PNF-Restriction function 

 
For instance, the relation Meet would be 

represented by the tuple <PN,F,F>. The first value PN 
means that if the origin interval is possibly in the past 
(P) state, the destination can either be happening now 
or already happen. The second value, F, implies that if 
the origin has the state N, the destination has to be in 
the future. Similar constraint happens with the third 
value. The sum set of the values needs to be used 
because sometimes one cannot know the exact status of 
a given interval, which will lead to more than one 
possible restriction path. This mapping defines a 
function that returns the value of the restricted interval 
(Xi) based on the current value of the restrictor (Xj) 
and the binary constraint between them (Cij): 

 
Xi = PNF-Restrict(Xj, Cij); 

 
Given this 3-valued discrete representation of the 

status and restrictions for intervals (or events that 
happen during this intervals), Pinhanez developed an 
arc-consistency heuristic [Pinhanez et al. 1998] to 
propagate changes in a PNF-Network (IA-Network 
with PNF mapped relations). This arc-consistency 
heuristic is linear on the number of constraints in the 
network and computes the restricted temporal status for 
each node (interval). 

 
Formally, a set of PNF values for all the nodes in a 

PNF-Network is a component domain. The goal of a 
restriction algorithm is to find the minimal domain that 
satisfies all the constraints in the network, given the 
fixed PNF values of the sensor nodes. The arc-
consistency heuristic is conservative and always finds a 
domain that satisfies the constraints, but its not 
guaranteed that this domain is minimal. Code 1 shows 
the pseudo-code for this heuristic. 

 
 

Input:  A PNF-Network N with values x1, x2,  
   ... , xn, and the binary constraints  
   Pij; 
   W, a component domain of PNF values  
   for N. 
Output: AC-R(W), a component domain that   
   satisfies the constraints 
 
 

Algorithm: 
queue = all variables xi where  Wi ≠ PNF; 
W_AUX = W; 
while queue is not empty 
 xq = pop(queue); 
 for each xi in W 
  X = PNF-Restrict(W_AUXq,Pqi); 
  if (W_AUXi ≠ W_AUXi ∩ X) 
   W_AUXi = W_AUXi ∩ X; 
   push(xi, queue); 
return W_AUX; 
Code 1 - Arc-consisntency heuristic [Pinhanez 1998] 

 
PNF-Networks coupled with arc-consistency are a 

framework for representing and detecting complex 
actions, given that the temporal (PNF) state of some 
nodes in the network are determined by the output of 
real-time sensors. Each time a sensor output changes, 
the PNF-Propagation routine is executed, resulting in a 
new state for the nodes in the network. However, this 
framework alone is not useful in a storytelling 
scenario, where one needs mechanisms to 
automatically control virtual actors and other AI 
controlled objects. 
 
3.4 Interval Scripts 
 
Interval scripts are an extension to PNF-Networks that 
enable its use as an engine for controlling the execution 
of automated characters or other objects by using the 
results of real-time detection of user (and other 
automated) actions with the described PNF-
Propagation approach. An interval script is a PNF-
Network with three types of nodes: 
 

• Sensor - node whose temporal status is given by 
direct detection such as determining if an 
object is touching other. Its status cannot be 
changed by PNF-Propagation; 

• Passive node - represents an event that cannot 
be directly detected. Its temporal status is 
solely given by PNF-Propagation; 

• Actions - contains callback functions that are 
executed every time its temporal status should 
change. Its PNF status is defined by user code 
instead of PNF-Propagation. 

 
The difference from basic PNF-Networks is the 

presence of action nodes, which are placeholders for 
user-generated scripts. It is important to notice that the 
interval script engine will never change the temporal 
status of any user-generated script (action node). 
Instead, whenever a change in the network implies a 
temporal change in such action node, the engine 
executes the callback function that is correspondent to 
the expected change on the temporal status. 
 

• Start - callback that should contain the code to 
execute when the action is started. It is not 
necessary that the temporal status of the 
action to be N (now) after the execution of 
this callback; 

• Stop - must contain the code to be executed 
when the action should be stopped. Similarly, 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

147



does not guarantee that the status is P (past) 
after its execution; 

• State - function that should return the actual 
current temporal status of the action node. 
This status is the combination of the values P, 
N and F, as any other node in a PNF-Network. 

 
Deciding what “start” and “stop” functions are 

executed, given the current state of the nodes in the 
network, does the control of the activation of action 
nodes. The steps to be taken in the heuristic proposed 
to this task in [ref] are: 
 

1. Determination of the current states of all the 
nodes of the network; 

2. PNF-Propagation of constraints to find the 
restricted desired states; 

3. Thinning of the solution: the result of the last 
step can possibly contain more than one 
solution for the network, so a heuristic is 
used. For each action node, its desired state is 
computed as the intersection of its current 
state and the result of the PNF-Propagation. If 
the result of this intersection is empty, the 
state computed by the PNF-Propagation is 
used; 

4. Execution of the necessary callback functions 
based on the thinning process, for all action 
nodes. 

 
Table 1 describes what callback function to 

execute, given current and desired temporal states, 
where the later is the result of the thinning process. The 
first column denotes the presence of the given state, 
meaning that the current state of the action only needs 
to contain the denoted value. With the thinning 
process, for each action node, the heuristic actually 
tries not to call either the "start" or the "stop" 
callbacks, unless its actual current state contradicts the 
result of the PNF-Propagation. 
 

Table 1 - Conditions for the activation of callbacks 
Current Desired Callback 

F N,PN Start 
N P Stop 
F P Stop 

 
 
4. PNF Extensions 
 
In this section we explain our main contributions to the 
existing framework: the template-based definition 
language and the hierarchical PNF-Propagation 
algorithm, which reduces the complexity for large 
networks. 
 
4.1 Template-based definition language 
 
One possible benefit of PNF-Networks is its ability to 
represent events based on previously-defined reusable 
sub-events. However, the whole system must be 

integrated with custom real-time game/graphic engines 
that implement the virtual sensors and the actual user-
generated scripts with the callback functions. One of 
the most important features of such integration is the 
ability to represent reusable sub-events without having 
to specify the exact objects and actors that compose 
them. We developed a template system that provides 
for an easy to use method for describing and 
composing PNF-Networks in XML. The code below 
shows a simple network of two nodes and the causality 
constraints between them. 
 
<network> 
    <node name="cause" type="sensor" > 
        <scene object="box" target="player" type="collision" /> 
    </node> 
    <node name="consequence" /> 
    <constraint origin="cause" destination="consequence"  

type="b,m" /> 
</network> 
Code 2 - Simple PNF-Network in XML 
 

This XML sample shows the basic language to 
describe a network of PNF-Constraints. The <node> 
tag is used to describe all the intervals, with a required 
name attribute to define a label for each one. Besides 
being an id for the parsing and template mechanisms, 
this attribute is used in real-time to implement a query 
system for the temporal state of any node. The type 
attribute is optional for passive nodes and obligatory 
for actions, and sensors. 

 
The sensor node type needs a special <scene> tag 

to define the attributes that specify the kind of sensor 
and the real-time objects that are subject to its 
"sensing" mechanism. Actual sensors are implemented 
by the customized graphic engines and the role of this 
XML specification is to describe its type, which can be 
collision, proximity, look or grab; and other attributes 
that are needed in real-time. For a sensor node, the 
necessary attributes are the object that should host the 
sensing mechanism and its target, which represents the 
label that another object must be marked with to 
properly activate the sensor. For instance, in the 
example above the real-time engine should host a 
collision sensor on the object named "box" and detect 
the collisions with objects labeled "player". By 
definition, sensor nodes are marked with the temporal 
state PF (past or future) when are not activated; and N 
(now) when activated. 

 
The most useful features of the template system are 

its ability to reuse previously defined actions and the 
use of variables to describe the objects that compose 
them. The following XML sample shows the definition 
of a template, also showing how variables and action 
nodes are defined. 
 
<template name="pass-through"> 
    <node name="pass" /> 
    <node name="begin" type="sensor" > 
        <scene host="$1" object="$3" type="collision" /> 
    </node> 
    <node name="end" type="sensor" > 
        <scene host="$2" object="$3" type="collision" /> 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

148



    </node> 
    <constraint origin="begin" destination="pass" type="s" /> 
    <constraint origin="end" destination="pass" type="f" /> 
</template> 
Code 3 - Sample template with wild cards 
 

A template is similar to any other PNF-Network, 
but it is necessary to start with the definition of a 
passive node, normally one whose interval bounds the 
sub-network. Later on, when reusing this template to 
compose higher level structures, this passive node is 
the one to be connected by the constraints defined in 
the higher level network. The other difference is the 
inclusion of variables (marked with the $ symbol) that 
can be replaced whenever the template is re-used in 
another definition. 
 

This particular example shows a simple template 
that detects if a given object (represented by the 
variable $3) passes through two locations (respectively 
$1 and $2) in a particular order. The constraints 
guarantee that the passive node "pass" will be in the N 
(now) state as soon as the object touches the first 
sensor and in the P (past) state only after a collision 
with the second sensor (location) ceases to exist. Any 
other ordering of the events will collapse the network, 
meaning that the described event actually did not 
happen. Code 4 shows how to compose a higher level 
network by reusing previously defined templates and 
action nodes, that can be used to control automated 
scripts in the graphic engine. 
 
<network> 
    <node name="pass-instance" template="pass-through"> 
        <param name="$1" value="trigger1" /> 
        <param name="$2" value="trigger2" /> 
        <param name="$3" value="player" /> 
    </node> 
    <node name="consequence" type="action"> 
        <scene object="npc" /> 
    </node> 
    <constraint origin="pass-instance"              
       destination="consequence”  type="m" /> 
</network> 
Code 4 - Reuse of a template in a higher level network 
 

The above example defines a simple network that 
activates the script represented by the "consequence" 
node immediately after the end of the event 
represented by the "pass-instance" node, which is an 
instance of the previously defined "pass-through" 
event. The activation is guaranteed by the MEET (m) 
constraint between the two nodes. The sample also 
shows how the variables can be replaced by the actual 
values to be used by the real-time graphic engine to 
implement the sensors. The definition of action nodes, 
those that control the execution of user-created scripts, 
also needs the specification of a scene attribute that 
indicates the object that should contain the callback 
functions start and stop. In our implementation, we use 
the message passing API of the Unity3D Game Engine 
[Unity Technologies 2009] to perform this operation.  
 

When a template is instantiated, it acts as a wrapper 
for an independent sub-network. The constraints 

applied over the instanced node will be connected to 
the wrapper, instead of the internal nodes themselves. 
This wrapper acts as a barrier that detects when 
internal or external PNF-Propagations should be 
passed or not. This will happen only in the case where 
the temporal state of this wrapper changes. Figure 6 
shows the graph representation for the hierarchical 
network presented in Code 3. 
 

 
Figure 6 - hierarchical PNF-Network 

 
4.2 Hierarchical PNF Propagation 
 
The PNF-Propagation algorithm is linear on the 
number of constraints of the network; however, this 
can still be a limiting performance factor when 
considering the possibility of very large networks that 
represent complete narratives, especially with the 
control of low level virtual actors. Due to the structure 
of the most common narratives found in the literature 
of storytelling research, we decided to create the 
hierarchical PNF-Networks model, which can be 
though as a layered graph, with the highest level 
comprising a sequential or parallel plot, composed of 
nodes connected only by meet constraints. The lower 
levels of the graph can use more sophisticated PNF 
constructs, for instance to enable the control of 
multiple actors in a scene. 
 
 For instance, in the sample network of Figure 4, 
which represents an event in a plot, there is one passive 
node, the higher level "drama"; being all other nodes 
user-implemented actions. One can notice that all the 
“internal” nodes of that network are bound by the 
interval represented by the “drama” passive node. This 
pattern of using a passive node to bind all internal 
intervals is important to the definition of coherent 
hierarchical PNF-Networks. 
 

This guarantees that internal nodes of two different 
sub-networks never overlap, and PNF constraints are 
necessary only between nodes in the same level/layer. 
The wrapper node encapsulates all the links of the 
internal sub-network (actually the first passive node) 
with the external one (the higher level network). Using 
this feature, the PNF-Propagation algorithm can be 
restricted to only the sub-networks that are to be 
affected by its execution. For each wrapper node that 
connects a sub-network to its container network, the 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

149



algorithm in Code 5 is executed every time a PNF-
Propagation occurs at the container level, while Code 6 
is executed after an internal PNF-Propagation is fired. 
 
// pNode is the passive node of the internal network 
// wNode is the wrapper node that connects with the 
// external network 
if (pNode.state != wNode.state) 
{ 
    pNode.state = wNode.state; 
    pNode.propagate(); 
} 
Code 5 - blocking external PNF-Propagation 
 

Whenever an external PNF-Propagation is fired, 
this algorithm will block its execution for the internal 
network, including any sub-network on levels below. 
This provides for a barrier that will prevent 
unnecessary traversal of sub-networks that are not to 
be affected anyway. The algorithm in Code 5 is the 
same; the only difference being the direction of the 
propagation, in this case to the external network. 
 
// pNode is the passive node of the internal network 
// wNode is the wrapper node that connects with the 
// external network 
if (pNode.state != wNode.state) 
{ 
    wNode.state = pNode.state; 
    wNode.propagate(); 
} 
Code 6 - blocking internal  PNF-Propagation 
 

Simple structures like these shown here can be used 
to compose complex narratives and provide for a 
runtime engine that controls its execution. In the next 
section we will show how this extended version of the 
original PNF-Network framework relates to common 
storytelling concepts and constructs. 
 
5. Integration with storytelling 
concepts 
 
With this paper, we propose the use of the hierarchical 
PNF-Network framework to model and control some 
levels of an interactive storytelling system. In this 
section we describe how the PNF model relates to 
common concepts in storytelling research. 
 
5.1 Planning and execution with plot-based 
storytelling 
 
Several previous works have focused on the use of 
planning algorithms to generate narratives [Riedl and 
Young 2003, Charles et al. 2003, Ciarlini et al. 2005, 
Barros and Musse 2005]. When these algorithms are 
used with a plot-based approach, the output often is an 
ordered (partially or totally) set of events, composed of 
subjects, verbs and objects. There is still research to be 
done in this subject, but in this section we show a 
possible mapping of the output of a planner to a 
hierarchical PNF-Network. 
 

The generated plot can be mapped to a high-level 
PNF-Network, with each verb corresponding to a 
previously defined action, which is by itself composed 
of others, lower level, sub-actions. The subjects and 
objects of the plot sentences are the parameters that 
shall replace the variables needed by these action 
templates to be complete. For instance, the following 
story can be directly mapped to the (high level) PNF-
Network of Figure 7. The sentences are meant to 
represent a very condensed version of the movie Star 
Wars, episode IV: A new hope. 
 

1. Imperial troopers kill Luke’s uncle and aunt 
2. Luke meets Obi wan 
3. Yoda trains Luke in Jedi 
4. Luke joins the rebels 
5. Luke destroys the death star 

 
Figure 7 – Highest level of the Star Wars PNF-Network 

 
In Figure 8, we chose to represent the last event of 

the plot, the destruction of the death star, because it 
highlights some features of the PNF-Network model. 
This event is composed of several sub-actions 
performed by the rebel and imperial spaceships, and 
ends up with the final destruction of the star-like 
weapon. 

 
Figure 8 – Death star destruction PNF-Network 

 
The actions that compose this mathematical model 

for the death star destruction can be realized in 
different ordering, but will always finish with Luke's 
precise bomb drop that explodes the imperial weapon. 
The "Death Star Destruction" node is the passive 
internal interval that bounds the execution of the 
others. The inverse start (iS) constraint to the "Rebels 
Reach the Death Star" action will guarantee that the 
later will be started as soon as a higher level PNF-
Propagation changes the temporal state of the first to N 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

150



(now). The rest of the relations will bring parallel 
actions such as "Luke Flights Through the Channels" 
and a mutual exclusion between the two killing actions. 

 
For now, our system is suitable for plot-based 

stories whose sentences are based in verbs that can be 
mapped to high-level PNF defined events. There is still 
work to be done to enable runtime planning in the case 
of user intervention. This is our main research interest 
at this moment. 
 
5.2 Virtual cinematography 
 
Many previous research, and this work is no exception, 
on modeling and planning for storytelling tend to 
describe the plots as high level events, leaving room 
for the use of different techniques to enhance the 
viewer experience. One important research area in 
interactive storytelling is the use of traditional 
cinematography concepts as automated agents. 
 
 We are experimenting with two approaches for the 
integration of cinematography agents with hierarchical 
PNF-Networks: camera actions and director agents. 
With camera actions we include action nodes in our 
PNF templates so that every time that template is used 
in a story it already comes integrated with the camera 
shots (as action nodes linked to pre-defined camera 
scripts). Figure 9 shows a PNF template for the sub-
events of the drama that was analyzed in section 3, 
including camera actions that are tied to the sub-events 
with the constraint equal (E). 

 
Figure 9 - Drama event with camera actions (gray nodes) 

 
 Another option, that is more flexible than the latter 
is to establish a communication protocol with an 
independent agent that chooses the camera shots to be 
used. The general idea is to send all Start and Stop 
messages to this director agent as well. The message to 
this director agent must include a reference to the PNF 
action that received it originally, so that useful 
information can be extracted from the mathematical 
model such as the name of the action (verb that 
possibly defines the type of shot to be used) and the 
parameters that link this action to the real-time 
characters and objects on the graphic engine. Figure 10 
shows a schematic representation for this 
communication architecture. 
 

 
Figure 10 - Communication between the PNF engine and a 

director agent 
 
5.3 Flashbacks and out-of-order execution 
 
A narrative concept that helps the viewer to mind 
important events, while at the same time enhances the 
storyteller possibilities is the use of flashbacks [Bae 
and Young 2008], a replay of a part of the story 
already told/seen. The PNF-Networks original 
framework was not design with this possibility in 
mind, but the hierarchical feature of our model 
provides for partial independency of (lower level) 
events, meaning that the whole internal structure of a 
sub-network can be reset, leaving room for its (re) 
execution, possibly with a different approach from the 
director agent, highlighting the flashback timing with 
image filters or different shots. 
 
 This idea can be extended to out-order-execution if 
the first level of the network (plot) is controlled by 
another engine, which uses different decision rules to 
choose the ordering of the events. The plot events are 
now independent PNF-Networks that can be started in 
any desired order, but still benefitting from the features 
of the temporal model behind it at the lower levels. 
 
5.4 Character-based emergent storytelling 
 
Character based storytelling relies on the interaction of 
virtual actors that are agents directly driven by goals or 
assisted by some sort of planning. Creating coherent 
and interesting stories in real-time with this approach is 
still the objective of this research field, and one of the 
challenges is related to the way virtual actors perceive 
the environment. 
 
 PNF-Networks can be used with this approach to 
model and recognize the actions of all the virtual 
actors, providing for a flexible framework for the 
agents to perceive and react accordingly to its plan or 
drives. 
 
 These are some integration ideas made possible by 
Hierarchical PNF-Networks. We are still investigating 
if and how other key storytelling concepts can be used 
with this framework. 
 
 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

151



6. Conclusions and Future Work 
 
With this paper we presented the Hierarchical PNF-
Networks and its template-based definition language, 
two extensions over the original PNF-Network 
framework, a fine-grained representation for temporal 
relations between intervals that can be used to describe 
high level events such as complex human action. The 
two extensions made possible the use of PNF-
Networks to represent large sets of interdependent 
events such as interactive. The XML schema used to 
describe the networks facilitates the description of a 
library of events and actions to be used by a 
storytelling system. 
 

We are currently researching more extensions to 
Hierarchical PNF-Networks. For instance, we are 
trying to integrate planning algorithms to create and 
modify PNF-based stories in real-time. It is easy to 
adapt a current planning algorithm to only generate a 
PNF-Network that is solely composed of precedence 
relations such as Meet, but that approach would not 
make any use of the richer representation that these 
networks can bring to interactive storytelling models. 
Our goal is to create a system that can be used in multi-
user scenarios such as emergent stories in massive 
games or user-influenced plot-based narratives for 
digital-TV. 
 
References 
 
ALLEN, J. F., 1983. Maintaining Knowledge about Temporal 

Intervals. 1983. Communications of the ACM, 26 (26), 
Pages 832-843. 

 
ALLEN, J. F. AND FERGUSON, G., 1994. Actions and Events in 

Interval Temporal Logic. 1994. Journal of Logic and 
Computation, vol. 4 (5), Pages 531-579. 

 
BAE, B., AND YOUNG, R. M., 2008. A Use of Flashback and 

Foreshadowing for Surprise Arousal in Narrative Using a 
Plan-Based Approach. In: Proceedings of the 1st Joint 
International Conference on Interactive Digital 
Storytelling: Interactive Storytelling, 2008 Erfurt, 
Germany. Pages 156-167.  

 
BARROS, L. M. AND MUSSE, S. R., 2007. Planning algorithms 

for interactive storytelling. 2007. Computers in 
Entertainment (CIE), vol. 5 (1), Article No. 4.  

 
BARROS, L. M. AND MUSSE, S. R., 2005. Introducing 

narrative principles into planning-based interactive 
storytelling. In: Proceedings of the 2005 ACM SIGCHI 
International Conference on Advances in computer 
entertainment technology, 2005 Valencia, Spain. Pages 
35-42.  

 
CAVAZZA, M. AND CHARLES, F. 2005. Dialogue generation in 

character-based interactive storytelling. In: Proceedings 
of the AAAI First Annual Artificial Intelligence and 
Interactive Digital Entertainment Conference, 2005 
Marina del Rey, CA, USA 

 
CHARLES, F., IBÁÑEZ, M. L., MEAD, S. J., BISQUERRA, A. F. 

AND CAVAZZA, M. 2003. Planning formalisms and 

authoring in interactive storytelling. In: Proceedings of 
TIDSE'03: Technologies for Interactive Digital 
Storytelling and Entertainment, 2003 S. Göbel et al. eds. 
Fraunhofer IRB Verlag, Darmstadt, Germany. 

 
CIARLINI, A. E. M., POZZER, C. T., FURTADO, A. L. AND 

FEIJÓ, B. 2005. A logic-based tool for interactive 
generation and dramatization of stories. In: Proceedings 
of the 2005 ACM SIGCHI International Conference on 
Advances in computer entertainment technology, 2005 
Valencia, Spain. Pages 133-140 

 
CRAWFORD, C. 2004. Chris Crawford on Interactive 

Storytelling. New Riders Games, Indianapolis, IN. 
 
JAHALA, A., RAWLS, C. AND YOUNG, R. M. 2008. Longboard: 

A Sketch Based Intelligent Storyboarding Tool for 
Creating Machinima. In: Proceedings of the 2008 
Florida Artificial Intelligence Research Society 
Conference, 2008 Florida, USA. 

 
MEYER, T. A., 2002. Development of Computer-Actors 

within the Interval Script Paradigm. Unpublished 
Dissertation, Massey University. Available 
from:http://www.massey.ac.nz/~tameyer/research/compu
tertheatre/docs/thesis.pdf [Accessed 10 June 2009]. 

 
PINHANEZ, C. S., 1999. Representation and Recgnition of 

Action in Interactive Spaces. PhD thesis, Massachusetts 
Institute of Technology. 

 
PINHANEZ, C. S., MASE, K. AND BOBICK, A., 1998. Human 

action detection using PNF propagation of temporal 
constraints. In: Proceedings of the 1998 IEEE Computer 
Society Conference in Computer Vision and Pattern 
Recognition, June 23-25 1998 Santa Barbara, CA, USA. 
Pages 898-904.  

 
PINHANEZ, C. S., MASE, K. AND BOBICK, A., 1997. Interval 

scripts: a design paradigm for story-based interactive 
systems. In: Proceedings of the SIGCHI conference on 
Human factors in computing systems, 1997 Atlanta, 
Georgia, United States. Pages 287-294  

 
POZZER, C. T., 2005. Um Sistema para Geração, Interação e 

Visualização 3D de Histórias para TV Interativa. PhD 
thesis, Pontifícia Universidade Católica do Rio de 
Janeiro. 

 
RIEDL, M. O., ROWE, J. P. AND ELSON, D. K., 2008. Towards 

Intelligent Support of Authoring Machinima Media 
Content: Story and Visualization. In: Proceedings of the 
2nd international conference on intelligent technologies 
for interactive entertainment, 2008 Cancun, Mexico. 

 
RIEDL, M. O. AND YOUNG, R. M., 2003. Character-focused 

narrative generation for execution in virtual worlds. In: 
Proceedings of ICVS 2003: International Conference on 
Virtual Storytelling, 2003 Toulouse, France. Pages 47-56 

 
UNITY TECHNOLOGIES. 2009. Unity3D Game Engine 

[software, game development tool] Available from: 
www.unity3d.com [Accessed 01 January 2009]. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

152



OpenMoCap: An Open Source Software for Optical Motion Capture

David Lunardi Flam
Thatyene Louise Alves de Souza Ramos

Daniel Pacheco de Queiroz
Arnaldo de Albuquerque Aráujo

Universidade Federal de Minas Gerais

Jõao Victor Boechat Gomide
Universidade FUMEC

Abstract

Nowadays motion capture is a valuable technique for virtual char-
acter animation in digital movies and games due to the high degree
of realism that can be achieved. Unfortunately, most of the systems
currently available to perform that task are expensive and propri-
etary. In this work, an open source application for optical motion
capture is developed based on digital image analysis techniques.
The steps of initialization, tracking, reconstruction and output are
all accomplished by the built OpenMoCap software. The defined
architecture is designed for real time motion recording and it is
flexible, allowing the addition of new optimized modules for spe-
cific parts of the capture pipeline, taking advantage of the existing
ones. Experiments with two cameras with infrared LEDs and re-
flexive markers were carried out and the created methodology was
assessed. Although not having the same robustness and precision
of the compared commercial solution, this work can do simple ani-
mations and it serves as an incentive for research in the area.

Keywords:: Motion Capture, Software Development, Stereo Vi-
sion, Digital Image Processing, Computer Graphics

Author’s Contact:

{david,pacheco,thatyene,arnaldo}@dcc.ufmg.br
jvbg@hotmail.com

1 Introduction

Analysis and motion capture (MoCap) of human movement have
been growing consistently over the last decade. Many researchers
from different areas are now working with it because of the wide
range of possible applications. Following a classification scheme
presented in [Moeslund et al. 2006] it is possible to separate
those applications into three groups based on their main objective:
surveillance, control and analysis.

Surveillance applications focus on examining motion of a person as
a sole object or as a group of objects in case of people agglomera-
tion. Determining the flux of individuals in a mall in order to dis-
cover some pattern to optimize shops locations is one example. An-
other one is a model that describes movement behavior in a prison
for security reasons.

Control applications interpret motion from an actor and transform
it into a sequence of operations. Movies like King Kong (2005) and
Polar Express (2004) use actors movements to operate characters.
Other instances are animated characters from 3D computer games,
like FX Fighter, Fifa and NBA Live series.

Analysis applications generally dedicate on studying a person as
a set of objects. Some examples include improving athletes tech-
niques, studying clinical cases and defining elder people body be-
havior.

Motion capture is a powerful technique for animating virtual char-
acters and controlling them. It creates smooth movements, giving
sensation of real ones. In addition, if used correctly, it can speed up
animation, when compared to traditional methods like key-frame
animation.

Currently, in Brazil, there are just two organizations that have robust
motion capture systems for character animation: Rede Globo and
RPM Produtora Digital. Every piece of hardware and software from

those systems is imported and expensive, costing tens of thousand
of dollars. Usually, game companies in Brazil rent them or buy
imported MoCap data.

To our knowledge there are only two national solutions called
DVIDEOW [Figueroa et al. 2003] and BraTrack [Pinto et al. 2008].
The first one is widely used for gait analysis, but it is post-
processed. In other words, it does not support real time preview-
ing and it can’t be used to control operations. Besides that, its
source code is closed and apparently it’s not actively being devel-
oped anymore (homepage of the project [Figueroa 2009] is down
at the present time). BraTrack, in its turn, can track objects in real
time, but it is not freely available.

In order to acquire expertise and reduce costs, we present the devel-
opment of an open source optical motion capture software for real
time uses in this work. It is a standalone solution, that is, every task
needed to acquire MoCap data is implemented by the built applica-
tion. Further, it is modular and flexible, allowing new modules to
be easily integrated and optimized, taking advantage of the existing
processing chain. Conclusively, it has a simple graphical interface
and it is ready to grow by receiving new contributions.

This paper is organized as follows: related work is introduced in
the next section, including some history and commercial and aca-
demic approaches for optical motion capture. Our methodology is
described in depth in Section 3. The software architecture, cho-
sen programming language and libraries are presented in Section
4. Designed experiments and their results are shown in Section 5.
Finally, some conclusions and future work are drawn in Section 6.

2 Related Work

The first process considered to be MoCap was done in 1872. Ead-
weard Muybridge took several pictures of a horse while galloping
with many cameras to settle a bet. The question he answered with
that experiment was if a horse would take all his feet of the ground
while galloping. Indeed, the horse does take all his feet of the
ground, see Figure 1. After that, many other analog processes ap-
peared [Menache 2000], but they were all 2D.

Figure 1: Muybridge Horse Pictures

Almost a hundred years later, with the advent of computers, digital
3D motion capture began with a commercial called Brilliance in
1985, during Superbowl. In order to produce it, several VAX 11
machines were borrowed across USA for two weeks to render 30
seconds of video. In 1995, warriors characters from the pc game Fx

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

153



Fighter were animated using digital MoCap. Until the present days,
several other processes were developed and technologies created to
record motion, most of them are detailed in [Kitagawa and Windsor
2008].

Now, we briefly describe three commercial systems that represent
the current state-of-the-art in professional optical motion capture.
They all cost more than 50 thousand dollars [Inition 2008] and are
tightly integrated with proprietary hardware and software. The first
one, from Vicon [Vicon Motion Systems 2008], uses passive mark-
ers. It is composed by eight T160 cameras, capable of capturing
movement in real time at 120Hz with 16 megapixels. Further, it
can capture at faster frame rates if camera resolution is reduced.

The second one is called IMPULSE, uses active markers and is
made by [PhaseSpace Inc. 2008]. It has almost the same capa-
bilities of Vicon’s solution, recording motion at 120Hz with 16
megapixels. The last one is a system that doesn’t use markers,
called STAGE, made by [Stage 2009]. It is also capable of cap-
turing data at 120Hz, but its estimated precision is equivalent to a 2
megapixels marker system.

While not as robust and precise as commercial systems presented
earlier, many papers were published regarding optical motion cap-
ture systems. We review and discuss here some of the most recent
and relevant.

[Figueroa et al. 2003] report the construction of a brazilian motion
capture software for gait analysis, athletes enhancement and other
application in the biomedical area. It focuses on tracking markers
using a user configurable chain of algorithms based on mathemati-
cal morphology, pattern recognition and a Kalman filter. The soft-
ware also does 3D reconstruction using calibrated cameras and DLT
(Direct Linear Transform), but authors don’t show experiments for
that. Finally, it is post-processed, video sequences must first be
recorded for each camera present in the system to obtain results.

[Uchinoumi et al. 2004] perform motion capture without using
markers, using just silhouettes of actors iluminated by four cameras,
each connected to a computer in a distributed system. Information
is processed by four computers that send data to a server through a
local network. The server then is responsible for combining every
silhouette processed by each client so that 3D reconstruction can
be carried out. Authors say that is possible to capture an object at
almost 11 frames per second.

[Castro et al. 2006] describe the development of a motion capture
system based on passive markers, focused on gait analysis, called
SOMCAD3D. It is also post-processed as [Figueroa et al. 2003].
DLT is likewise used for camera calibration and 3D reconstruction.
Tracking is done by curve interpolation. In addition, in this work,
system precision and accuracy is compared with some other sys-
tems specially built for gait analysis.

[Raskar et al. 2007] present a high performance motion capture
system with few restrictions regarding the recording environment.
It does not use cameras, but instead photo-sensors acting as ac-
tive markers. They are capable of determining their own posi-
tion and orientation in space through binary patterns emitted by
LEDs placed around the capture volume. Since it has no cameras,
expensive hardware is not required and can record movement at
rates of 480Hz. Although being composed of reduced cost hard-
ware, their system’s assembly and configuration require off-the-
shelf electronic and optic components. Finally, it is not possible
to capture faces due to the size of the markers.

[Pinto et al. 2008] present the first commercial low-cost marker-
based optical tracking system developed in South America. The
system is composed by two off-the-shelf USB cameras with
custom-made electronic boards with infrared LEDs and reflexive
markers. Authors claim that it is possible to capture movement at
60Hz.

Academic systems concentrate on proposing new techniques
whereas commercial ones usually advance some already know, ma-
ture processing chains as industrial secrets. It does not mean that
the reproduction of the papers described here is simple or even pos-
sible, principally because some important implementation details

are omitted and none of them make their source code easily avail-
able.

OpenMoCap is the first step of a bigger project to build a complete
and robust optical motion capture system. The main application of
the developed solution is the generation of realistic data in real time
to animate and control virtual characters. It is the first work that we
have knowledge in Brazil of an open source motion capture system
created to fulfill that purpose.

3 Methodology

Motion capture can be done using cameras and special selected
points. The whole process is complex but can be divided in basi-
cally four steps. The first one,initialization, regularly is done only
in the beginning of the process and relates special given points from
a scene with points from a previous defined structure. The second
task is calledtracking, that is, monitor the position of those special
points over a period of time. The third one isreconstructionor pose
estimation. Finally, the last one isoutputand consists in outputting
data in some special format.

Specifically, when working with 3D models, we must find the cor-
respondence between those special points from each present camera
image in the system and apply a triangulation algorithm to obtain
their respective 3D coordinates. Obtaining those special points is
possible using markers or other local features and heuristics, rel-
ative regions positions and skin texture and color. However, the
simplest way to retrieve those special defined points is by using
markers. Markers are special objects attached to a suit wore by
an actor. Also, it is possible to place them directly over the actors
body.

Markers can be considered active or passive, depending on their na-
ture. A clear distinction between those classes is that active markers
react to external impulses whereas passive markers do not. Further-
more, active markers necessarily have some kind of embedded pro-
cessing and communication through different kind of sensors and
hardware. On the other side, passive markers just have some spe-
cial properties, like reflecting infrared light. Summarizing, passive
markers only help segmenting a region of interest while active ones
provide more information about themselves, like their own centroid
position (special point) and their identity (semantic relation with the
chosen model).

3.1 Initialization

3.1.1 POI Extraction

In order to execute this first step, we must extract some special im-
age points called Points Of Interest (POIs). Each marker in the
scene corresponds to a POI in the image. The extraction of those
points is accomplished by applying a binary thresholding algorithm.
The threshold parameter can be set to values between 0 and 255
(possible intensity values of a pixel in a gray scale image). At first,
this procedure is enough to separate POIs from the background.

However, our goal is to separate uniquely detected POIs and also
eliminate noise (high intensity parts of the image not related to
markers). To perform this, a component connected algorithm with
6-adjacency is applied [Umbaugh 2005]. In practice, the algorithm
suffered some modifications to increase its efficiency and reduce
noise.

Thresholding is executed in parallel with pixel labelling, so that the
image does not have to be looped through twice. As soon as each
image element is analyzed, it is marked as being background or ob-
ject, allowing the connected component algorithm to continue its
traditional process. Than, the calculation of the connected com-
ponents area takes place immediately, enabling the removal of the
ones that are probably not markers. This removal procedure is
based on user defined limits of minimum and maximum areas. Re-
maining objects have their centroid calculated. Figure 2 shows the
process.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

154



Figure 2: POIs Detection

3.1.2 Semantic Selection

The next step of initialization is to associate semantics to detected
POIs. This is necessary to uniquely define each object with a simple
name, like human body parts. OpenMoCap has a skeleton importer
compatible with structures written in Biovision Hierarchy (BVH)
format [Menache 2000]. An alternative way of semantic input is
a simple text file, containing in each line a name. Finally, seman-
tic attribution is carried out manually, in a simple manner, by the
graphic interface, shown in Figure 3.

Figure 3: POIs Semantic Selection

3.1.3 Camera Parameters Estimation

The last step of initialization is the camera parameters estimation.
Inspired on [de la Fraga and Vite Silva 2008], our approach to cam-
era parameters estimation is based on modeling this task as an opti-
mization problem, solved by differential evolution. The basic idea
is to select some camera parameters as variables and define a cost
function over them, using semantic information and POI localiza-
tion, available from previously described steps. Final result is an
estimated projection matrix for each camera, that minimizes that
cost function.

Currently, OpenMoCap uses only two identical high quality cam-
eras. Therefore, we ignore lens distortions and chromatic aberra-
tions, simplifying the problem. Hence, the chosen parameters of
each camera to be variables of the optimization problem are: fo-
cal lengthfc, rotation vectorRc = [rxc , r

y

c , r
z

c ] and the translation
vectorTc = [txc , t

y

c , t
z

c ].

Variables have their lower and upper limits defined by the user,
through the camera parameters estimation interface shown in Figure
4. The first set of parameters controls the differential evolution al-
gorithm, the number of individuals, the number of generations, the
differential variation and the recombination constant can be modi-
fied.

The second set of parameters effectively defines the lower and up-
per limits. The Translation Range Unit field defines the maximum
translation unit for each coordinate axis, from the first camera to the
second. The Max Rotation field determines the maximum rotation

Figure 4: Camera Parameters Estimation Interface

in degrees (minimum rotation is always 0). Finally, the Min Fo-
cal Length and Max Focal Length fields specify the minimum and
maximum focal length, respectively, in pixels.

After the definition of the variables and their limits, it is necessary
to define the cost function. This function must measure the quality
of an estimated solution. Specifically, its inputs are an individual to
be evaluated and a set of ordered pairs. Each pair is composed by
two POIs with equal semantic and their own centroid coordinates.

Begining with the variables from the target individual of evalua-
tion, two projections matrices are constructed. They represent the
estimated orientation and position of the two cameras. Through
these matrices and a pair of correspondent POIs, and using triangu-
lation solved by SVD [Hartley and Sturm 1997], we can project a
3D point. Afterwards, this 3D point is reprojected into the image
planes. The sum of euclidean distances between those reprojected
points and the real centroids of the ordered pair, is called reprojec-
tion error.

The total cost of an individual (cost of a possible solution) is ob-
tained by the sum of reprojection errors of all POIs ordered pairs.
The smaller the cost the better is the solution. Therefore, our goal
is to find the matrices that minimize this global reprojection error.

After this initialization phase, the software is in a valid state, with
all data necessary to begin motion capture.

3.2 Tracking

Tracking is the next phase, it is responsible for maintaining POIs’
semantics through time. It tries to be as robust as possible regard-
ing observed movement trajectories. This helps the motion capture
software to continue in its correct initialization state. Lastly, it is
one of the continuous phases of the capture workflow, carried out
in every frame.

Tracking starts as soon as a POI receives a semantic, not only when
the user requests to begin a motion capture recording section. This
is possible because processing is done locally, i.e. only informa-
tion from the last frame of the same camera is used to define the
semantic of extracted POIs in a new frame.

The alpha-beta estimator [Yoo and Kim 2003] is used to appraise
POIs’ next positions. Figure 5 illustrates how tracking is accom-
plished. Images with timestamps represent occurred POIs’ move-
ments in the scene. While the ones without timestamps represent
results obtained by the implemented tracker.

When a new frame is available, the estimated localization of a POI
is matched with one of the new extracted centroids. This matching
refreshes POI’s position with the centroid that has the smaller eu-
clidean distance from the estimated place. Nevertheless, the user
can set a maximum allowed distance between these two points, ex-
hibited in Figure 5 by the dotted circles. If no new detected centroid
is inside that search region, the new POI’s position will be the one
predicted by the estimator.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

155



Figure 5: Sample Tracking Diagram

3.3 Reconstruction

3D reconstruction is carried out by linear-eigen triangulation [Hart-
ley and Sturm 1997]. This process is responsible for calculating
tridimensional POIs coordinates, through their projections on the
image planes and their respectives camera matrices. Like the previ-
ously phase, this one is continuous, executed frame by frame. But,
on the contrary of tracking, it is not local, it is global. In other
words, information from all images acquired by the cameras at the
same time must be gathered to achieve the desired result.

As described earlier in the section of camera parameters estimation,
our method does not use tridimensional points with known metric
coordinates to estimate camera projection matrices, it is not like
a traditional calibration algorithm. Therefore, the final result ob-
tained by triangulation is defined up to a scale factor. Despite this,
relative distances between points from the captured structure are
maintained. This is often enough to some simple animations and
characters control.

3.4 Output

Transforming acquired data by triangulation into usable informa-
tion is the last necessary phase to complete the motion capture
workflow. Basically it runs only once, but it is continuously re-
freshed after each performed triangulation. In our approach, an
output file is generated only after an user requests to stop a motion
capture recording section.

There are several types of standard MoCap files [Kitagawa and
Windsor 2008]. Fundamentally, they can be classified in two cate-
gories: hierarchical and translational. Hierarchical ones contain a
defined structure with bones, joints and their relations. Their mo-
tion part consists of describing movement as relative rotations, be-
ginning with the skeleton center of mass position.

The other way to represent MoCap data is by describing motion as
global translations, without having to define a skeleton. This format
is much simpler than the hierarchical one. Since our reconstruction
phase produces just point clouds with associated semantic, our soft-
ware exports data in a translational standard called TRC, developed
by [Motion Analysis Corporation 2009]. Figure 6 shows a fragment
of a sample file generated by OpenMoCap.

Figure 6: TRC Sample File

The output file is basically divided in two parts, header and data. In
the first, we have information about the generated file, the amount
of data acquired in a capture recording section per second, the
amount of images obtained per second by the cameras, the total
number of processed frames, the total number of markers and the
used measurement unit. Specifically, this last parameter is set to
millimeter, although it has no meaning, since 3D points are recov-
ered without defined scale. The last information in this first part is
the title of the captured data columns and POIs’ semantics.

The second part of the file is usually composed by many lines of
POIs’ 3D coordinates, organized according to the header previously
described. Each line has the index of the frame which the coordi-
nates were calculated and respective instant of time. Finally, al-
though it is a simple format, it is natively imported (without plugin
or scripts) by the 3ds Max software [Autodesk 2009].

4 OpenMoCap

OpenMoCap was built trying to employ most of the good software
construction practices described in [Kernighan and Pike 1999] and
[McConnell 2004]. Therefore, many architecture and implemen-
tation decisions were made to create a high quality, flexible and
extensible code.

Figure 7 illustrates the defined architecture by a modules diagram.
The separation of modules by threads was done to take advantage
of the tendency of modern processors to have more cores. Further,
tasks executed in real time such as POI detection, tracking, triangu-
lation and visualization could be made parallel.

Figure 7: OpenMoCap Architecture

The main flow of execution is composed by the application core
and the main user interface. MoCap core is responsible for initial-
izing correctly every other flow of execution and their associated
modules. Furthermore, it acts as a central information repository
keeping track of what is the configuration of the connected cam-
eras, which algorithms are available to perform specific parts of the
motion capture workflow and what kind of object will be captured
(available POI semantics).

A screenshot of the main user interface is shown in Figure 8. This
graphical interface is responsible for showing captured data and for
receiving and processing user requests, calling specific functions
from the existing controllers. Basically, there are four components
that interact with users within the software: the menu, the status
bar, camera windows and visualization window.

The menu allows the start and the end of a motion capture recording
section. It also informs total capture time and the algorithms being
used. The status bar shows the resolution and the frame rate of the
cameras being used.

The camera windows display acquired images for each video input
device connected to the computer and allow the semantic selection

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

156



Figure 8: OpenMoCap Screenshot

for the detected POIs. The visualization window displays a pre-
view in real time of the motion that is being recorded through a
dedicated thread. The Multiple Document Interface (MDI) model
was adopted to provide a common and flexible space for all those
windows.

Each camera window is processed exclusively by a thread, coor-
dinated by a video controller module. Each Video Controller has
an instance of a camera, a POI detection algorithm and a tracking
algorithm that are executed sequentially. In Figure 7 this is repre-
sented by the modules Abstract Camera, Abstract POI Detector and
Abstract Tracker. They define a common and generic interface for
the cameras and the 2D processing algorithms cited earlier.

This concept of abstract modules is very important to ensure the
software extensibility, one of the goals of this work. If a new cam-
era is to be used and it is not compatible with the current implemen-
tation, just some specific methods need to be implemented (like ob-
taining frames and changing resolution) following the pattern of the
abstract camera module to take advantage of the existing processing
chain. Another beneficial example is the possibility to substitute the
POI detection algorithm with one based on body parts recognition
instead of regions intensity. In other words, transform the system
into one without markers.

The remaining flow of execution in Figure 7 that has not been de-
scribed yet is the one composed by the capture controller module.
It is the leading contributor for the correct software operation. Ef-
fectively, it executes a motion capture recording section, managing
and processing data produced by the video controllers, feeding and
updating the visualization module. Based on the same principle of
abstract modules, the capture controller has an instance of a camera
parameters estimation algorithm (Abstract Calibrator), an instance
of a reconstruction algorithm (Abstract Reconstructor) and an in-
stance of an output algorithm (Abstract Output Writer).

Until now we have discussed higher level architecture decisions,
related chiefly with the concepts of abstraction, generalization, sep-
aration of interests and incremental development. In addition to it,
some lower level decisions were also made to guarantee profit from
existing tools and to obtain high performance.

Given the nature of the built application, an efficient and mature
computer vision library was specially usefull for its construction,
OpenCV. [Intel Corporation 2009] made it to demonstrate its pro-
cessors performance. It is written in C++ and it’s maintained nowa-
days by [Willow Garage 2009].

Unfortunately, the existing modules that support cameras in
OpenCV are not robust for more than two of those devices and
were not developed with object-oriented concepts in mind. Since
we want our software to grow and solidly support multiple cameras,
videoInput library [Watson 2009] was integrated. Theoretically, it
supports up to 20 cameras and is compatible with every video input
device that provide a DirectShow interface [Microsoft Corporation
2009].

Regrettably, it was verified that the DirectShow interface provided
by the Optitrack FLEX:V100 cameras (used in our experiments)

was only able to support one device at a time. For this reason we
implemented two new methods in a concrete class for these types
of cameras using Optitrack SDK. The software worked flawlessly
after this tiny modification, demonstrating in practice the power of
the designed architecture.

The graphical interface was entirely built using Qt library [Trolltech
2009]. It is simple, has an open source license and is portable to
many operating systems. In addition it provides a easy way to use
OpenGL for fast 2D or 3D graphics.

Currently, OpenMoCap only runs in Windows [Microsoft Corpora-
tion 2009] because included camera implementations are only sup-
ported in this operating system. Besides that, threads were imple-
mented using Win32 API, because Qt threads are slow for our kind
of use. Future versions of this software may support other operating
systems just by creating concrete classes for cameras and threads,
once they were all designed as abstract modules and the rest of the
code is portable.

5 Experiments

In this section we present the designed experiments to assess our
software and the created motion capture workflow. Furthermore,
we discuss their results qualitatively and quantitatively, whenever
possible.

In order to obtain quantitative results, we compared our solution
with a commercial optical motion capture system made by Natural-
Point [OptiTrack 2008]. Tracking Tools 2.0 can output data in a raw
point cloud format and also can display information about tracked
2D POIs, making it a great choice for our analysis. Therefore, we
considered its produced data as ground truth.

All experiments were carried out with the same computer, config-
ured with a Intel Core 2 Quad Q6600 processor, 4GB of RAM and a
Geforce 8800 GTX. Further, we used the same cameras (OptiTrack
FLEX:V100) for both programs. Those devices have a 480p resolu-
tion and are capable of obtaining frames at 100Hz. They also have
IR LEDs attached and a IR filter that helps POI detection. Finally,
identical passive reflexive markers were employed.

5.1 Precision and Stability of 2D Centroids

The main goal of this first experiment is to verify our POI detection
algorithm in a static situation. We compare our software results
directly with the ones obtained from Tracking Tools, which uses
special hardware inside the camera to perform that task. We con-
figured both approaches with the same parameters values shown in
Table 1.

Table 1: POIs Detection Configuration

Parameter Value

Resolution 640 x 480pixels
Processing Speed 25 frames per second
Intensity Threshold 230
Minimum Area 0,005% of the Image
Maximum Area 0,400% of the Image

A marker was fixed in front of one camera supported by a tripod to
make the scene as static as possible. Figure 9 exhibits two graphs
showing noise in detected POI coordinates during 50 frames by
both approaches.

We applied the normality test of Shapiro-Wilk [Boslaugh and Wat-
ters 2008] to a sample of 1000 frames, trying to characterize the
generated noise. The result was negative, meaning it is not a gaus-
sian noise. Therefore we analyzed this larger sample using order
statistics displayed in Table 2.

The values presented in Table 2 imply that the difference between
OpenMoCap and Tracking Tools is very small when detecting POI

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

157



Figure 9: X Coordinates from a Static POI Obtained by OpenMo-
Cap and Tracking Tools

Table 2: Comparative Order Statistics for 2D Centroid Detection

in subpixels OpenMoCap Tracking Tools

5th Percentile of X 133,164 133,136
Median of X 133,167 133,167
95th Percentile of X 133,201 133,201
5th Percentile of Y 352,826 352,826
Median of Y 352,838 352,844
95th Percentile of Y 352,906 352,856

centroids, from the order of hundredths of pixels. Finally, the cal-
culated percentiles suggest that OpenMoCap has less noise than
Tracking Tools in X coordinate, but more noise in Y coordinate.

5.2 Tracking

We evaluated our tracking module by comparing trajectories. The
chosen movement for this analysis was from a simple pendulum
because its ideal path can easily be described by an arc of a circum-
ference.

OpenMocap and Tracking Tools were configured just like the first
experiment, as shown in Table 1. The only difference was the cap-
ture speed, in this experiment 50Hz. In addition, alpha and beta
values from our tracker were set to 1,0 and 0,8, respectively.

Due to the difficulty of performing the pendulum movement exactly
in a plane parallel to the camera’s image one, several periods were
captured alternating both approaches. Since we consider measures
from Tracking Tools our ground truth, we fitted a curve to its re-
sults. Figure 10 shows the fitted trajectory and one random period
acquired by OpenMoCap.

Two important conclusions can be taken based on this graph. The
first one is qualitative, regarding the quality of the motion captured
by OpenMoCap. The obtained trajectory is exactly the one ex-
pected from a simple pendulum. Slow speed on extremities and
faster ones while getting closer to the center. Besides that, the
movement is also symmetrical.

The second observation is quantitative and it is related to the exist-
ing displacement between detected OpenMoCap centroids and the
places that they should appear (points belonging to the fitted curve).
Table 3 summarizes this displacement error. Considering that there
is friction and the measures could not be obtained simultaneously,
those values let us believe that our tracker perfoms like the com-
mercial solution.

5.3 Camera Parameters Estimation

Empirically, it was verified that the implemented algorithm in this
work for estimation of camera parameters only works well in situa-
tions where the two used cameras are almost in the same plane. In
other words, when there is only a small rotation between them.

Figure 10: Tracking Tools Fitted Trajectory and OpenMoCap Sam-
ple Trajectory

Table 3: Displacement Error

Error Values (pixels)

Minimum e Maximum 0,004 e 0,254
Median 0,087
85th Percentile 0,125

This happens because the cost function needs many points corre-
spondence to be discriminant. Therefore, when using just a small
number of them, the obtained solution is a local minimum. Fu-
ture work includes recording points correspondence for a few sec-
onds from a scene in order to obtain more projections relations.
Finally, the number of estimated camera parameters could be in-
creased, aiming to achieve a better representation of a real camera.

5.4 3D Structure

A direct comparison between 3D coordinates from a structure re-
covered with OpenMoCap and with Tracking Tools is not possible.
The main reason for this is that in our approach we do not have a
real scale factor while the commercial approach has.

Despite such difficulty, this work proposes a way to evaluate
the quality of the reconstructed structure by comparing distances.
This is valid because a point can uniquely be defined in a 3D
space through the intersection of four spheres, with trilateration
[Doukhnitch et al. 2008].

Figure 11 shows different views of the chosen scene containing a
seven marker structure. Two markers on the top of the largest box,
two over the black cube and three over a ”L” shaped object.

The scene was kept static and was captured by the two programs.
The only difference in the starting conditions was that the commer-
cial solution used a third camera (Tracking Tools does not allow less
that three cameras for 3D capture) and was calibrated. Our software
used just two cameras and the seven points correspondence avail-
able in the scene. Figure 12 compares qualitatively the structure
obtained by both applications.

Tables 4 and 5 show the calculated euclidean distance between
points in the structure recovered by Tracking Tools (in meters) and
OpenMoCap.

Considering that both structures are similar and the trilateration
principles cited earlier, there must be a multiplicative factor that
approximates those distances. Table 6 exhibits the normalized ra-
tios. The lower the dispersion of this multiplicative factor, the better
is the quality of the reconstructed structure.

The median of these samples is 0,658. Taking into account only the
first and the third quartiles of them, 0,524 and 0,702, respectively,

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

158



Figure 11: Scene with 3D Marker Structure

Figure 12: 3D Structure Comparison

Table 4: Euclidean Distance Between Points - Tracking Tools

1 2 3 4 5 6 7
1 0.075 0.561 0.590 0.498 0.448 0.421
2 0.530 0.557 0.521 0.482 0.440
3 0.313 0.378 0.518 0.435
4 0.510 0.474 0.370
5 0.281 0.283
6 0.106

Table 5: Euclidean Distance Between Points - OpenMoCap

1 2 3 4 5 6 7
1 0,380 2,876 4,162 2,571 3,064 2,883
2 2,708 4,028 2,677 3,192 2,947
3 3,142 1,986 3,297 2,875
4 4,069 2,668 2,176
5 2,685 2,606
6 0,576

Table 6: Multiplicative Factor Between Distances from OpenMo-
Cap and Tracking Tools

1 2 3 4 5 6 7
1 0,504 0,510 0,702 0,514 0,681 0,682
2 0,508 0,719 0,512 0,659 0,668
3 1,000 0,524 0,634 0,658
4 0,794 0,561 0,585
5 0,951 0,916
6 0,540

the maximum difference from the median is 0,134. Therefore the
maximum error in this piece of data is around 20%, using Tracking
Tools as ground truth. This should be reasonable given our software
starting conditions.

5.5 Output and 3D Movement

Even with all limitations of this work, it was possible to capture
simple movements from a person with markers in real time at 50Hz.
The figure in the first page of this paper shows a key frame of the
produced video. The complete video sequence can be downloaded
at [OpenMoCap 2009].

5.6 Processing Time

A question that must be answered in this work is if the implemented
software architecture is able to record movement in real time. In
other words, which the maximum attainable frame rate with the
built workflow is. Figure 13 is an area plot that shows the con-
tribution of each step involved in the processing chain to the to-
tal processing time for a series of 175 frames. Those frames were
specially chosen because of the highest processing peaks observed
while recording movement.

Figure 13: Area Plot of Total Processing Time in OpenMoCap

An immediate conclusion of the chart shown in Figure 13 is that
almost all processing time is consumed by POI detection. The other
steps correspond to minimal portions of the total effort required to
record movement. This is why many commercial systems often
implement POI detection in hardware.

Another important observation about Figure 13 is regarding pro-
cessing peaks. The main reason for their occurrence is shared sys-
tem resources. Processing peaks effectively determine how fast it is
possible to record movement, depending on the final use of data. If
it is acceptable to lose data from a frame and interpolate trajectories
to fix that situation, our software can record movement at 50Hz. On
the contrary, if it is not possible to use interpolation, our software is
able to record movement at 25Hz.

There is still one contribution of this work that needs to be assessed,
the multithreaded architecture. In order to evaluate it, a scene with
20 markers was observed by a variable number of cameras. Figure
14 is a boxplot of the number of cameras used by respective times
spent by our software while detecting POIs (most time consuming
task performed by our software).

Boxes on the graph represent the intervals between the first and the
third quartiles of the samples, i.e. where 50% of obtained measures
are located. The larger the number of cameras connected to our
software the bigger the boxes are, meaning more data dispersion
and less reliability. This is expected and it happens because the
operating system shares hardware resources.

Finally, the last interesting conclusion about Figure 14 is related to
processing times averages, symbolized by the small squares. Until
the fourth camera, only a increase of two milliseconds is perceived
on each average. This is much less than the time required to exe-
cute POI detection by just one camera, which is approximately six
milliseconds. Therefore our multithreaded architecture is validated.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

159



Figure 14: Boxplot of POI Detection Processing Time by Number
of Cameras

6 Conclusion

In this work, we constructed a real time optical motion capture sys-
tem from the beginning. The developed software for acquisition and
interpretation of data has an open source code. It is a standalone so-
lution, as OpenMoCap includes all the components to process the
signal, and its architecture is flexible and extensible as it is possible
to modify and add specific modules to improve the workflow. In
this way, extensions to allow markless motion capture or to change
the camera set can be easily implemented.

This work is part of a project to develop an efficient motion capture
system. With this open source system we are making an effort to
construct a robust and cheap solution to supply the need for mocap
data in character animation in Brazil and in other places where it is
not widely used for economical and absence of expertise reasons.

The experimental results show that although it is not a very pre-
cise and robust system yet, simple animations can be done with
OpenMoCap. Several improvement ideas came up along the devel-
opment of this software. Unfortunatelly, they haven’t been imple-
mented yet due to the lack of time and resources available. As a
suggestion to continue this project some of these improvements are
listed bellow.

∙ Define new experiments to better characterize our software.

∙ Extend OpenMoCap to use more and generic cameras.

∙ Amend our camera parameters estimation process in order to
obtain real scale factor and better precision, allowing facial
motion capture.

∙ Improve our software tracker.

∙ Perform automatic model initialization.

∙ Develop POI detection using GPU or distribute processing
across a local network with cheap computer nodes.

∙ Produce output in a hierarchical format, like BVHBiovision
Hierarchy.

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvi-
mento Cient́ıfico e Tecnoĺogico (CNPq) and Fundação de Amparo
à Pesquisa do Estado de Minas Gerais (FAPEMIG).

References

AUTODESK, 2009. Autodesk - 2d and 3d design and engi-
neering software for architecture, manufacturing, and digital
entertainment. This is an eletronic document available at:
http://www.autodesk.com. Last visited on: May 10, 2009.

BOSLAUGH, S., AND WATTERS, D. P. A. 2008. Statistics in a
nutshell. O’Reilly & Associates, Inc., Sebastopol, CA, USA.

CASTRO, J., MEDINA-CARNICER, R., AND GALISTEO, A. M.
2006. Design and evaluation of a new three-dimensional motion
capture system based on video.Gait and Posture 24, 1, 126 –
129. http://dx.doi.org/10.1016/j.gaitpost.2005.08.001.

DE LA FRAGA, L., AND V ITE SILVA , I. 2008. Direct 3d
metric reconstruction from two views using differential evolu-
tion. IEEE Congress on Evolutionary Computation, 2008 (IEEE
World Congress on Computational Intelligence).(June), 3266–
3273. http://dx.doi.org/10.1109/CEC.2008.4631240.

DOUKHNITCH, E., SALAMAH , M., AND OZEN, E. 2008.
An efficient approach for trilateration in 3d position-
ing. Computer Communications 31, 17, 4124–4129.
http://dx.doi.org/10.1016/j.comcom.2008.08.019.

FIGUEROA, P. J., LEITE, N. J.,AND BARROS, R. M. L. 2003. A
flexible software for tracking of markers used in human motion
analysis.Computer Methods and Programs in Biomedicine 72,
2, 155 – 165. http://dx.doi.org/10.1016/S0169-2607(02)00122-
0.

FIGUEROA, P. J., 2009. Dvideow. This is an eletronic document
available at: http://www.ic.unicamp.br/ pascual/dvideow.html.
Last visited on: July 18, 2009.

HARTLEY, R. I., AND STURM, P. 1997. Triangulation.
Computer Vision and Image Understanding 68, 2, 146–157.
http://dx.doi.org/10.1006/cviu.1997.0547.

INITION, 2008. Motion Capture / Tracking from Ini-
tion. This is an eletronic document available at:
http://www.inition.co.uk/inition/products.php?CatID=11.
Last visited on: November 26, 2008.

INTEL CORPORATION, 2009. Laptop, notebook, desktop, server
and embedded processor technology - intel. This is an eletronic
document available at: http://www.intel.com. Last visited on:
May 26, 2009.

KERNIGHAN, B. W., AND PIKE , R. 1999. The practice of
programming. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

K ITAGAWA , M., AND WINDSOR, B. 2008. MoCap for Artists:
Workflow and Techniques for Motion Capture. Focal Press,
Burlington, MA, USA.

MCCONNELL, S. 2004. Code Complete, Second Edition. Mi-
crosoft Press, Redmond, WA, USA.

MENACHE, A. 2000.Understanding Motion Capture for Computer
Animation and Video Games. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

M ICROSOFTCORPORATION, 2009. Microsoft corporation. This is
an eletronic document available at: http://www.microsoft.com.
Last visited on: May 26, 2009.

MOESLUND, T. B., HILTON , A., AND KRÜGER, V. 2006. A
survey of advances in vision-based human motion capture and
analysis. Computer Vision and Image Understanding 104, 2,
90–126. http://dx.doi.org/10.1016/j.cviu.2006.08.002.

MOTION ANALYSIS CORPORATION, 2009. The industry leader for
3d passive optical motion capture. This is an eletronic document
available at: http://www.motionanalysis.com/. Last visited on:
February 5, 2009.

OPENMOCAP, 2009. Sample capture video.
This is an eletronic document available at:
http://files.getdropbox.com/u/226543/mocap.avi. Last vis-
ited on: July 24, 2009.

OPTITRACK, 2008. Optical motion capture and tracking
:: Optitrack. This is an eletronic document available at:
http://www.naturalpoint.com/optitrack/. Last visited on: Decem-
ber 2, 2008.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

160



PHASESPACE INC., 2008. PhaseSpace Inc — Optical Mo-
tion Capture . Este um documento eletrnico disponvel em:
http://www.phasespace.com. Last visited on: November 13,
2008.

PINTO, F., BUAES, A., FRANCIO, D., BINOTTO, A., AND SAN-
TOS, P. 2008. Bratrack: a low-cost marker-based optical stereo
tracking system. InSIGGRAPH ’08: ACM SIGGRAPH 2008
posters, ACM, New York, NY, USA, 1–1.

RASKAR, R., NII , H., DEDECKER, B., HASHIMOTO, Y., SUM-
MET, J., MOORE, D., ZHAO, Y., WESTHUES, J., DIETZ,
P., BARNWELL , J., NAYAR , S., INAMI , M., BEKAERT, P.,
NOLAND , M., BRANZOI, V., AND BRUNS, E. 2007. Prakash:
lighting aware motion capture using photosensing markers and
multiplexed illuminators.ACM Transactions on Graphics 26, 3,
36. http://doi.acm.org/10.1145/1276377.1276422.

STAGE, 2009. Organic motion: Solutions.
This is an eletronic document available at:
http://www.organicmotion.com/solutions/stage. Last visited
on: February 2, 2009.

TROLLTECH, 2009. Qt Software - Code Less, Create More, De-
ploy Everywhere. This is an eletronic document available at:
http://trolltech.com. Last visited on: January 4, 2009.

UCHINOUMI , M., TAN , J. K., AND ISHIKAWA , S. 2004.
A simple-structured real-time motion capture system employ-
ing silhouette images. InProceedings of the IEEE Interna-
tional Conference on Systems, Man & Cybernetics, 3094–3098.
http://dx.doi.org/10.1109/ICSMC.2004.1400814.

UMBAUGH , S. E. 2005.Computer Imaging: Digital Image Anal-
ysis and Processing. CRC Press, Boca Raton, FL, USA.

V ICON MOTION SYSTEMS, 2008. Motion Capture Systems
from Vicon. This is an eletronic document available at:
http://www.vicon.com. Last visited on: November 13, 2008.

WATSON, T., 2009. videoInput Library.
This is an eletronic document available at:
http://muonics.net/school/spring05/videoInput/. Last visited
on: January 4, 2009.

WILLOW GARAGE, 2009. OpenCV - Wiki.
This is an eletronic document available at:
http://pr.willowgarage.com/wiki/OpenCV. Last visited on:
January 4, 2009.

YOO, J.-C., AND K IM , Y.-S. 2003. Alpha-beta-tracking index
([alpha]-[beta]-[lambda]) tracking filter.Signal Processing 83,
1, 169 – 180. http://dx.doi.org/10.1016/S0165-1684(02)00388-
2.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

161



Procedural Generation of Hair
Vinı́cius Jurinic Cassol
Fernando Pinho Marson

Soraia Raupp Musse

Graduate Programme in Computer Science
PUCRS - Av. Ipiranga, 6681, Porto Alegre, RS, Brazil

Figure 1: Different types of hair generated through variation of parameters.

Abstract

This paper presents a hair generation technique for cartoon and
Anime characters. The main goal of this work is to provide a
procedural generation technique, robust enough in order to create
different types of hairs. We propose a parametric model that can
produce diversity of obtained results through parameters variation.
The model is organized in three steps: firstly, the strands genera-
tion, followed by positioning them in the head of the characters.
Finally, the third step is responsible for providing cartoon render-
ing, including common characteristics in cartoon shading, as the
black edges and solid colors. Visual inspection of obtained results
indicate that generated hairs are coherent with expected in terms of
visual aspects.

Keywords:: Hair Generation, Cartoon Hair, Procedural Modeling.

Author’s Contact:

vinicius.cassol@acad.pucrs.br
{fernando.marson, soraia.musse}@pucrs.br

1 Introduction

Hair modeling and rendering in cartoon characters can be applied in
animation movies and computer games. Hair effects can be used to
distinguish among different cartoon characters, especially in Anime
[Shin et al. 2006] characters. When characters faces are similar,
they can be distinguished as a function of their hair geometry and
color. Indeed, hair can be considered as an identifier or a factor
who compose the characters identity. We can observe some of these
factors in human beings, e.g. hair color, length and type: straight or
curly. Such parameters compose the individual identity and, in our
computational model are described in hair generation and rendering
process.

In terms of appearance, computer graphics techniques have been
used to provide different types of hair representation. Indeed, such
techniques can provide photorealistic and non-photorealistic ren-
dering. The photorealistic rendering techniques represent charac-
teristics from the real world, i.e. they imitate real effects. On the
other hand, the non-photorealistic rendering techniques are used to
represent other visual languages, e.g. cartoon appearance.

Our work presents a procedural hair generation technique focused

on cartoon and Anime characters. In order to procedural generate
hairs, we propose a parametric model which can produce visually
different results.

1.1 Procedural Generation

Procedural techniques can be defined as segments of code or al-
gorithms that specify some model feature or a computer generated
effect [Ebert et al. 2002]. Such techniques have been used since the
beginning of Computer Graphics, in order to generate geometrical
models, create textures and animation of objects and characters.

The main characteristic of procedural methods is the abstraction.
Instead storing all details of a particular shape or animation, the
main concept of procedural technique aims to provide details in-
game (or during the simulation). Consequently, the algorithms
should be robust enough to allow coherent re-creation, for instance
each time a specific model should be re-created, e.g. a tree, it should
be made through a computational procedure, and not loading files.
Yet, procedural methods should be able to create different trees,
while keeping the expected global picture of a tree.

The description of a robust and coherent procedural model allows
the generation of shapes/animations, without required extra files.
Indeed, procedural methods should generate different characteris-
tics of obtained results. That is why it uses parameters which are
associated with generated characteristics. Consequently, generated
distinct objects or animations can share common features. For in-
stance, one can mention an algorithm to codify the general concept
of chair [Morkel and Bangay 2006]. There are many combinations
of different features that can be found in chairs: height, material,
type of seat and backrest, among others. However, instead of stor-
ing pre-computed models, the procedural methods aims to generate
them. A strong point is the flexibility to generate diversity into ob-
tained results. The model proposed in this paper aims to generate
cartoon hair models and appearance through a procedural method.

The paper is organized as follows: in Section 2, we present an
overview of published work in hair modeling area, while in Sec-
tion 3, we present our procedural generation model. The prototype
and obtained results are presented and discussed in Section 4, and
finally, in Section 5, we conclude the paper with the possibilities
for future work.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

162



2 Related Work

Procedural methods of hair generation can produce characters for
different types of applications. According to the application, the
required level of realism can vary from photorealistic to non-
photorealistic images. Both of representations can be used in dif-
ferent applications for computer games and animation movies.

Indeed, realistic hair rendering is still considered a challenge, since
each hair, in each strand, should be individually modeled. Please,
notice that a common hair volume has about 100.000 strands [Ward
2005]. The individual representation of any strand is necessary
when we need to represent the perfection of the hair shape and mo-
tion to look like a human hair. In last years, many methods have
been developed with the main goal of producing realistic hair mod-
els [Volino and Magnenat-Thalmann 2004], [Bertails et al. 2006],
[Ward et al. 2007b].

Focused on photorealistic rendering, Magnenat-Thalmann et al.
[Magnenat-Thalmann et al. 2000] presents a survey paper in hair
generation methods where authors analyze the main presented chal-
lenges. Two are important requirements: firstly, the shape model-
ing considering the perfection of the human hair, and secondly, the
computational time of proposed methods. Recently, another sur-
vey was produced by Ward [Ward et al. 2007a] and again presents
the state-of-the-art in hair generation in terms of style generation,
simulation and quality of rendering.

On the other hand, non-photorealistic rendering process do not rep-
resent the object or character as it is in real world. This kind of
representation provides stylized representation, usually applicable
in cartoon characters. Due to the visual aspect of cartoons, it is not
necessary to model and generate each hair strand. Considering this
perspective, it is possible to model specific shapes and rendering
often presented in cartoons characters. One example of hair mod-
eling and cartoon rendering is presented by Shin [Shin et al. 2006],
who develop a model based on particle system, using GPU and bill-
boards in order to produce rendering highlights. To any generated
strand, the silhouette is highlighted as expected in cartoons.

Sugisaki [Sugisaki et al. 2004] presents a hair animation technique
based on Physical Simulation. The process begins with the extrac-
tion of hair motion from a existing cel cartoon animation. With
this data, hair motion database is built, which is physics-based.
In this method, an human intervention is required in order to pro-
duce visually good results. Yet, this technique provides hair motion
through deformation functions applied in strands angles. Another
work from the same authors [Sugisaki et al. 2006] describes a new
model to animate hair motion where existing cel are used. The se-
quences are extracted from a database and parameters are applied
in order to control the hair stiffness. Phisically-based equations are
used to produce hair shape and motion.

Noble [Noble and Tang 2004] shows an approach to generate and
animate cartoons hair. Such technique uses NURBS surfaces [Piegl
and Tiller 1997] to compose a geometric mesh which produces dif-
ferent hair shapes and motion. An animated NURBS volume define
a primary shape and motion. By this way, along the surface are gen-
erated clumps of hair geometry. With the technique developed by
Noble, artists have a flexible tool to provide hair generation and
animation in real-time.

Yet, considering non-photorealistic rendering techniques, different
hair characteristics can be simulated. Moreover, it is defined by the
type of character where we will apply the hair. We can use a car-
toon rendering to produce these characteristics in a draw cel charac-
ter, e.g. Decaudin [Decaudin 1996] can be considered as a cartoon
rendering forerunner. In such technique the author consider some
typical cartoon features as to use uniform colors in the draw fill and
always use the same edge black thickness in the character silhou-
ette. In this way, other points can be considered in the rendering
process like shadows and lights.

3 Procedural Hair Generation

In this section, we describe the method for hair generation, the pro-
posed steps as well as the overall architecture. The procedural gen-

Figure 2: The pipeline of hair generation process.

eration of hair consists in three main steps:

• Parametrization and generation of strands: The user must set
the desired features for the hair and the fringe. These settings
are made through a graphical interface. This phase ends with
the generation of each strand based on parameters selection.

• Strands positioning in the head: After the generation, the
strands and fringe must be correctly positioned and aligned
with the character head.

• Cartoon Rendering: In this step, we apply cartoon rendering
characteristics in the generated geometry.

The pipeline of proposed model is presented in the Figure 2. Box
A represents the user inputs that are used to define the hair features
and box B shows the main steps involved in the hair generation
process. In the next Section, the steps will be more detailed.

3.1 Strands Generation

As it was presented before, our technique is based on procedural
generation. By this way, the model need some parameters definition
to produce different hair models. To allow the user to easy and fast
parameters definition and variation, we developed a prototype wit
and a graphic interface. In this prototype the parameters can be
defined or changed and the user can see and validate the results in
real time. This prototype will be detailed in the Section 4.

Our model can generate three different styles of hair: straight, wavy
and curly. The modeling of each wick of hair is given initially by
setting a guideline. This guideline will be used as a basis to gener-
ate the final shape of strand. The amount of vertex in the guideline
allows to vary the obtained result in a wavy or curly hair. The other
parameters are the desired style of hair, the width, the initial thick-
ness and the length of each match. All these parameters are defined
in the interface.

Every vertex in the guideline is used to create other four points:
two points to specify the width in the x axis and two points for the
thickness in the z axis. In Figure 3, we can see the guideline vertex
(red) and the four auxiliaries points (blue). The distance between
the guideline points (in y axis) is given by a step times the length.
This step is obtained by

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

163



Half thickness

Half width

Figure 3: Generation of auxiliary points (blue points) based on a
guideline vertex (red point).

Figure 4: Vertex distribution in the strand (left) and the strand tri-
angularization (right).

step = (1/number of vertex). (1)

Based on the number of vertex in the guideline, we can calculate
how many vertex and faces will compose the surface strand’s:

surface vertex = (number of vertex . 4) + 1, (2)

surface faces = ((number of vertex − 1).8) + 4. (3)

After calculating the number of surfaces vertex, they are organized
in a triangle shape where the larger size is given by the user and
the others are linearly distributed, as illustrated in Figure 4 (left).
Based on the vertex distribution, we can do the strand triangular-
ization, generating the mesh illustrated in the Figure 4 (right). In
this example, the vertex number 3, 7 and 11 located at the back face
of strand generate other triangles; e.g. 0, 1, 3 and 4, 5, 7.

In the straight and wavy hair style, the entire width and thickness
defined by the user, are considered from the beginning of the hair
(from the top of head). For each point at the guideline from the
beginning to the end of the hair, the width is reduced, causing an
effect into the strand as seen in Figure 5. If the process is inter-
rupted by the user before the end, we can create an additional ef-
fect: the strand seems to be cut. The distinction between straight
and wavy hair is obtained applying a variation wavy factor, positive
and negative alternately, in the x coordinate, that is given by

wavy factor = (1− stepn). (4)

A peculiar feature of the wavy hair is the location where the wavy
effect should start. By this way, we can define the point of the strand
where the frizz should begin. With this possibility is not necessary
to produce always the same strand wavy.

For the curly hair style, the process is a little bit different. Firstly,
it is defined the angle(θ) that the curly hair should have to provide
the curly effect, e.g. 20 degrees. The y value is calculate according
Equation 1, but the value of x and z are given, respectively by

Figure 5: Generation of a straight strand considering the position
of the auxiliary points (blue points) with the points of the guideline
(red points).

x = sin(θ)× (
width

4
), (5)

z = cos(θ)× (
width

4
). (6)

After each step, it is added 20 degrees into the angle. Different
values can generate distinct results. The resulting points from this
process are used to building a polygonal mesh. The Figure 6 shows
the three styles of strands generated by our technique.

The next Section presents the next step in the pipeline to place arti-
ficial hair in characters.

3.2 Positioning of Strands in the Head

After the generation of each strand, it is necessary to place them
correctly positioned and aligned with the head of the character. This

Figure 6: Styles of hair generated with our technique: a)straight
strand, b)wavy strand with the definition of a point to start the frizz,
c)curly hair.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

164



Figure 7: The interface of the prototype.

process is composed by four steps. At first, the initial point of the
guideline is translated to a specific y value in the head were strand
should start. After, it is necessary to calculate the angle between
the normal vector of the strand (~u) and the normal vector of each
triangle that will receive the strand (~v). The strands are generated
at position and orientation.

3.3 Cartoon Rendering in This Work

With a cartoon rendering technique, it is possible to apply a cartoon
style in objects or characters, like an animated movie or represent
comics draws. There are some peculiar features about cartoon. In
our results, we can identify some features of this technique as used
in the Decaudin model [Decaudin 1996]:

• Uniform colors in the draw fill: In the traditional cartoons
draws we can see the use of solid colors in the draw fill, as
we used to produce our hair. Otherwise, in a sophisticated
rendering process, it is possible to use different levels of color
intensity. This levels can provide some different results in the
character rendering.

• Use the same edge black thickness to define the character sil-
houette: This is a important point to allow to identify different
characters in the same scene. By this way, we can avoid the
overlap among the characters or objects rendered. This point
is verified in the strands generation process. In this process,
we identify and stored the external edge to allow to render this
edges in black color.

4 Prototype and Results

Based on the proposed model, a prototype was developed to vali-
date the technique and evaluate obtained results. It was coded using
C++. The QT framework was used to create the interface. A head
was modeled in order to test the correct positioning of strands. Fig-
ure 7 presents the interface of the prototype.

The needed parameters are separated into two different sets. First
one allows to control just the fringe (frontal hair). The other set,
controls the rest of hair. To the both sets, the user can choose the
color, the length, the width, the thickness of hair or the fringe. The
style of hair (straight, wavy or curly) also can be applied individu-
ally. For curly or wavy hair, it is possible to modify the number of
sampled points. This feature allows to create more defined strands.
Just for the wavy hair style, is feasible specify where the frizz point
should start, as we can see in the Figure 8. Also it is possible to
create a cut effect, i.e. the strand seems to be cut. Yet, in the Figure
7, we can see the last parameter: the curved hair. With this param-
eter it is possible creates short strands on the sides and longer at

Figure 8: Different results obtained by the variation of the wavy
start point.

Figure 9: Different results by using curved and cut parameters.

the nape of neck. The Figure 9 shows results obtained by applying
curved and cut parameters.

The prototype allows to save the used parameters into a configu-
ration file in order to use them in a next time. Also it is possible
to export the generated polygonal mesh to the OBJ1 format, thus
allowing its use in games and other graphical applications.

With the parameters variation, we can present different results in
the Figure 10. An interesting feature of our model is the real time
hair generation. This is possible because our model has low com-
puter cost. The time for hair generation is basically the time for
interface manipulation, since the model is generated in interactive
frame-rates.

5 Conclusion and Future Work

This paper presents a procedural technique to generate different
kinds of hair that can be applied to cartoon characters. The main
feature of our method is the capability to simulate, analyze and val-
idate visually the results in real-time. This is provided by a para-
metric model that can be changed through the specification of pa-
rameters provided by the user. Another important feature is the
simplicity of our method. It can be easily reproduced and modified
to add new hair styles.

As a future work we want to improve our model by handling other
parameters generating a varied range of results. Currently, the
strands are not generated from the top of hair. This feature will

1A geometry definition file format first developed by Wavefront Tech-
nologies

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

165



Figure 10: Results produced by our model.

be implemented soon. Other question is the possibility of using dif-
ferent head models. To do this, it is necessary to create a tool that
allow to specify the faces where the hair will grow up. In this sense,
a metalanguage can be used to import and export geometry.

References

BERTAILS, F., AUDOLY, B., CANI, M.-P., QUERLEUX, B.,
LEROY, F., AND LÉVÊQUE, J.-L. 2006. Super-helices for pre-
dicting the dynamics of natural hair. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Papers, ACM, New York, NY, USA, 1180–
1187.

DECAUDIN, P. 1996. Cartoon looking rendering of 3D scenes.
Research Report 2919, INRIA, June.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K.,
AND WORLEY, S. 2002. Texturing and Modeling: A Procedural
Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

MAGNENAT-THALMANN, N., HADAP, S., AND KALRA, P. 2000.
State of the art in hair simulation. In International Workshop on
Human Modeling and Animation, Computer Graphics Society,
3–9.

MORKEL, C., AND BANGAY, S. 2006. Procedural modeling fa-
cilities for hierarchical object generation. In Afrigaph ’06: Pro-
ceedings of the 4th international conference on Computer graph-
ics, virtual reality, visualisation and interaction in Africa, ACM,
New York, NY, USA, 145–154.

NOBLE, P., AND TANG, W. 2004. Modelling and animating
cartoon hair with nurbs surfaces. In CGI ’04: Proceedings of
the Computer Graphics International, IEEE Computer Society,
Washington, DC, USA, 60–67.

PIEGL, L., AND TILLER, W. 1997. The NURBS book (2nd ed.).
Springer-Verlag New York, Inc., New York, NY, USA.

SHIN, J., HALLER, M., AND MUKUNDAN, R. 2006. A stylized
cartoon hair renderer. In ACE ’06: Proceedings of the 2006 ACM
SIGCHI international conference on Advances in computer en-
tertainment technology, ACM, New York, NY, USA, 64.

SUGISAKI, E., YU, Y., ANJYO, K., AND MORISHIMA, S. 2004.
Cartoon hair animation based on physical simulation. In SIG-
GRAPH ’04: ACM SIGGRAPH 2004 Posters, ACM, New York,
NY, USA, 27.

SUGISAKI, E., KAZAMA, Y., MORISHIMA, S., TANAKA, N.,
AND SATO, A. 2006. Anime hair motion design from animation
database. In CyberGames ’06: Proceedings of the 2006 interna-
tional conference on Game research and development, Murdoch
University, Murdoch University, Australia, Australia, 33–40.

VOLINO, P., AND MAGNENAT-THALMANN, N. 2004. Animating
complex hairstyles in real-time. In VRST ’04: Proceedings of
the ACM symposium on Virtual reality software and technology,
ACM, New York, NY, USA, 41–48.

WARD, K., BERTAILS, F., KIM, T.-Y., MARSCHNER, S. R., AND
CANI, M.-P. 2007. A survey on hair modeling: Styling, sim-
ulation, and rendering. IEEE Transactions on Visualization and
Computer Graphics 13, 2, 213–234. Member-Lin, Ming C.

WARD, K., GALOPPO, N., AND LIN, M. 2007. Interactive virtual
hair salon. Presence: Teleoper. Virtual Environ. 16, 3, 237–251.

WARD, K. A. 2005. Modeling hair using levels of detail. PhD
thesis, Chapel Hill, NC, USA. Adviser-Lin, Ming C.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

166



Prototyping games for training and education in Second Life: 

 Time2Play and TREG 

 
K. Vega       A. Pereira       G. Carvalho       A. Raposo       H. Fuks 

 
Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Department of Informatics, Brazil 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Educational Games in Second Life: Time2Play (left) and TREG (right). 
 
Abstract 
 
The purpose of this paper is to report the experience in 

prototyping 2 games for education and training in 

Second Life, Time2Play and TREG. Starting from a 

prototyping process, it was adapted for getting better 

results in the development of the games. Based on our 

experience, Second Life provides a sound platform for 

the step-by-step prototyping evolution. 

 
Keywords: prototyping, prototyping process, game 
development, Second Life. 
 
Authors’ contact: 
{kvega, andreiapereira, guga, abraposo, 

hugo} @inf.puc-rio.br 

 
1. Introduction 
 
Virtual environments have been successfully used in 
several contexts like educational, social, gaming and 
commercial. A virtual world is an environment 
simulated by a computer provided for some specific 
goals. Second Life is a 3D virtual world opened to the 
public since 2003 where users have the possibility of 
creating their part of that world [Linden Labs 2009]. 
Gartner reports that 80% of the active users will have a 
“Second Life” by the end of the 2011 [Pettey 2007]. 
This offers new challenges and opportunities for 
educators. 
 

Educational simulations seem to be the new 
paradigm of knowledge transfer and social training. 
Moreover, current studies indicate that students are 
becoming more pragmatic, visual and computer-savvy 
[Aldrich 2005]. 

 

The Time2Play and TREG games were created in 
Second Life (SL) using its building blocks and 
scripting possibilities. In this paper we will discuss our 
experience in prototyping the Time2Play and TREG 
games using Second Life as the development platform.  

 
This work is organized in eight sections. Section 2 

introduces Second Life and its possibilities for creating 
educational games. Section 3 presents some related 
work of serious games created in Second Life. Section 
4 shows overviews of Time2Play and TREG: a 
storytelling and training game designed for Second 
Life. Section 5 discusses the prototype process 
followed by its development. Section 6 and 7 describe 
the prototyping methods used and our experience 
prototyping Time2Play and TREG. Section 8 
concludes the work. 
 
 
2. Second Life as a development 
platform 
 
Virtual worlds are an interactive multi-user 
environments simulated by a computer. They are also 
called Massive-Multiplayer Online Role-Playing 
Games (MMORPGs) and have these common features 
[Book 2009]: 
 

1. Shared Space: Many users are simultaneously 
sharing the same world; 

2. Graphical User Interface: They have visual 
environments from a 2D style to a more immersive 3D 
world; 

3. Immediacy: Interaction with the world takes 
place in real time; 

4. Interactivity: Virtual worlds use to allow users to 
make changes to it like alter, develop, build, or submit 
customized content; 

  

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

167



5. Persistence: the environment continuous existing 
and being developed internally even if there are no 
users interacting in it; and 

6. Socialization/Community: the world allows and 
encourages the formation of in-world social groups like 
teams, guilds, clubs, cliques, housemates, 
neighborhoods, etc. 
 

The online 3D virtual world Second Life was 
launched by Linden Lab in 2003 [2009]. Users, 
represented by avatars, do real life activities - they 
interact, play, build and do business purchasing and 
selling the virtual currency Linden Dollars - building 
most of the existing content in Second Life. Their raw 
materials are prims that are the basic building 3D 
geometric blocks for creating objects. These objects 
needs scripts for “getting alive” in order to interact 
with other objects, avatars and Non-Player Characters. 
Scripting is done using the environment’s event 
oriented language: Linden Scripting Language (LSL) 
which is familiar for C programmers. 
 

Below we present some of SL building and 
scripting features that are relevant for this work.  

 
• Appearance and motion. Avatars can change 

the body and clothes using configured ones or 
they can configure their own body and clothes 
using the appearance editor. The face and 
body motion is made by animations and 
gestures. 

• Textures. It is possible to use textures applied 
to objects and clothes, obtained out-world, 
shared among avatars or as in-world 
snapshots. 

• Freebies. There are elements that are shared 
with the SL community.  

• Permissions. These are configured for a 
collaborative development process. The SL 
land owner or administrator sets permissions 
for a group or an avatar to build in their lands. 
An avatar gives permissions to specific 
avatars for moving, copying or editing their 
in-world objects. And an object or script 
owner gives the permission to the next owner 
to copy, modify or resell it. 

• Teleporting. An avatar is teleported to specific 
places by other avatars invitations, Landmarks 
or scripts. 

• Voice chat. Avatars could communicate and 
coordinate enabling this feature. 

• Machinima. A filming technique which was 
used for making videos with avatars, NPCs 
and objects in virtual worlds. 

 
All that features can be used for the creation of 

these games in Second Life. But, it was necessary to 
consider some Second Life constrains in order to 
develop them.  
 

• The hardware requirements must be the 
minimal considered by Linden Labs [2009]. It 
is recommended having a powerful video 
card. This will facilitate the load in the Client 
of textures and sculpted objects like the NPCs 
and some delaying in scripts like listen 
running scripts or rezzing objects. 

• Second Life allows permissions configuration 
for building and collaborative editing. 
However there are some constrains for 
developing in-world like there is no version 
control system, the LSL editor in-world 
doesn’t have a debugger and compiler and 
Second Life doesn’t have a database 
repository in-world. 

 
3. Related Work  
 
Oblinger [2004] calls this new students’ generation the 
Net Generation (NetGen). NetGeners tend to be 
experiential learners, community-oriented and their 
learning preferences include teamwork and technology 
use. Games and simulations are a potential learning 
environment to create educational engagement for 
them. Virtual worlds can be an effective environment 
for educational games [Cunha at el. 2008]. Second Life 
gives the possibility to create different educational 
content like classes, discussion panels and games 
[Klunge and Riley]. 
 

Kidz Connect is a program created by ZoomLab 
that connects young people in different countries via 
media art, performance and collaborative creation in 
virtual worlds like Second Life (Figure 2). Guided by 
artists and educators from theatre and digital arts, 
students learned skills like playback theatre, digital 
storytelling, and 3D modeling. Students from two 
different countries write, create and perform a live 
show. In Second Life, the students met and 
collaborated to build a hybrid virtual city combining 
aspects of both countries and in that common space, 
they created a performance that occurred both live and 
online simultaneously [Kidz Connect 2009]. 
 

 
Figure 2. Kidz Connect in Second Life 

 
Training by playing is a great way to improve 

people skills and have fun at the same time. Nowadays, 
companies and universities are researching and 
investing in Second Life for training in several fields. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

168



Idaho State University created a large scale training 
game to simulate top exercises in health care and 
emergency preparedness [Ramloll et al. 2006]. Figure 
3 shows a hospital scenario where a pandemic flu 
training exercise was simulated [Idaho 2009].  
 

Our research found games developed in Second 
Life for computer science. The Ohio University 
developed two multi-player games in Second Life for 
software engineering education [Ye 2007]. The first 
one based on Groupthink Software Specification 
Exercise developed at the M.I.T. [Ernst 2006a]. 
Groupthink aims to teach in a game show style how to 
write effective specifications. This game is available to 
use in-world [Ernst 2006b]. The other game was 
developed at the UC Irvine based on the SimSE game 
where students manage a simulated software project 
[Navarro et al. 2007].   
  

 
 

Figure 3. Hospital Scenario in Play2Train 
 
IBM developed a series of games called Open 

Encounters of z Virtual Kind for challenging skills in 
IBM technologies and Open Source like IBM System z 
mainframe, Service Oriented Architecture (SOA), the 
Cell/B.E. processor, Grid computing, Linux, Java, and 
a host of other technologies [IBM 2009]. 

 
 
4. Overview of Time2Play and TREG  
 
In this section we give an overview of the two games 
that were prototyped using Second Life as the 
development platform. This choice was supported 
because of the immersive and collaborative features 
inherent to Second Life that are needed for the games 
Time2Play and TREG. 
 
4.1 Time2Play 

 

Time2Play enables the creation of stories and the re-
creation of well-known stories in a 3D environment. 
Each learner has an avatar for enacting her part in the 
story, role playing that way with other learns, allowing 
the socialization of knowledge. 
 

After logging in Second Life, the avatar is 
teleported to the auditorium shown in Figure 4. It is a 
theatre that enables avatars to watch and participate in 

the story being enacted. Sitting avatars may at any 
moment grab clothes or objects, entering this way into 
the performance of the play, moving from lurkers to 
players bringing new life into the stage. 

 
The backstage auditorium comprises 3 rooms 

loaded with different features and functions for 
supporting learners’ performances: main room, 
dressing room and animations room. In the Main 
Room, there is a panel that provides scenarios based on 
themes such as a beach, a forest, a snowy park, among 
others. These scenarios play environmental sounds 
based on the theme they represent. There are also two 
panels that provide objects and special effects to 
complement the scenarios, offering other possibilities 
for the players. The Dressing Room has panels that 
provide clothes, hair, makeup and accessories that 
allow the avatar’s characterization according to the 
stories that will be performed. There is also the 
Characters panel that enables learners to transform 
their avatars into non-human characters by acquiring 
an alternative form such as a robot, cat, witch, etc. 
Finally, there is the Animations Room that provides 
different animations that engage the avatar in a 
sequence of movements such as swimming, running, or 
dancing, that could be activated in their performances. 
 

 
 

Figure 4. Time2Play auditorium. 
 

Learners divided their work into two activities: 
story creation and story enactment. They coordinated 
these activities using the voice chat featured available 
within SL. Firstly, they came up with the story idea, 
and then, they selected and modified the scenarios 
using the panels and, finally, chose their characters’ 
appearances and costumes. During story enactment, 
each learner played a character in the story, that had no 
rules or actions pre-defined by the game. 
 
4.2 TREG  

 
The Training in Requirements Engineering Game 
(TREG) is a 3D online game which aims to teach 
requirements engineering techniques using simulations 
based on collaboration. The expected audience is a 
stakeholder involved in requirements elicitation 
(students, customers, users or software suppliers) that 
wants to be trained in this topic. In this phase of the 
project, we are focusing on training in the workshop 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

169



technique, a collaborative way for gathering and 
analyzing requirements. 
 

There were used the building capabilities in Second 
Life to create the main building, metaphor rooms, 
simulation rooms, NPCs and heads-up-display (HUD). 
Scripts were used to move the avatars by teleporting 
between the metaphor rooms, to program the HUD 
with the game states, to handle the NPCs’ 
functionalities in the simulation rooms, to 
communicate objects, and to play videos. The main 
building includes a reception area, teleporters that 
transports the trainees to the metaphor rooms and a 
NPC, a guide in-world. Figure 5 shows Miss 
Workshop, a specific NPC implemented for guiding 
the trainee in the playing of the game. 

 

 
 

Figure 5. Miss Workshop, the NPC implemented for guiding 
 

The HUD created for the TREG game controls the 
scores of the game: main score, investment, time, 
mission and technique. One can score more points, 
loose investment and time and move to a next level. 
This information is registered for following the 
trainee’s participation in the game.  

 
The NPC is an object that resembles an avatar but it 

is controlled by scripts. They are normally used in 
fictional simulations or role-playing games for 
interacting with avatars in pre-articulated situations 
where human beings are dispensable or not available 
[Bartle 2004]. TREG makes use of NPCs for 
representing simulations, guiding and shooting 
machinima videos. The “Making Workshops” Room in 
Figure 6 shows a workshop session populated by 
NPCs. 

Figure 6. The Cooking Metaphor and the “Making 
Workshops” Room 

Machinima is a technique that relies on the use of 
3D game engines to generate a recorded performance 
in virtual worlds and uses in-world film techniques 
where characters and events can be controlled by 
humans, scripts or artificial intelligence [Nitsche, 
2005]. Machinima was used to film some problematic 
workshop situations. There, the trainee will watch a 
machinima showing the consequences of choosing  the 
“Right People”, for example, learning this way a new 
workshop technique based on a collaboration pattern, if 
it applies.  

 
5. Prototyping Process 
 
An incremental and iterative prototyping process was 
used for the creation of these games. Second Life 
facilitates the prototyping process as it shows the 
elements in-world as-is which makes it possible to 
have an early vision of the game and figure out the 
necessity of additional features and functions.  
 

Figure 7 shows the Prototyping Process of the book 
Effective Prototyping for Software Makers [Arnowitz 
et al. 2007]. An iteration consists of the four phases of 
this process. They will iterate until the software 
validate all the requirements established.  
 

Step 1. Verify Requirements 
Step 2. Develop Task Flows 

P
ha

se
 1

 

 Step 3. Define Content and 
Fidelity 

Step 4. Determine Characteristics 
Step 5. Choose a Method 

Ph
as

e 
2 

Step 6. Choose a Tool 

Step 7. Select Design Criteria 

P
ha

se
 3

 

 
Step 8. Create the Design 

Step 9. Review the Design 
Step 10. Validate the Design 

P
ha

se
 4

 

 Step 11. Deploy the Design 

 
Figure 7. The Effective Prototyping Process [Arnowitz et al. 

2007]. 
 

The following steps describe how the process had 
been customized for implemented the game in Second 
Life. 
 

Step 1. Verify Requirements 

The software requirements were discovered from 
assumptions taking into account that the audience to 
each game is orientated and their goals. They were 
gathered, inventoried and prioritized.  

 

 

 

 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

170



Step 2. Develop Task Flows 

The task flows depicts the steps that the learner has 
to follow to complete an activity. In this step, it was 
defined these tasks and the narration of the scenarios.  

A list of the tasks was used for identified the 
learners’ actions in Time2Play.  In TREG, branching 
Stories were used as the simulation games genre for 
mapping the scenarios of the gameplay. The Branching 
Stories Graph gives an overview of the game and 
guides the interaction of the different scenarios given 
to the trainee. A scenario template was used for getting 
a fine-detailed specification of the gameplay.  

 

Step 3. Define Content and Fidelity 

It was decided to use Second Life as the main 
prototyping tool for a high fidelity representation. The 
level of detailed depended on the iteration milestone, 
from a high level visualization perspective of the game 
to a coded behavior of the game.  

 

Step 4. Determine Characteristics 

There were identified the characteristics proposed 
by Arnowitz [2007] to determine the prototype method 
to applied in each iteration. These characteristics are 
audience, stage, speed, longevity, expression, style and 
medium. The next sections shows the characteristics 
found in the games. As it was a prototype driven 
development, a prototype was created in all the 
iterations. 

 

Step 5. Choose a Method 

A prototyping method was chosen depending on 
the iteration characteristics. Arnowitz [2007] proposes 
the following prototyping methods: card sorting, 
wireframe, storyboard, paper, digital, blank model, 
video, Wizard-of-Oz and code. Sections 6.1 and 7.1 
expose the chosen methods in the games. 

 
Step 6. Choose a Tool 

Although it was decided since the beginning of the 
projects that Second Life would be the prototyping 
tool, it was necessary the use of other tools for 
clarifying concepts or specifying functionalities such 
as office or CASE ones. 

 

Step 7. Select Design Criteria 

Despite Second Life promotes a freedom content 
creation, there are some building and scripting 
constrains that must be taken into account. In addition, 
the prototype characteristics had to be considered for 
each iteration. A design guideline was used to 
minimize user’s memory load. Thus, the game objects 
don’t get overlooked or trivialized. In Time2Play, 
panels have the same measures and navigation 
functionality. In TREG, a specific NPC for guiding the 
trainee is located in the rooms. 

 
Step 8. Create the Design 

This step applied all the design rationale into the 
prototype. In the games was important to prioritize the 
elements to develop. In TREG a top-down strategy was 
applied whereas Time2Play applied the opposite 

strategy, bottom-up. In addition, Time2Play, as it was a 
collaborative development, required to preset the 
environment.   

 

Step 9. Review the Design 

The prototypes of the games were reviewed by an 
internal audience of researchers involved in the 
projects. A teacher was required as the subject matter 
expert in Time2Play and an expert in software 
development process for TREG. 

 

Step 10. Validate the Design 

After the design revision, it became necessary to 
validate the prototypes with external stakeholders. 
Time2Play used usability tests for validating the user 
experience and ensuring its usability. Section 5.2 
specifies the validation steps. 

 

Step 11. Deploy the Design 

The development environments for each project 
were specific sandboxes located at the land in Second 
Life where the prototypes were developed. Then, these 
prototypes were deployed to the production 
environment taking into account the characteristics and 
requirements of each game. 
 
6. Prototyping Time2Play 
 
Time2Play prototype characteristics were pre-defined 
for choosing the prototyping method for each iteration. 
These characteristics were based on the Effective 
Prototyping Process [Arnowitz et al. 2007]. 
 

• Audience: Internal when the prototype was 
showed to the internal team and external when 
the audience was a subject matter expert or the 
children. 

• Speed: As it was a reusable strategy, the speed 
of prototyping was rapid. No more than 2 
weeks each prototype. 

• Longevity: Long. The prototype was persistent 
and all its elements continued existing from the 
beginning of the prototyping process. 

• Expression: Conceptual in a card sorting 
prototype for determining the concept of the 
project. And it was experiential using Second 
Life in all the other prototypes. 

• Style: It was interactive as the audience could 
actively explore it in Second Life. Card sorting 
prototype used a narrative style for getting the 
conceptual design.  

• Medium: It was digital. But in the Card Sorting 
prototype a physical medium was used. 

 
6.1 Time2Play Prototyping Methods  
 
Time2Play makes use of a reutilization strategy that 
joins a storytelling game, a 3D auditorium and 
different tools for creating a storytelling environment. 
This strategy takes into account the idea of a 2D 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

171



environment called Legal in which children learn by 
reading and writing stories [Pereira and Lopes]. 
Time2Play combines an auditorium and other elements 
developed in Second Life for offering the theater 
environment and tools like clothes or animations for 
enacting the stories. 
 

• Iteration 1. - From Idea to Card Sorting.  
The idea of Time2Play comes from Legal. A Card 

Sorting prototype was used by the internal team to 
determine the conceptual overview of the game. Cards 
with the required features were sorted to define the 
high level functionality of the scenario panel, the 
clothes panels and the on-demand auditorium.  
 

• Iteration 2 - From Card Sorting to Low-

coded Prototype 
Card sorting prototype was used to get an overview 

of the conceptual model of the game. Then, a low-
coded prototype was developed in Second Life. 
Several freebies were used to implement the scenarios 
and to offer clothes for enacting the play. It also reused 
the on-demand auditorium and transformed it to looks 
like a theater. 
 

• Iteration 3 - From Low-coded to High-coded 

Prototype 
After the review session of the low-coded 

prototype, new functionalities were required: 
characters, hair and skins, special effects, animations 
and objects. All these features were added to the 
storytelling environment. A teacher was invited as a 
subject matter expert to validate the prototype. 
 

• Iteration 4 - From High-coded Prototype to 

Product Version 

Finally usability tests validated the software 
requirements. Section 6.2 describes the process used in 
these tests.  
 
6.2 Prototyping Time2Play Experience 
 
Being a storytelling based game, Time2Play need 
resources for empowering their users to act as players 
in a play. Therefore, they need costumes, make-up, 
scenarios, story elements and special effects for 
enacting their roles.   
 

In SL, costumes, make-up and story elements 
maybe bought, built or collected as freebies, the latter 
being the case in Time2Play. Scenarios were modeled 
and assembled using the appropriated story elements 
combined with animations and scripts. Special effects 
had to be programmed. 

 
As the prototyping of the game was done in-world, 

all the changes applied to the visible objects were 
noticed by the members. The scripts were coded in a 
collaborative programming way.  Due to the lack of an 
in-world version control system, developers were 
assigned different objects and tasks. The coordination 

was done using the local chat. They also used Instant 
Messages for asynchronous collaboration when they 
were not logged in SL.  

 
Prototyping proved itself very useful in the 

interaction with the young users. They had all sort of 
desires that we wanted to accommodate in the game. In 
each prototyping cycle, a few of their whims were 
included. These cycles were even more important for 
the developers themselves. They used this interplay in 
order to add new features and functionalities for 
offering new enacting possibilities. For example, while 
performing Snow White and the Seven Dwarfs, when 
the fairy tells the prince to kiss Snow White, the kids 
loved to trigger the bubbly-butterfly-fairy-hearts-stars 
special effect, carefully scripted for their contentment.  
 

After the third iteration in the prototyping process, 
3 ‘proof of concept’ sessions took place with 8 learners 
from age 7 to 12, divided into groups of 2 or 3. The 
usability test that was used [Dumas and Redish] 
consists in installing the prototype and evaluating its 
overall quality. It was observed the learner’s 
navigation, understanding and interaction with the 
environment. Each learner used a pre-created avatar 
having navigation limitations on account of their age 
(younger than 18). Four phases of the usability test 
were executed: Profiling Questionnaire to figure out 
learners’ profile, Training in Second Life and 
Time2Play, Main Task which is a challenge for 
collaborative building and enacting a story using 
Time2Play and Final Interview for giving learners the 
chance to express their views on the game and the 
technology. During the “Validate the Design” step in 
the last iteration (Section 5), the demand for additional 
characters, imagined or requested, brought evidence of 
the need to create non-player characters for this game. 
 
7. Prototyping TREG 
 
This section shows how the prototyping methods 
changed throughout the iterations in the TREG project. 
Also it explains our experience in the prototyping 
process.  
 

TREG prototype characteristics were pre-defined 
for choosing the prototyping method for each iteration. 
These characteristics were based on the Effective 
Prototyping Process [Arnowitz et al. 2007]. 

 
• Audience: Internal. The researchers participated 

in the revisions of the prototypes. 
• Speed: Rapid at the early iterations for 

obtaining a faster feedback and diligent at the 
last iterations for having more code time to get 
a high-fidelity and best quality prototype. 

• Longevity: Short as the first prototypes were 
used for clarifying the project main idea. The 
last iterations took place having in mind a long 
longevity life as some of the objects were 
supposed to continue existing in the project. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

172



• Expression: TREG focused on an experiential 
expression for testing the look and feel of the 
game. However, during the early iterations, a 
conceptual expression was needed for 
understanding the game unfolding using slides. 

• Style: A narrative style was used in the early 
iterations of the process. The scenarios were 
specified in a template and shown using slides. 
Also there was a low-coded prototype in 
Second Life for narrating the branching stories.  

• Medium: A digital medium was used for 
getting a true game representation. 

 
7.1 TREG Prototyping Methods  
 
TREG prototyping used a trial and error strategy, 
taking all together 5 iterations for refining the 
requirements and prototyping the workshop technique. 
There were several revision meetings during each 
iteration where the researchers compromised with a 
look and feel of the game. Second Life was used as the 
main tool for prototyping. Figure 9 shows the 5 
iterations and the improvements of the lobby using the 
prototyping process. 
 
 

Iteration 3 

Iteration 1 

Iteration 2 

Iteration 4 

Iteration 5  
 

Figure 8.- Iterations improvements with the Effective 
Prototyping Process. 

 

• Iteration 1 - From Idea to Quick Wireframe.  
At the very beginning of the prototyping process, 

the main idea was the creation of a training 
environment in Requirements Engineering. In the first 
prototype iteration, an idea of the game was conceived. 
A low-fidelity model presenting the first visualizations: 
the main reception, monoplayer games, a maze game, 
classrooms/discussion groups' rooms and an 
auditorium. It was instrumental to clarify that the goal 
was the creation of a classical environment for training.  

 

• Iteration 2 - From Quick Wireframe to 

Wireframe 

Requirements process, techniques, management, 
analysis and validation were initially selected as 
tentative activities areas to be part of the game. A 
quick wireframe of a main lobby leading to 5 
teleporting pods for going to these activities areas was 

prototype. Based on this high level structure 
wireframe, it was decided to narrow the prototyping to 
only one area, namely, the workshop technique. 
 

• Iteration 3 - From Wireframe to Low-coded 

Prototype 
A new main lobby more aligned to the expected 

audience was prototype. Teleporting scripts were 
reused. In this iteration fleshed out the need of a 
simulation game genre, namely, branching stories. 
Storyboards prototyping method was not used. 
Detailed specifications were created using scenario 
templates. 
 

• Iteration 4 - From Low-coded to High-coded 

Prototype 

A new high-fidelity and non-realistic main lobby 
was refined, including a NPC for guiding and giving 
the basic game resources for the trainee. A new 
communication feature was scripted in the NPCs and a 
metaphor relating cooking to making workshops was 
implemented.  

 
As the simulations were defined and specified 

using branching stories and scenarios, the inclusion of 
state machine diagrams was an attractive option. 
Despite of the fact that they don’t represent the look 
and feel of the game, these diagrams gave a new 
perspective of the game and improved the 
implementation in LSL. 
 

• Iteration 5 - From High-coded prototype to 

Product Version. 
Finally, an advanced version for training in 

workshops was delivered. The main lobby, the HUD, 
the cooking metaphor and NPCs carried on in the 
following iterations for prototyping the other 
requirements techniques.  
 
7.2 Prototyping TREG Experience 
 
In order to keep the trainees immersed for enhancing 
their skills through a playful activity, real life 
metaphors are used for joining a common real life task 
together with a requirements engineering situation. For 
example, when the trainee is being trained in the 
workshop technique, a kitchen metaphor is proposed. 
The trainee enacts a chef role-play that must find the 
ingredients for the “making workshops” recipe. Figure 
6 shows part of the environment implemented for this 
specific technique.  
 

In order to prototype the game, first, the content 
was conceived taking into account requirements 
engineering concepts originated from Gottesdiener’s 
book: “Requirements by Collaboration: Workshops for 
Defining Needs” [Gottesdiener 2002]. There she 
suggests 14 ingredients for accomplishing a successful 
requirements workshop. All these ingredients were 
reorganized using a structure based on the workshop 
process framework phases: plan, do check and act. 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

173



When the trainee chooses one of the ingredients for 
starting the training session, a situation related to the 
chosen ingredient is shown to the trainee revealing 
multiple paths to follow. Most paths lead to “making 
workshops” that don’t really work. Then, collaboration 
patterns are offered to the trainee for choosing paths 
that do work. Figure 9 shows the TREG Design 
Process Box for the training process in the workshop 
technique. It takes the ingredients as input and the 
collaboration patterns as output.  

 

 
 

Figure 9. The TREG Design Process Box 
 
Then, three implementation strategies were applied 

to design TREG. The game makes use of the branching 
stories genre for simulating situations that will 
immerse the trainee in a workshop scenario that must 
be planned, conducted and finished. Each node is 
described using the scenario template for fine tuning 
the situations specified in the branching stories graph. 
State machines use these diagrams, i.e., the 
specifications and transitions annotated in these 
templates, for modeling the system behavior. 

 
The game makes use of the branching stories 

strategy for simulating different situations that will 
help the trainee to understand how a workshop must be 
planned, conducted and finished. Each state will be 
described using a Scenario template [Leite et al. 2000]. 
State machines diagrams model the game elements 
behavior.  

 
Branching stories is one of the computer-based 

simulations genres defined by Aldrich [2005]. A graph 
with all the possible scenarios is created using the 
branching stories strategy for connecting and following 
the sequence of scenarios. The first trials were done 
using Storyboards. Unfortunately, this technique 
didn’t. It consumed too much time for making the 
images to illustrate the game, instead of generating the 
content and sequences needed for the unfolding of the 
game. Branching stories, on the other hand, proved 
itself as a practical way to do the job. 

 
Scenario is a description technique useful for 

depicting situations in an environment suitable for 
elicitation and specification of software requirements 
[Leite et al. 1997]. Each node of the branching stories 
graph will have a description based on a Scenario 
Template [Leite et al. 2000]. Moreover, exceptions in 
the Scenario Template lead to paths that clarify 

misunderstandings that are normally associated to 
trainees’ choices. 

 
State Machine Diagrams are used for modeling the 

dynamic perspective of the system. These diagrams 
define the states and transitions for each game object. 
Given that LSL is a state based language, from the 
early stages of the prototyping process, the relevance 
of these diagrams for implementing the system was 
clear.  

 
All the objects and scripts were created from 

scratch for getting a more realistic and personalized 
setting. In the prototyping process, objects are built and 
shown as-is in-world in order to choose from the set of 
available objects those that will remain and those that 
will not be used in the next prototype. For example, 3 
versions of the main building were discarded and a 
NPC walking capability was ruled out. 

 
In the game, NPCs perform 3 specific functions: 

simulation, filming and guiding. They are used to 
simulate a specific workshop situation and interact 
with the trainee. They were filmed using the 
Machinima technique to create videos with several 
scenarios showed in-world to the trainee. Finally, some 
NPCs are presented to the trainees as in-world guides. 
 
8. Conclusion 

 
Prototyping helped to design and evaluate some 
aspects of the game in Second Life, and provided 
feedback for improving the quality of the game. The 
Second Life platform accommodates different 
development strategies as shown in Subsections 5.1 
and 6.1. The prototyping process was customized for 
their development.  
 

Time2Play and TREG are educational games with 
different audience and objectives. Time2Play is a 
storytelling game created for children. TREG is a game 
for training in software requirements engineering. 
Thus, they were developed in different ways: 

 
• While Time2Play makes use of a reutilization 

strategy that joins a storytelling game, a 3D 
auditorium and different tools for creating a 
storytelling environment, the strategy adopted 
for TREG was a trial and error one where the 
requirements were refined. 

• Time2Play was prototyped in a collaborative 
way; hence, some SL features had to be 
customized for this purpose. 

• In Time2Play, the users participated in the 
“Validate the Design” step of the last iteration 
of the prototyping process. While they were 
playing the game, they asked for new features 
and some were included in the next iterations. 

• Learners in Time2play had the permissions 
for building in the land and rezzing any 
objects during their performances or creating 

 Workshop 
Ingredients 

Collaboration 
patterns 

Branching 
Stories 

Scenario 
Specification 

State Machine 
Diagram

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

174



another element for the scenario. TREG, on 
the other hand, was built and scripted from 
scratch. It demanded more time and 
investment for getting better resolution and 
definition of the objects, particles and scripts.  

• TREG design was divided into two phases: 
Content creation and the combination of 
various implementation techniques. The 
content is based on the book: “Requirements 
by Collaboration: Workshops for Defining 
Needs” [Gottesdiener 2002]. Prototyping was 
instrumental in finding out the 3 techniques 
used in the implementation: branching stories 
for the unfolding of the game, scenarios for 
defining the game specification and state 
machine diagrams for modeling behavior. 

 
There are some hardware and software 

specificities that were considered in these 
developments. They are related to bandwidth and 
rendering capabilities on the client side for 
preserving the quality of the play experience. 
 

 
References 
 
LINDEN LABS, 2009. Second Life website [online]. Available 

from: http://secondlife.com [Accessed 20 July 2009]. 
 
C. PETTEY, 2007. Gartner Says 80 Percent of Active Internet 

Users Will Have A "Second Life" in the Virtual World 
by the End of 2011, Gartner Press.  

 
ALDRICH, C., 2005. Learning by doing; Pfeiffer, USA, 2005. 
 
B. BOOK, 2009. What is a Virtual World. [online] Available 

from:  http://www.virtualworldsreview.com. [Accessed 
20 July 2009].  

 
D. OBLINGER, 2004. The next Generation of Educational 

Engagement, Journal of Interactive Media in Education, 

SSN:1365-893X, May 21st, 2004.  
 
M. CUNHA, A. RAPOSO, H. FUKS,  2008. Educational 

Technology for Collaborative Virtual Environments, In 

Proceedings. of 12th International Conference on CSCW 

in Design, China, April 16-18, 2008. 
 
S. KLUGE, L. RILEY, 2008. Teaching in Virtual Worlds: 

Opportunities and Challenges, Issues in Informing 

Science and Information Technology, Informing Science 
Institute, 2008. 

 
KIDZ CONNECT, 2009. Kidz Connect: Connecting cultures 

through creative collaboration [online]. Available from: 
http://www.kidzconnect.org/». [Accessed 20 July 2009]. 

 
RAMLOLL, R., BEEDASY, J., HUDNALL STAMM, B., PILAND, N., 

CUNNINGHAM, B., KIRKWOOD, A., MASSAD, P., 
SPEARMAN, R., PATEL, A., TIVIS, R. AND C. KELCHNER, 
2006. Distance Learning and Simulation Technologies to 
Support Bioterrorism Preparedness Education, In 

Proceedings of the ISCA 21st International Conference, 
ISBN: 1-880843-58-7, pp 235-241. 

 

 IDAHO STATE UNIVERSITY, 2009. Virtual training at Bingham 
Memorial Hospital [online], Available from: 
http://play2train.us, [Accessed 20 July 2009]. 

 
EN YE, CHANG LIU, J. POLACK-WAHL, 2007. Enhancing 

Software Engineering Education Using Teaching Aids in 
3-D Online Virtual Worlds”, 37th ASEE/IEEE Frontiers 

in Education Conference T1E-8, Milwaukee, WI, 
October 2007. 

  
M. ERNST, 2006a. The Groupthink Specification Exercise, In 

Software Engineering Education in the Modern Age: 

Challenges and Possibilities, Lecture Notes in Computer 
Science vol. 4309, Dec. 2006, pp. 89-107. 

 
ERNST, 2006B Groupthink exercise at Ohio University in 

Second Life. [in-world]. Available from: 
http://slurl.com/secondlife/OHIO%20Outreach/144/156/3
2  [Accessed 20 July 2009]. 

 
EMILY OH NAVARRO, ANDRE VAN DER HOEK, 2007. 

Comprehensive Evaluation of an Educational Software 
Engineering Simulation Environment, 20th Conference 

on Software Engineering Education & Training 

(CSEET'07). Pp.195-202. 
 
IBM, 2009.  Open Encounters of z Virtual Kind skills 

challenge [online]. Available from: http://www-
304.ibm.com/jct01005c/university/students/contests/Seco
ndLife/index.html [Accessed 20 July 2009]. 

 

R. BARTLE, 2004. Designing Virtual Worlds. New Riders 
Games. 
 
M. NITSCHE, 2005. Film live: And Excursion into 

Machinima”, In: Developing Interactive Narrative 
Content: sagas_sagasnet_reader, Brunhild Bushoff, 

Munich, 210-243, 2005.  
 
Arnowitz, J., M. Arent and N. Berger, 2007. Effective 

Prototyping for Software Makers, Morgan Kaufmann, 
Elsevier, Inc. 

 
PEREIRA, A. R. ; LOPES, R. D. 2005 . Legal: Ambiente de 

Autoria para Educação Infantil apoiada em Meios 
Eletrônicos Interativos.. In: Simpósio Brasileiro de 

Informática na Educação, Juiz de Fora. 
 
DUMAS, J., REDISH, J., 1999 A practical guide to usability 

testing  Intellect Books. 
 
E. GOTTESDIENER, 2002 Requirements by Collaboration: 

Workshops for Defining Needs, Addison Wesley, 2002. 
 
LEITE, G. HADAD, J. DOORN, G. KAPLAN, 2000.A Scenario 

Construction Process. In Proceeding: Requirements 

Engineering, 2000; pags 38 - 61. 
 
J. LEITE, G. ROSSI, F. BALAGUER, V. MAIORANA, G. KAPLAN, 

G. HADAD, A. OLIVEROS, 1997; Enhancing a 
Requirements Baseline with Scenarios. In Proceedings: 

Requirements Engineering, Springer; pags 84-198. 
 
 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

175



Support Vector Machines for Cinematography Real-Time Camera 
Control in Storytelling Environments 

 
Edirlei E. S. de Lima¹  Cesar T. Pozzer¹  Eduardo C. D. Favera¹  Marcos C. d’Ornellas¹  

Angelo E. M. Ciarlini²  Bruno Feijó³  Antonio L. Furtado³ 
 

¹UFSM, Depto. de Eletrônica e Computação, Brasil  
²UNIRIO, Depto. de Informática Aplicada, Brasil 

³PUC-Rio, Depto. de Informática, Brasil 
 

   
 

Figure 1: Camera shots selected by the director using support vector machines.  
 
Abstract 
 
This paper proposes an intelligent cinematography 
director for camera control in plot-based storytelling 
systems. The role of the director is to select in real-
time the camera shots that best fit for the scenes and 
present the content in an interesting and coherent 
manner. Director's knowledge is represented with a 
collection of support vector machines (SVM) trained to 
solve cinematography problems of shot selection. With 
this work we introduce the use of support vector 
machines, applied as an artificial intelligence method, 
in a storytelling director. This approach also can be 
extended and applied in games and other digital 
entertainment applications.  
 
Keywords: Storytelling, Cinematography, Artificial 
Intelligence, Support Vector Machine. 
 
Authors’ contact: 
edirlei@msn.com 
{pozzer,ornellas,favera}@inf.ufsm.br 
angelo.ciarlini@uniriotec.br 
{bfeijo,furtado}@inf.puc-rio.br 
 
1. Introduction 
 
Current advances in graphic technologies are paving 
the way to realistic digital entertainment applications. 
However, with this evolution new challenges have 
emerged. One area that deserves emphasis and has 
been the target of several researches in last the years is 
the application of cinematography in games and 
storytelling applications. 
 

Cinematography is defined as the art of film-
making. It consists of techniques and principles that 

control how a film should be produced and filmed. 
Most of the principles of cinematography are about 
how a camera should be used in order to accomplish 
tasks such as engaging the interest of the viewer, 
enhancing and clarifying the narrative, and presenting 
the content in an interesting and coherent manner. 
Viewers are used to a general storytelling pattern. 
Therefore, when they watch a single movie, they 
unconditionally try to impose a pattern of his/her own. 

 
In this paper, we focus on the application of 

cinematography concepts to storytelling applications. 
Interactive storytelling is a new medium of digital 
entertainment where authors, audience, and virtual 
agents engage in a collaborative experience. It can be 
seen as a convergence of games and filmmaking. 
Storytelling systems can be divided in two different 
models. The first model corresponds to the character-
based approach [Cavazza et al. 2002; Mateas and Stern 
2000; Young 2000] where the storyline usually results 
from the real-time interaction among virtual 
autonomous agents that usually incorporates a 
deliberative behavior. The main advantage of a 
character-based model is the ability of anytime user 
intervention. As a result of such strong intervention, 
there is no way to estimate what decisions or actions 
will be made by the virtual actors. The director does 
not have then the same control over the process as it 
usually occurs in real filmmaking. The other model 
corresponds to the plot-based approach [Grasbon and 
Braun 2001; Spierling et al. 2002], where characters 
incorporate a reactive behavior, which follows rigid 
rules specified by a plot. The plot is usually built in a 
stage that comes before dramatization. This approach 
ensures that actors can follow a predefined script of 
actions that are known beforehand. The script may be 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

176



built automatically from a plot or with the help of the 
author. 

 
To apply cinematography concepts in storytelling 

applications there are two most common approaches. 
The first approach is the use of film idioms, which 
represents the most usual way to present a specific type 
of scene. Idioms are used in works such as Charles et 
al. [2002]. The second approach is the division of the 
system in different modules or agents that represent the 
various roles people play in a movie set, such as in 
Hawkins [2004]. In other works, such as Courty et al. 
[2003] both approaches are used. However, these 
works have only superficially incorporated 
cinematography rules. 

 
This paper proposes a cinematography director for 

plot-based storytelling systems. The director uses a 
collection of Support Vector Machines (SVM) trained 
with cinematography knowledge to select, in real-time, 
the best shots for the dramatization of scenes. The rest 
of the paper is organized as follows: section 2 
compares our approach with previous research. Section 
3 presents the principles and concepts of 
cinematography. Section 4 presents our system 
architecture. Section 5 brings a detailed look at the 
director implementation. In section 6, we analyze the 
performance and accuracy results to demonstrate the 
efficiency of our approach. Finally, in section 7 we 
present the concluding remarks. 

  
2. Related Works 
 
Many works have already been done with the objective 
of applying concepts of cinematography in games. The 
basic principle of camera positioning employing 
cinematography knowledge in form of idioms was first 
explored by Christianson et al. [1996]. These idioms 
encapsulate the combined knowledge of several 
personal roles in a traditional filming set and are 
widely used in research involving camera systems. 
However, film idioms are only able to solve the 
problem of direct manipulation of the virtual camera. 
In other works, such as Hawkins [2004], the system is 
divided in different modules or agents, the most 
common approach consider three elements: director, 
editor and cinematographer. This approach is known to 
be a better solution since some cinematography rules 
do not only involve the camera manipulation.  
 

In research involving cinematography applied to 
storytelling systems, there is a clear distinction 
between the techniques that can be applied to 
character-based and plot-based approaches. Plot-based 
applications give access to all the actions before 
camera planning, allowing the system to have a greater 
control of the scenes based upon pure cinematography 
knowledge. Character-based applications do not allow 
the same level of control over the scenes, making 
camera planning more complicated, since all 
information is sent in real-time to the camera system. 

 
The first camera system in character-based 

storytelling applications was developed by He et al. 
[1996]. They organized film idioms as nodes of 
hierarchical trees. Each idiom operates as a state 
machine and defines the scene shots to be used. Halper 
et al. [2001] has proposed a camera control based upon 
constraint specifications; however high constraint 
satisfaction implies in poor frame coherence. Charles 
et al. [2002] have explored architectural and 
organizational concepts to achieve satisfactory camera 
planning when we have different context timeline 
stories that can be alternated with the flow of the time. 
In plot-based applications, Courty et al. [2003] 
introduces a scheme for integrating storytelling and 
camera systems.   

 
Current approaches only reach superficial 

implementation, and do not provide a good 
dramatization quality to become comparable with a 
real movie. In this work, we try to contribute towards 
this goal by proposing a novel approach for the 
architecture and implementation of a cinematography 
virtual director. 

 
 
3. Principles of Cinematography 
 
The term cinematography was created in the film 
industry a long time ago to describe the process of 
creating images on film. With the advancement of 
industry and the emergence of new technologies in 
digital video with high definition formats, the tern are 
expanded. Now it is understood as a generic term 
covering all aspects of camera work, including the 
creative aspects involved with making aesthetically 
pleasing images and the technical aspects involved 
with using cameras, lights, and other equipment 
[Newman 2008]. 
 

Although a film can be considered a linear 
sequence of frames, it is often helpful to think of a film 
as having a structure. At the highest level a film is a 
sequence of scenes. Each scene is composed of a 
number of shots, a shot being a continuous view filmed 
by one camera without interruption. The transition 
from one shot to the next is known as a cut. 

 
The size of the image on the film is determined by 

the distance of the camera from the subject. The closer 
is the camera, the larger is the image. This distance 
defines a shot type. Supposing that the subject is a 
character, an example of shot type is the medium shot, 
which depicts characters from the thighs to above the 
head. Another example is the close-up, which depicts 
them from the chest to above the head [Mascelli 1998]. 

 
The type of camera angle strongly influences the 

way a scene is perceived by the viewers. It also defines 
how viewers may become part of the action. When a 
choice is made to the objective angle, the viewer sees 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

177



the event on screen as if an unseen observer [Mascelli 
1998]. A subjective camera angle makes the viewer a 
part of the scene. 

 
Another important aspect of filmmaking 

corresponds to the camera movements. They affect the 
aesthetic and psychological properties of a scene. An 
example of camera movement is the tracking, when the 
camera moves alongside a character while filming, 
giving to the viewers the feeling that they are walking 
alongside the character [Mascelli 1998]. Movements 
should be executed in such a way that the viewer does 
not get disoriented. 

 
Cinematography is a complex process, and many 

rules demand human interpretation of the scenes to be 
correctly applied. However, cinematographers have 
defined some heuristics for selecting good shots 
[Arijon 1976]. Some examples are: 

 
• Create a line of action: this line should 

connect the two major points in one scene 
(most of the times, the two actors that interact 
in the scene); 

 
• Parallel editing: Scenes should alternate 

between different contexts, locations and 
times; 

 
• Show only peak moments of the story: 

Repetitive movements should be eliminated; 
 

• Don’t cross the line: Once a scene is taken 
by a side of the interest line, the camera 
should in principle keep itself in that side, not 
making unexpected movement shots. The 
camera can switch sides, but only upon an 
establishing shot, that shows that transition; 

 
• Let the actor lead: The actor should initiate 

all movement, and the camera should come to 
rest a little before the actor; 

 
• Break movement: A scene illustrating a 

movement must be broken in two shots at 
least. 

 
4. System Architecture 
 
Our storytelling system architecture is organized in 
four modules. The Scriptwriter is responsible for 
controlling the plot and the story flow; the 
Scenographer is responsible for creating and arranging 
the sceneries; the Director defines how scenes will be 
filmed; and the Cameraman is responsible for 
positioning the cameras. Figure 2 shows a diagram of 
the architecture. 
 

 
Figure 2: System architecture 

 
 The main component of our architecture and the 
focus of this work is the Director. It concentrates the 
cinematography knowledge and decides, in real-time, 
the best way to present scenes. The knowledge is 
represented by means of several support vector 
machines trained to solve cinematography problems 
involving camera shot selection. Support vector 
machines are used as an effective method for general 
purpose pattern recognition; they are based on 
statistical learning theory and are specialized for small 
sample sets [Tyagi 2008]. A similar approach is used 
by Passos et al. [2008] to select camera shots in a race 
car game using a neural network classifier. Support 
vector machines have better generalization than neural 
networks and guarantee local and global optimal 
solutions similar to those obtained by neural networks 
[Gunn 1998]. In recent years, support vector machines 
have been found to be remarkably effective in many 
real-world applications such as in systems for detecting 
microcalcifications in medical images [El-Naqa et al. 
2002], automatic hierarchical document categorization 
[Cai et al. 2004], spam categorization [Drucker 1999], 
among others. 
 

In our system, the modules are agents that 
communicate with each other by means of message 
exchange and can be summarized as follows: 

 
1. The Scriptwriter reads the information about 

the current scene from the story plot and 
sends it to the Scenographer; 

 
2. The Scenographer prepares the actors and 

scenario for the scene dramatization and also 
places objects and involved actors in the 
scene. The information about the scenario is 
sent to both the Cameraman and the Director; 

 
3. The Cameraman, following cinematography 

rules, places a set of cameras in the scene for 
all possible shots for the current scene; 

 
4. The Director extracts from the scene all 

important data and applies them to a support 
vector machine to select the best shot for the 
scene. This information is then sent to the 
Cameraman; 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

178



 
5. The Cameraman activates the shot selected by 

the Director and, if necessary, executes a 
camera movement or zooming operation. 

 
5. The Director 
 
In a film production, the director creatively translates 
the written word into specific images. He  visualizes 
the script by giving to abstract concepts a concrete 
form. The director establishes a point of view on the 
action that helps to determine the selection of shots, 
camera placements and movements. The director is 
responsible for the dramatic structure and directional 
flow of the film. 
 

In our system, the role of the director is to choose 
which shot should be used at each time to highlight the 
scene emotion and to present the content in an 
interesting and coherent manner. To perform this task, 
the director uses a collection of support vector 
machines trained to classify the best shots for the 
dramatization scenes.  

 
The process consists of two steps. First, the training 

process, which is done before the story dramatization, 
consists in simulating some common scenes and 
defining the solution for the shot selection. The 
features of these scenes, actors and environment are 
used to teach the support vector machine how to 
proceed in this situation in order to detect similar 
situations in the future. The second step is the 
prediction process that is done in real-time during the 
dramatization by using the knowledge acquired 
through the training process to predict (classify) an 
unknown situation. Subsequent sections detail all this 
process.  

 
The input of our support vector machines are the 

important features from the environment, scene, and 
involved actors. The output is the selected shot that 
best matches with the input features, as shown in 
Figure 3.  
 

 
Figure 3: Support vector machine input and output 

5.1 Support Vector Machine 
 
The support vector machine, proposed by Vapnik 
[1995], is a powerful methodology for solving 
machine-learning problems. It consists of a supervised 
learning method that tries to find the biggest margin to 
separate different classes of data. Kernel functions are 
employed to efficiently map input data, which may not 
be linearly separable, to a high dimensional feature 
space where linear methods can then be applied.  
 

The original idea of SVM is to use a linear 
separating hyperplane to separate the training data set 
into two classes. Figure 4 shows an optimal hyperplane 
separating the blue class from the green class. 
 
 

 

 

                                   

 

 

 

             

 

 

Figure 4: Optimal hyperplane separating two classes 
 

 

Suppose the training data ( ) ),,(,,, 11 ll yxyx L  

where each sample n
i Rx ∈  belongs to a class 

}{ 1,1+−∈iy .  

 
The boundary hyperplane can be as follows: 
 

0=+⋅ bxω   
 
and the separate margins as: 
 

1+=+⋅ bxω  
1−=+⋅ bxω  

 
where, 

• ω  is a weight vector; 

• b   is a bias; 

• x   is a point in the space nR . 
 

This set of vectors is separated by the optimal 
hyperplane if and only if it is separated without error 
and the distance between the closest vector and the 
hyperplane is maximal. The separating hyperplane can 
be described in the following form: 

 blue sample; 
 green sample; 

 blue support vector; 
 green support vector; 
 margin;  optimal hyperplane; 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

179



 





−≤+⋅
+≥+⋅

,1

,1

vx

vx

i

i

ω
ω

      
if

if
    

1

1

−=
+=

i

i

y

y

 
 
or equivalently: 
 

( ) ,1≥+⋅ bxy ii ω
       

li ,,1K=                           

 
The optimal hyperplane is the one that satisfies the 

conditions and minimizes the function: 
2

2

1 ω .  

 
Vapnik [1995] has shown that, to perform this 

minimization, we must maximize the following 

function with respect to the variableiα : 

 

( ) ( )∑ ∑∑
= = =

⋅−=
l

i

l

i

l

j
jijijii xxyyW

1 1 12

1 αααα
 

 

subject to ,0 iα≤  li ,,1K=  and ∑
=

l

i
ii y

1

α   

 

Those sxi with iα<0 are termed Support 

Vectors. The support vectors are located on the 
separating margins and are usually a small subset of 

the training data set, denoted bySVMX .  

 

For an unknown vector ix , its classification 

corresponds to finding: 
 

( ) 









+⋅= ∑

∈ SVMi Xx
iii bxxysignxf )(α

 
 
where 
 

∑
∈

=
SVMi Xx

iii xyαω
 

 

and the sum is over those nonzero SVs with iα<0 . 

In other words, this process corresponds to finding 
which side of the hyperplane the unknown vector 
belongs. 
  

However, in most cases, the classification is not so 
simple, and often more complex structures are needed 
in order to make an optimal separation. For example, in 
Figure 5, the separation requires a curve that is more 
complex than a simple line. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Non-linearly separable classes 

 
To construct the optimal hyperplane in the case 

when the data is linearly non-separable, SVM uses two 
methods. First, it allows training errors. Second, it non-
linearly transforms the original input space into a 

higher dimensional feature space by a function( )xϕ . 

In this higher space, it is possible that the features may 
be linearly separated [Wang and Zhong 2003]. Then 
the problem can be described as: 
 

∑
=

+
l

i
iC

1

2

2

1
min ξω

  

(2)

 
 
subject to  
 

( )( ) 0,,,1,0,11 >=≥−≥+⋅ Clibxy iii Kξξφω                                                                        

 

A penalty term ∑
=

l

i
iC

1

ξ  in the objective function 

takes the training errors into account. If the data are 

linear separable, problem (2) goes back to (1) as all iξ  

will be zero. We can equivalently maximize ( )αW  

but the constraint is now Ci ≤≤ α0  instead of 

iα≤0 : 

 

( ) ( ) ( )( )∑ ∑∑
= = =

⋅−=
l

i

l

i

l

j
jijijii xxyyW

1 1 12

1 φφαααα

 
subject to  
 

Ci ≤≤ α0 , li ,,1K=  and ∑
=

=
l

i
ii y

1

0α  

 
The inner products in the high-dimensional space 

can be replaced by some special kernel functions. 
Some popular kernels are radial basis function kernel 
and polynomial kernel. 

 
 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

180



For example, to linearly separate the classes 
showed in Figure 5, the classes need to be mapped and 
rearranged using a kernel function in a high-
dimensional space. After the mapping, classes become 
linearly separable and the optimal hyperplane can be 
created (Figure 6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Classes mapped and rearranged to become linearly 
separable. 

 
Support vector machines were originally created for 

binary pattern classification. For our problem, a multi-
class pattern recognition is necessary because in most 
part of the scenes we have more than two possible 
shots for the same scene. To solve this problem, we use 
the "one-against-one" approach [Knerr et al. 1990] in 
which classifiers are constructed and each one trains 
data from two different classes, creating a combination 
of binary SVMs. The first use of this strategy on SVM 
was by Friedman [1996]. In classification we use a 
voting strategy to decide the class of the input pattern. 
 
5.2 Training Process 
 
Before using support vector machines to select the 
shots in our dramatization, they have to be trained to 
acquire the necessary knowledge to create the optimal 
hyperplane separating the shots, so that it can be used 
to predict the best shot for new scenes. 
 

In order to train the support vector machines, we 
simulate some common situations that happen in real 
films. Based on cinematography rules and principles, 
we perform the selection of best shots for these scenes 
and store them in a database together with features 
from the simulated scenes. The training database is 
composed of several samples of simulated scenes, each 
one with the features and the selected shot for the 
simulated scene. This training database is created once 
and is used in all future dramatizations. 

 
The used features are: 
 
• Normalized values of the position (X, Y and 

Z) (relative to the center of scene) of the 
actors involved in the scene. These values 
influence the camera shot in action scenes 
when the position of the actor can change 
during the dramatization. 

 
• The current emotional state of the actors 

involved in the scene (happiness, sadness, 
angriness or scariness). The emotional state in 
most cases influences the selected shot to 
highlight the emotional actor state. 

 
• The acting or talking actor. This feature is the 

most important because the actor must be 
visible in the shot. 

 
Numerical values are associated with the abstract 

types. The emotional state happiness is, for example, 
represented by the value 1, sadness by the value 2. All 
features are then normalized (between -1 and 1). 

 
The classes are the possible shots (camera angles) 

for the scene. These shots are defined in our system by 
the Cameraman module, which, for each scene, creates 
a line of action and positions the cameras in an 
appropriated location, improving the scene 
visualization by following standard cinematography 
rules and patterns proposed by Arijon [1976]. For 
example, in a dialog scene between two actors (Figure 
7) there are 5 possible shots (classes); camera A and 
camera D highlight the viewer’s attention to one actor 
while keeping the other actor visible in the scene; 
camera C and camera B highlight the attention only to 
one actor and emphasizes his emotional state; and 
camera E shows both actors. For this scene, we can 
extract 9 features: the position X, Y and Z of the two 
actors (6 features), the emotional state of the two actors 
(2 features), and the active talking actor (1 feature). 
 

 
 

  
Camera A Camera C 

A B C D 

E 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

181



  
Camera D Camera B 

 
                         Camera E 

 
Figure 7: Possible camera shots for a dialog scene. 

 
 For each type of scene we have a different support 
vector machine; the number of features (inputs) and 
classes (outputs) depends on the type of scene and 
number of involved actors. Figure 8 illustrates this 
combination of support vector machines. The director 
has N support vector machines and each one with 
different inputs and outputs. 
 

 
Figure 8: Director Architecture. 

 
5.3 Predicting Process 
 
With the support vector machines trained with 
cinematography knowledge, the Director module is 
able to act as a film director and, based on the previous 
experience, select in real-time the best shots to show 
the scenes. 
 

To predict the best shot, the director executes the 
following steps: 
 

• Selects the active support vector machine 
based on the type of the current scene; 

• Extracts the features from the active 
environment and actors; these features are the 
same used to create the training database; 

• Applies the extracted features to the support 
vector machine; 

• Use the support vector machine output to set 
the active camera. The result of our support 
vector machine is the camera shot classified 
as the best solution to show the scene. 

 
The scenes are composed by different shots; the 

transition between the shots occurs when an important 
event happens in the scene, for example when the 
emotional state of an actor changes or when an actor 
executes an action. The director detects in real-time 
these events and executes the predicting process to use 
the support vector machine knowledge to choose the 
new shot. 

 
Consider a scene where the actor chases an animal 

(Figure 9). We have two possible shots for this scene: 
camera A and camera B. The director detects in real-
time the type of the scene and activates the support 
vector machine for chasing scenes. Every time when a 
new support vector machine is selected an initial shot 
must be selected, so the director extracts from the 
environment the features used by the active support 
vector machine and apply these features to it; the 
support vector machine applies then the classification 
algorithm to determine the shot that best fits the current 
scene; finally, the director sends this selection to the 
Cameraman module which activates the selected 
camera. When a new important event occurs, for 
instance, while along the chase the actor speaks 
something, the director executes the prediction process 
again, and probably that action will influence on the 
selected shot. 
 

 
 

  
Camera A Camera B 

 
Figure 9: Possible camera shots for a chasing scene 

 
 
 

A B 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

182



6. Results 
 
To validate our architecture we run two tests: first the 
performance test, to check the necessary time to predict 
a new shot. The second test is the recognition rate, to 
check the accuracy of the predicted shots. The tests 
have occurred on an Intel Core 2 Quad 2.40 GHz, 4 
GB of memory, using a single core to process the 
support vector machines. 

 
To test the performance of our proposed solution, 

we trained our support vector machines with a different 
number of samples and use them to predict the shots 
for a sequence of 6 scenes, with a total of 
approximately 40 different shots. For each shot, we 
calculate the necessary time for the prediction process. 
Figure 10 shows performance results in a line chart 
with the training set size ranging from 10 to 55 
samples and the times correspond to the average of the 
all support vector machines trained with the current 
number of samples. 

 
 

 
Figure 10: Prediction performance test with different 

training sets. 
 
To test the recognition rate, for each support vector 

machine in our system, we created 5 training sets with 
a different number of samples and, for each one, a 
testing set with half the size of the corresponding 
training set. The training sets are used to train the 
support vector machine and the samples of the current 
test set are predicted. Correct and wrong predicted 
shots are then computed. Table 1 shows the computed 
results of this test with the training set size ranging 
from 10 to 55 samples. The presented percentages of 
accuracy correspond to the average of the results 
obtained for the different support vector machines. 

 
Table 1: Recognition rate with different training sets. 

Number of 
Samples 10 25 35 45 55 

Accuracy 92% 94.6% 96.5% 98% 98.6% 

 
Figure 11 shows the results of this test in a line 

chart. 
 

 
Figure 11: Recognition rate with different training sets. 

 
It is clear that the computational cost grows almost 

linearly with the number of samples. More samples 
result in a high accuracy but in slow recognition; few 
samples result in a fast recognition but in a low 
accuracy. However, with small training sets we obtain 
high percentage of correct recognition of the best shots, 
ensuring high accuracy in the shot selection and 
without high computational costs. 

 
 

7. Conclusion 
 
In this paper we have presented an intelligent 
cinematography director that uses a collection of 
support vector machines trained with cinematography 
knowledge to select in real-time the best scene shots in 
storytelling dramatization. Our methodology is 
applicable not only to storytelling systems; it can be 
adapted to other entertainment applications, such  as 
games, virtual worlds or 3D simulations. 
 

In our tests, support vector machines showed to 
have excellent recognition rate (between 92% and 
98%) with small training sets and without high 
computational cost (less that 1 second to predict). This 
approach ensures that most of the times the selected 
shots are the best solution to show the scene in 
accordance with cinematography principles and rules.  
 

Support vector machine is a powerful machine 
learning methodology, however, still not widely 
explored in the area of artificial intelligence for games. 
In this paper, we have shown that support vector 
machines can be successfully applied in storytelling to 
select camera shots in real-time. Extending the use of 
support vector machines in games and entertainment 
computing in general is a promising approach to 
implement other artificial intelligence and machine 
learning tasks, such as controlling the behavior of non-
player characters. Training our support vector 
machines at real-time in accordance with feedback 
provided by the users is also an interesting point to be 
investigated. 
 
 
 
 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

183



Acknowledgements 
 
This work was supported by CAPES/RH-TV-Digital, 
CAPES/PROCAD, and CNPq. Authors would like to 
express their gratitude to Laboratório de Computação 
Aplicada (LaCA) - UFSM. 
 
 
References 
 
ARIJON, D., 1976. Grammar of the Film Language. 

Communication Arts Books, Hasting House, Publishers, 
New York. 

CAI, T., HOFMANN, T., 2004 Hierarchical document 
categorization with support vector machines. In 
Proceedings of the ACM 13th Conference on 
Information and Knowledge Management. 

CAVAZZA , M., CHARLES, F. AND MEAD, S., 2002. Character-
based interactive storytelling. IEEE Intelligent Systems, 
special issue on AI in Interactive Entertainment, 
17(4):17-24. 

CHARLES, F., LUGRIN, J., CAVAZZA , M. AND MEAD, S., 2002. 
Real-time camera control for interactive storytelling. In 
Proceedings of the Game On, London, UK. 

CHRISTIANSON, D. B., ANDERSON, S. E., HE, L., COHEN, M. F., 
SALESIN, D. H., WELD, D. S., 1996. Declarative Camera 
Control For Automatic Cinematography. In Proceedings 
of the AAAI ’96, 148-155. 

COURTY, N., LAMARCHE, F., DONIKIAN , S. AND MARCHAND, 
E., 2003. A cinematography system for virtual 
storytelling. In Proceedings of the International 
Conference on Virtual Storytelling, Toulouse, France. 

DRUCKER, H., WU, D., VAPNIK, V., 1999. Support Vector 
Machines for Spam Categorization IEEE Trans. on 
Neural Networks , vol 10, number 5, pp. 1048-1054.  

EL-NAQA, I.,   YANG, Y., WERNICK, M. N.;   GALATSANOS, N. 
P.;   NISHIKAWA , R. M., 2002. A support vector machine 
approach for detection of microcalcifications. IEEE 
Trans. on Medical Imaging, vol. 21, no. 12, pp. 1552-
1563. 

FRIEDMAN, J., 1996. Another approach to polychotomous 
classification. Technical report, Department of 
Statistics, Stanford University. 

GRASBON, D. AND BRAUN, N., 2001. A morphological 
approach to interactive storytelling. In: Fleischmann, 
M.; Strauss, W., editors, In Proceedings of the CAST01, 
Living in Mixed Realities, Sankt Augustin, Germany, p. 
337-340. 

GUNN, S., 1998. Support Vector Machines for Classification 
and Regression. Technical Report, University of 
Southampton. 

HALPER, N., HELBING, R., STROTHOTTE, T., 2001. A camera 
trade-off between constraint satisfaction and frame 
coherence. Eurographics, volume 20. 

HAWKINS, B. 2004. Real-Time Cinematography for Games 
(Game Development Series). Charles River Media, Inc., 
Rockland, MA, USA. 

HE, L., COHEN, M., AND SALESIN, D. 1996. The virtual 
cinematographer: A paradigm for automatic real-time 
camera control and directing. In Proceedings of the 
ACM SIGGRAPH '96, 217-224. 

KNERR, S., PERSONNAZ, L., AND DREYFUS, G., 1990. Single-
layer learning revisited: a stepwise procedure for 
building and training a neural network. In J. Fogelman 
(ed.), Neurocomputing: Algorithms, Architectures and 
Applications, Springer. 

MASCELLI, J., 1998. The Five C's of Cinematography: otion 
Picture Filming Techniques. Silman-James Press, Los 
Angeles. 

MATEAS, M. AND STERN, A., 2000. Towards integrating plot 
and character for interactive drama. In Working notes of 
the Social Intelligent Agents: The Human in the Loop 
Symposium. AAAI Fall Symposium, p. 113-118. 

NEWMAN, R., 2008. Cinematic game secrets for creative 
directors and producers. Focal Press, UK. 

PASSOS, E.; MONTENEGRO, A.; AZEVEDO, V.; APOLINARIO, V.; 
POZZER, C.; CLUA, E. W. G., 2008. Neuronal Editor 
Agent for Game Cinematography. In Proceedings of the 
VII Games and Digital Entertainment Symposium. Belo 
Horizonte, p. 91-97. 

SPIERLING, U., BRAUN, N., IURGEL, I. AND GRASBON, D., 
2002. Setting the scene: playing digital director in 
interactive storytelling and creation. Computer and 
Graphics 26, 31-44. 

TYAGI S., 2008. A Comparative Study of SVM Classifiers 
and Artificial Neural Networks Application for Rolling 
Element Bearing Fault Diagnosis using Wavelet 
Transform Preprocessing. In Proceedings of World 
Academy of Science, Engineering And Technology 
Volume 33, p. 319-327.  

VAPNIK, V., 1995. The Nature of Statistical Learning Theory. 
Springer, New York. 

WANG, X., ZHONG, Y.,  2003. Statistical Learning Theory and 
State of the Art in SVM. In Proceedings of the 2nd 
IEEE International Conference on Cognitive 
Informatics, p. 55 - 60. 

YOUNG, R., 2000. Creating interactive narrative structures: 
The potential for AI approaches. In Proceedings of the 
AAAI Spring Symposium in Artificial Intelligence and 
Interactive Entertainment, Palo Alto, California. AAAI 
Press. 

 
 

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

184



trAIns: An Artificial Inteligence for OpenTTD
Luis Henrique Oliveira Rios, Luiz Chaimowicz

Departamento de Ciência da Computação
Universidade Federal de Minas Gerais

Figure 1: The four transport types available in OpenTTD: aerial, maritime, railroad and road.

Abstract

Simulation games present several challenges for computer con-
trolled players. As a result of this, most of the artificial intelligence
algorithms developed so far, especially for construction and man-
agement simulation games, do not give satisfactory results when
compared to human performance. In this paper we develop an AI
to control an agent of OpenTTD, a open-source clone of Transport
Tycoon Deluxe, one of the premier construction and management
simulation games. To do this, we create and adapt artificial intelli-
gence techniques to allow their use in a dynamic, multi-agent strate-
gic environment. Named trAIns, the developed AI constructs and
manages railroad routes, the most challenging transport type in the
game. Several qualitative and quantitative experiments comparing
trAIns with another AI are performed, bringing very good results.

Keywords: Artificial Intelligence, Construction and Management
Simulation Games, Path Planning, OpenTTD.

Author’s Contact: {lhrios, chaimo}@dcc.ufmg.br

1 Introduction

The advances in hardware and software have allowed game devel-
opers to improve the quality of digital games, augmenting their de-
gree of immersion and realism. The increase in game complexity
has demanded the development and adaptation of techniques to deal
with a great number of variables and details still respecting time
constraints. In this context, the research and development of artifi-
cial intelligence algorithms have gained importance. The quality of
other game elements such as graphics and gameplay has increased
players’ expectations regarding artificial intelligence. Thus, it is
becoming one of the main components of digital games and should
have a level of sophistication similar to other game elements.

In digital games, artificial intelligence algorithms are responsible
for making decisions and determining actions of game agents - we
will call agent a character or institution in the game that is con-
trolled by a computer. A general metric is that these algorithms
must generate actions and decisions resulting in behaviors similar
to the ones caused by human players [Byl 2004]. A common prob-
lem faced by these algorithms is the time constraints. Despite the
increase of computational resources available, the response time is
critical because most of the games happen in a dynamic, fast paced
environment. These requirements demand an adaptation of classi-
cal approaches and the development of new AI algorithms.

In this paper, we are interested on artificial intelligence algorithms
for simulation games. Among the several existing modalities, we
focus on a style called simulation of construction and management
(as stated by [Rollings and Adams 2003] taxonomy). Some classi-
cal examples are: Capitalism, Caesar, SimCity and Transport Ty-
coon. In this game style, the player’s main goal is to construct,

manage and expand communities, institutions, companies or em-
pires using limited resources. Because of the complexity involved
in constructing and managing resources as well as the time restric-
tions, artificial intelligence algorithms suitable for these games are
not sophisticated - to our knowledge, there are few artificial intel-
ligence techniques developed for simulation games that are able to
deal well with these issues. Therefore, when compared to human
players, the generated behavior is poor.

Thus, the main objective of this paper is to adapt, implement and
evaluate artificial intelligence algorithms to control agents in con-
struction and management simulation games. In particular, this
work considers AI algorithms that will be used to control an agent
in a game called OpenTTD [OpenTTD 2009].

OpenTTD is an open-source clone of Transport Tycoon Deluxe, a
game released in 1994. The main objective is to construct and man-
age routes to become the transport tycoon. To achieve this, play-
ers must build lucrative transport routes connecting industries and
cites. There are four kinds of transport types (figure 1): railroad,
road, aerial and maritime. Normally, the most used is the railroad
since it is capable of carrying much cargo for great distances in a
fast way. It is also the most challenging one as will be discussed.

In this paper, we will use the acronym AI to denote a set of algo-
rithms that control an agent in the game. These algorithms are im-
plemented using a specific API and can play against human players.
Currently, there are about 13 AIs available for the game, but only
four use railroads. These AIs have several problems in common -
part of them caused by the naive approaches adopted. For exam-
ple, they can not build complex railroads, are not able to plan large
routes, can not change the railroad track type and use poor algo-
rithms to choose the locomotive engines. Furthermore, the design
of tracks constructed by the AI is very different from the ones built
by human players. These problems affect the performance of the
company controlled by the computer and influence the gameplay.

Thus, the main contribution of this work is the development of
trAIns, an AI specifically developed for the construction and man-
agement of railroads in OpenTTD. Adapting traditional AI algo-
rithms such as A* and proposing new techniques for a dynamic,
multi-agent environment, trAIns solves most of current OpenTTD
AIs’ problems and introduces many other improvements. trAIns is
evaluated qualitatively, analyzing its construction decisions as well
as quantitatively, comparing its performance against Admiral AI,
the most complete AI current available in the game.

This paper is organized as follows: next section presents OpenTTD,
describing its main features. Section 3 discusses several aspects re-
lated to the development of intelligent agents for playing OpenTTD.
In section 4, we introduce trAIns and in section 5 we present the
experimental results. Finally, Section 6 brings the conclusions and
possibilities for future work.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

185



2 OpenTTD

As mentioned, OpenTTD is an open-source clone of Transport Ty-
coon Deluxe, a game released in 1994. It was developed using re-
verse engineering, but now has an expressive number of new func-
tionalities that improves the gameplay.

Players in OpenTTD own a transport company and are responsible
for managing it. These players can be humans or computer con-
trolled agents. The primary goal is to become the transport tycoon,
that is, to make the controlled company becomes the best one. The
criteria used to evaluate a company contemplates aspects like: the
total number of vehicles and stations, the number of cargo types
transported, the total number of stations and the amount of money
the company has. A more general criterion can be the company net
worth: the sum of available cash and company’s properties value
minus the total debts.

So, to be better evaluated on these criteria the company owner needs
to build lucrative transport routes. The routes must connect cities
and industries. There are some types of cargo (coal and wood, for
example) that must be transported among industries. Others, like
passengers and mail, must be carried from one city to another. Fi-
nally, some cargo must be transported from one industry to a city
(examples are: goods and food).

Four different transport types can be used and combined to create
routes: aerial, maritime, railroad and road (as shown in figure 1).
Each one has pros and cons that vary according to different factors
such as the amount of cargo that must be carried, the landscape
around the industry/city, the distance between source and desti-
nation, the difficulty to construct the ways and stations, and the
amount of money available.

The aerial transport, for example, requires a large area of flat ground
for the construction of an airport capable of operating with large
airplanes. If compared with the capacity of a train, each airplane
can carry only a small amount of cargo and is also more expensive.
However, there is no need to create paths connecting the airports.
An already existing airport can easily receive new airplanes coming
from anywhere, which is not always true for the other transport
types. Also, as a general rule, airplanes are the fastest vehicles
available in the game.

In contrast with the aerial transport, road transport has the cheapest
vehicles of the game. They are also slower and able to carry only
small amount of cargo. To reach some destination, vehicles must
travel using the available roads. Therefore, the company owner that
wants to use this kind of transport needs to build the roads connect-
ing the route’s source and destination. Road vehicles can automati-
cally share the roads as they are two-way.

On the other hand, railroads are not able to share their tracks au-
tomatically. To create railroads capable of supporting more than
one train running at the same time, the player needs to use a re-
source called signal. There are 6 different types of signals. The two
most important are the block signal (allows only one train to be in
the same block at the same time) and the path signal (allows more
than one train to enter in a block if their paths do not intercept each
other). These resources must be carefully used because misplaced
signals and the use of a wrong signal type can cause deadlocks and
accidents. That is why railroads are the most flexible transport type.

A carefully planned railroad can operate with dozens of trains and
transport a large amount of cargo connecting distant points. The
train cost is not too high if compared to other transport types be-
cause a single locomotive can drag several inexpensive wagons.

As in aerial transport, the construction of railroad stations demands
a large area of flat land. It has also similarities with road transport:
both must connect endpoints and offer tunnels and bridges as way to
transpose obstacles. Thus, the construction of railroads incorporate
almost all the challenges present in the construction of other trans-
port types routes. That is why it has the most complex construction
process.

Figure 2: An OpenTTD screenshot: there two rectangles highlight-
ing some tools available on game menu. The yellow tools predomi-
nantly have construction functions. By contrast, the green tools are
essentially used for management tasks. It also shows the railway
construction tools (the window positioned near the middle). The
basic parts provided by the game for railroad track construction
have been highlighted using the cyan color.

2.1 Gameplay

OpenTTD is a construction and management simulator of transport
routes. Thus, it has tools used to build the routes and other tools
that enable the player to manage the created routes. Figure 2 shows
an OpenTTD screenshot. The game menu is depicted at the top of
the figure. Some tools have been highlighted. The yellow tools are
used in route construction while the green tools are used mainly for
management.

The main point of OpenTTD gameplay is that the player must
build all elements related to the route. So, suppose that one player
chooses to create a route using trains. The first step will be the
selection of the industries and/or cites that will be connected by
the route. There are some important criteria: production rate and
distance between source and destination. After that, he needs to
construct the stations and the tracks. Finally, he will buy the proper
locomotive and wagons, and program them to execute the route.
Other transport types have similar steps but the most powerful and
complex is the railroad type.

Management tools are applied to manage the created routes
throughout the game. During the game, new vehicle models will
be released. All vehicles have some attributes: running cost, max-
imum reliability (determines the chances of a failure), maximum
speed and capacity. Generally, new vehicles are better, since they
are faster and are able to carry much more cargo. Therefore, ve-
hicles need to be replaced during the game because they will be-
come outdated. For railroads, it is also possible to change the type
of the rail. There are four types available in the game: common,
electrified, monorail and maglev. As these new rail types become
available, it will be possible to use new kinds of vehicles. Thus,
sometimes, changing the railway rail type can be lucrative.

The industry production rates tend to increase during the game. If
this industry is used in a route, the number of vehicles must be
revised to better transport the production. The production rate can
also decrease, requiring a reduction in number of vehicles. It is
also possible that another transport company decides to carry cargo
from an already explored industry. The production will now be
split between the companies forcing the old company to adjust the
number of vehicles in its route.

To create the routes, it is important to understand the transported
cargo payment mechanism. The payment received for delivering an
amount of cargo to some industry depends on some factors. They
are: the distance between source and destination, the type of cargo,
the number of days that the cargo traveled and the amount of cargo

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

186



 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

tr
ai

n 
an

nu
al

 in
co

m
e 

(p
ou

nd
s)

distance between stations (tiles)

Figure 3: This curve shows how the annual train income varies ac-
cording to the distance not considering the inflation and supposing
the train travels at constant speed. The used train has maximum
speed of 112 km/h and the transported cargo was gold.

delivered. So, the final payment equation is:

payment = dist× time factor × num pieces× cargo base

Where dist is the distance between stations, num pieces is related
with the amount of cargo delivered and cargo base is the base price
of a cargo unit. T ime factor represents the delay for transporting
the cargo. It is inversely proportional to the number of days the
cargo traveled. The rate of variation depends on cargo type.

Observing the equation, a trade off can be perceived: long distances
will contribute for a bigger delivery payment. However, the delay
will increase penalizing the time factor. Thus, there must be an
optimal distance.

It is possible to estimate the annual train income for a specific cargo
and distance. First, supposing the train travels at constant speed it
is possible to estimate the travel time. The train has also a load
and an unload time. With this information, one can compute the
number of times the train travels the route in one year. Using this
approximation we have computed the curve in the Figure 3 that
shows approximately what the optimal distance is.

Observing the curve, it is possible to see that the optimal distance is
close to 450 tiles (a tile is a cell in the discrete game map). A good
AI should be able to build routes connecting industries separated by
distances of this magnitude or even bigger distances, considering
that trains will become faster during the game.

3 AI for OpenTTD

This section presents several aspects related to the development of
an AI for OpenTTD. It first classifies the game environment using
[Russell and Norvig 2003] taxonomy. This classification is impor-
tant to better understand the challenges involved in programming
OpenTTD agents. Then, NoAI - the OpenTTD API that enables
the development of AI algorithms - is described. Finally, the al-
ready existent AIs are discussed.

3.1 Game Environment

Considering a company owner as an agent we can classify the en-
vironment where this agent will act. Using [Russell and Norvig
2003] taxonomy, it can be classified as fully observable, strategic,
sequential, dynamic, discrete and competitive multiagent.

The game environment is fully observable because an agent using
its sensors has access to the complete state of the environment at
each point in time. It is capable of seeing all vehicles in the game
(including other companies’ vehicles), all routes and all existing
industries. Moreover, an agent can see the plans being executed by

other companies’ vehicles. However, some of these characteristics
are not implemented in NoAI API yet.

Considering only players’ actions the environment is strategic, i.e.,
the next game state is completely determined by the agent actions
and the other players’ actions (that can not be predicted). Although,
the environment has also some stochastic characteristics mainly re-
lated with the economy. New industries can arise randomly. Their
production rates changes are also determined randomly. The econ-
omy phase, contraction for example, is not predictable. The game
disasters (UFO landing, for example), commonly disabled, are an
environment stochastic element as well.

The OpenTTD game environment is sequential since current ac-
tions will affect future ones. For example, the construction of a rail-
road route influences future managing decisions regarding industry
selection. It also generates new management tasks like: controlling
the number of vehicles in the route and choosing the moment to
change route vehicles models.

While a player is acting or deciding what he has to do, the game
environment is changing: other players can act at the same time,
changes such as the construction of a new industry can happen, etc.
If a player is constructing a railroad to connect a specific industry,
others can do the same and occasionally finish first. The environ-
ment, therefore, can be classified as dynamic. This dynamism will
always generate some uncertainty in the planning and in its execu-
tion.

The game map is divided into small cells called tiles. These tiles are
the smallest map units, i.e., the construction of an element always
demands at least one map tile. The time is also discrete. Internally
it is represented using fractions of days (ticks).

As mentioned, there are various companies competing against each
other. Hence, the environment is competitive multiagent. A com-
pany can collaborate with another by sending to it some money, but
they still compete against each other for resources: industries, cities
and map tiles.

Some of the environment characteristics increase the challenges in-
volving the construction of an AI for the OpenTTD. The dynamic
environment together with the presence of other agents demand
from the AI the ability of fast planning. If planning takes too long,
when it finishes, the current game state can be very different from
the state initially considered in the planning. Thereby, it will not be
valid anymore. Small differences can be resolved using a replan-
ning that, again, needs to be fast.

The route planner needs to be fast while considering a lot of details
available in the game such as the construction of bridges and tun-
nels; the use of terraforming (a tool that enables company owners to
modify the land form); the route configuration (winding routes re-
duce the maximum allowed speed) and the large number of possible
paths to connect two points.

Besides, the presence of other agents also demands some flexibility
from the algorithms responsible for managing the routes. For ex-
ample, consider that one company transports some cargo from one
industry to a city. If another company decides to transport cargo
from this same industry, the number of vehicles in the route should
be decreased. Furthermore, variations on industry production rates
are not deterministic. A route manager, thus, needs to be able to
increase or decrease the number of vehicles in a route according to
the changes in the production rates.

These are the main challenges that must be surpassed by the AI that
will control a company in OpenTTD.

3.2 NoAI API

An agent has mechanism to perceive the environment (called sen-
sors) and some tools that enable it to change this environment
(called actuators). On OpenTTD, sensors and actuators are imple-
mented as an API called NoAI Framework.

The NoAI API allows users to create AIs for the game, program-
ming them in a script language called Squirrel [Demichelis 2009].

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

187



This is one of the many improvements introduced by OpenTTD
community. Squirrel is an imperative object oriented script lan-
guage strongly based on Lua language [Ierusalimschy et al. 1996].
This section will discuss some important characteristics of this API
and how it works.

The primary principle used in the construction of NoAI Framework
is fairness. That is, the actuators must correspond to the tools avail-
able for human players and the sensors must generate environment
perceptions similar to human players’. As a consequence of this
principle, the resources available in both interfaces (for the human
players and for the computer controlled players) are equivalent.

To better understand the API internal functioning, one can con-
sider each AI running in the game as a process in an operating sys-
tem. Each AI will be scheduled using a round-robin scheduler and
will be preempted after executing a certain number of instructions.
Then, the game will execute its proper functions and call the AIs
again, restarting the loop.

The API is composed by various classes that aggregate game func-
tionalities related with some game resource. The class named
AIController must be extend, so when the AI company is launched
in the game, OpenTTD will call the method Start. This method
must never return, if so the AI process will die.

The classes AIAirport, AIRail, AIRoad and AIMarine aggregate the
basic functionality related with the four kinds of transport available
in the game. For example, the AIRail class has a function named
BuildRailTrack(TileIndex tile , RailTrack rail track) used to con-
struct a rail on a given tile. Another important function, used to
create railroad station, is BuildRailStation.

To perceive the game environment one important class is the AITile.
It has functions like IsWaterTile, GetHeight and GetSlope that can
be used to get information about the map. It is important to observe
here that when one of these functions is called, it will return a value
based on the state of the map when it was executed. Therefore,
if the game state changes after this, the AI will need to evoke the
function again to note the difference.

The NoAI Framework also works with some events that are equiv-
alent to the news published for human players during the game.
When a new company is launched, when a new train becomes avail-
able or when a new industry is created the AI event stack will re-
ceive the proper information. These events are very important and
can be used to help AI decisions process.

All the actuators implemented on the API inform if the correspond-
ing action could be executed successfully. Thus, the AI program-
mer can always know when some action fails. One can execute
an action in the test mode to check if it can be currently executed.
Again, the returned value is associated with a specific game state.

3.3 Existing AIs

Currently, there are about 13 published AIs [OpenTTDForum 2009]
available for OpenTTD. Most of them are very simple and just cre-
ate straightforward routes using the aerial and/or the road transport
type. Others, more sophisticated, are able to plan complex routes
and even combine some transport types. However, only four of
them work with trains, the most complex game transport type.

Generally speaking, all these four AIs have some problems. One
of these problems, related with the pathfinding, is the limitation in
the size of the planned routes. As shown, long routes can be very
lucrative especially for trains. Some AIs can not deal with failures
during the construction of a route. That is, if the game state changes
during the planning the AI will fail in the construction of the route.

Other problem is the absence of rail type changes. This change is
very important because it enables the use of new locomotives that
are faster and more trustworthy. Differently from human players,
none of these AIs is able to create double railways (some AIs create
two independent railroad tracks that together compose the route).
They neither are capable of making good decisions. Generally, they
use poor algorithms to choose the locomotive engines and indus-
tries that must be connect by a route. In our tests, trAIns AI won

Figure 4: The figure shows a route created by Admiral AI that op-
erates with trains. To compose the two-way railway it uses two
independent one-way railroad tracks.

easily from some of these AIs because they are very naive and lack
powerful management resources. On some tests, they bankrupted
on the first years of the game.

Among the existent AIs capable of playing with trains, the only one
that could generate results similar to trAIns was Admiral AI (Ad-
miral AI is able to play with all kinds of transport available in the
game except the maritime transport type). It is the most powerful AI
available for the game so far. It operates with trains creating routes
which distance between source and destination is about 75 tiles.
It is able to reuse already built stations, i.e., Admiral AI can con-
nect different source industries to the same destination industry. To
be able to construct a two-way railway, it creates two independent
railroads tracks that together compose the route (figure 4). Each
independent railway is one-way. Thus, Admiral AI railway routes
can operate with multiple trains.

Admiral AI is also able to manage the created routes. During the
game it adjusts the number of vehicles in a route according to the
production of the industry that is connected by the route. Through-
out the game, Admiral AI replaces the locomotive types consider-
ing the new introduced types. Thus, we used Admiral AI to play
against trAIns AI in the experiments presented in Section 5.

4 trAIns AI

Using the NoAI Framework and the Squirrel language we have de-
veloped a new AI for OpenTTD: trAIns. It is named trAIns because
it only plays with trains, i.e., it basically creates and manages train
routes that connect industries. It works as follows: if there is some
money available, it will decide if it should build a new route or
spend the money improving already existent ones.

Route improvement has higher priority and includes increasing the
number of trains in a route, changing the locomotive type or chang-
ing the rail type. If no route needs to be updated, trAIns will create
a new route between two industries. Firstly, the source industry
and destination industries are selected. If possible it tries to use
an already existent destination industry. This is done sharing the
same railway to multiple routes using a mechanism called junction.
Then, the railways to connect the industries are created. To do this,
it executes A* algorithm to find a path between the stations. We use
an abstraction called double parts that enables the construction of
double railways.

This section will describe in details each part of this process.

4.1 Railway Construction

One important component of trAIns AI is the module responsible
for the construction of railways. trAIns builds only double railroad

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

188



Figure 5: This figure shows 6 double parts used to construct double
railways. Each double part is created by the union of the basic
parts provided by the game (figure 2). There are three basic kinds
of double parts: bends, diagonals and lines. They have a direction
and a orientation as shown in the figure. It also shows the base and
next points. The base point is placed over the next point of a part to
connect them.

tracks, which enables many trains to circulate on the same route.
As a result of the restriction that on each track of the railroad the
train can travel only in one direction, the traffic on double railways
is two-way. This approach minimizes traffic jams while allowing a
large number of trains on the same railroad. To guarantee that trains
will only be able to travel in one direction, each track is signaled us-
ing one-way block signals. Next, the process of constructing these
railways will be detailed.

4.1.1 Double Railway Parts

OpenTTD provides four basic parts (figure 2) for the construction of
railways. We have combined these basic parts to create an abstrac-
tion called double railway parts (figure 5). From now on, the term
part will refer to a double part created by the combination of the
basic parts provided by the game, unless the opposite is mentioned.
These parts can be connected to create a double railway. There are
22 parts (bridges and tunnels are also considered parts) that have
an orientation and a direction. The connection between parts has a
restriction: some parts can not connect with others (i.e., each part
has a set of successors). Each part has two important points called
base and next. The base point of a child part (successor part) must
be placed over the next point of the parent part (predecessor part)
to connect the parts.

4.1.2 Railway Planning

As mentioned, trAIns uses A* algorithm [Hart et al. 1968] to plan
a path between source and destination points. A* is a classical path
planning algorithm that is widely used in games to find shortest
paths in a graph or grid. Basically, at each step, A* expands the
node x that has the smaller cost f(x) according to the equation
f(x) = g(x)+h(x), where g(x) is the actual cost of moving from
the source node to x and h(x) is an heuristic function that estimates
the cost between x and the destination node. If this heuristic is
admissible, i.e., if it never overestimates the actual cost, A* can be
proved optimal. Details of A* can be found in [Russell and Norvig
2003] and [Bourg and Seemann 2004] among others.

To be able of performing an efficient planning of long railways,
the original A* implementation provided as library in OpenTTD
was modified. To save time and resources, we removed from the
algorithm the code that updates the cost (g) of the nodes in the open
list. That is, we assume that when a node is inserted in the open list
it has already the minimum cost, i.e., repeated nodes are visited in
an increasing order of cost. Although we have not formally proved
it, we believe that A* optimality is preserved, since, in our case, all
edges have the same cost. So the first edges to be inserted will have

the smallest values of g.

This modified implementation of A* tries to check, as early as pos-
sible, if a node has already been visited, that is, if it is already in the
closed list. The original implementation postpones this verification,
first generating the node and then checking if it is on the closed list.
Moreover, as a consequence of the first change in the code, nodes
are closed (marked as visited) in the moment they are inserted in
the open list.

To create the double railways it considers double parts instead of the
basic parts provided by the game during path computation (a node
is considered a pair < tile , part >). Hence, with this approach,
trAIns needs to execute the search algorithm only one time to build
a double railway while other AIs need two executions, each one
creating an independent single railway in which trains move just in
one direction.

As mentioned, one of the goals of this project is to develop an AI
capable of building railways similar to the ones constructed by hu-
man players. Part of this goal is achieved by the use of double
railroad tracks. However, the railway shape is also an important as-
pect that can determine the similarities of a human player’s railway
and a railway created by an AI. The railway tracing is important be-
cause it influences the acceleration of locomotives. Depending on
the path configuration (number of curves), the train will be forced to
decrease its speed. So, is important to try to minimize the number
of curves. One possible approach to solve this problem is to pun-
ish each direction change using A* function cost (g) as suggested
in [Rabin 2000]. But this can increase the time of execution since
it augments the number of expanded nodes. The solution proposed
here tries to avoid direction changes during tie-break procedures, as
explained below.

To allow A* to efficiently plan long railways, it is necessary to care-
fully choose the heuristics since the number of expanded nodes in
A* can be exponential in the length of the solution. The use of ap-
propriate heuristics can attenuate this problem. The h function used
by our algorithm is the diagonal distance. The traditional Manhat-
tan Distance Heuristic, generally used in grid environments, is not
admissible in our context since using double parts, we may have
rails oriented diagonally. When some nodes have the same f value,
we have to employ some tie-break procedures to chose which one
will be expanded. In case of ties, our algorithm firstly chooses the
node x that has the smallest h(x), that is, the node that is sup-
posedly closest to the goal. If all nodes have the same h(x), the
node that will minimize direction changes is selected. With this
approach, the number of expanded nodes is reduced without sacri-
ficing the solution quality.

Differently from common implementations, our A* implementation
does not keep a field to indicate the parent node. Thus, when the
execution finishes, if a path is found, the algorithm starts from the
goal and chooses the successors with the lowest cost until it reaches
the start node. If successors have the same cost it selects the suc-
cessor that will not cause a direction change. When the start is
found, there’s a path where is possible (there is no guarantee since
the game environment is dynamic) to construct a railway.

If during the railway construction - during the part construction at
the position calculate by A* - a change is detected, i.e., it is not pos-
sible to create a part at that point, it is necessary to replan the path.
The last built parts are destroyed and A* is executed again chang-
ing only the start point, since the construction is done in direction
to the goal.

The structure generated to represent the path is stored to be used in
the future. It is important for changing the rail type and computing
junction points.

4.1.3 Bridges

Sometimes, it is necessary to transpose an obstacle (a river, a road,
another railway) during the construction of a railway. This can be
done using bridges. In general, it is better to avoid bridges by bor-
dering obstacles when possible, since bridges are more expensive
(monetarily speaking). But this may significantly increase the num-

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

189



Figure 6: The double railways were constructed by the trAIns AI.
The bridge part was used to transpose other railway. As shown,
the bridges that form a bridge part do not need to be aligned. The
picture also shows a tunnel that can transpose obstacles too. trAIns
AI does not work with tunnels.

ber of expanded nodes. To avoid this growth, our algorithm always
considers bridge construction during path planning instead of trying
to avoid the obstacles.

As the railway created by trAIns AI are double, bridges need to be
double too. Another important restriction is related with the exe-
cution time. During the planning of a railway it is not possible to
check for every node if a bridge should be build. Therefore, the ap-
proach adopted here limits the number of bridge construction tries.
It only tries to create a bridge if it detects that there is an obstacle
avoiding the construction of the next part. If so, it will try to find an
ending point for the bridge that transpose the obstacle and permits
the construction of a part after the bridge.

Bridges are modeled as parts. One bridge part can be composed of
multiple bridges. Each track in the double part has independent size
bridges, that is, the bridges do not need to be aligned in a part nei-
ther start and end on neighbor tiles. There is also the possibility of
mixing bridges with common rails as shows figure 6. Besides sav-
ing processing time, this technique produces good results because
the bridges built are very similar to the bridges created by human
players.

4.1.4 Junctions

Junctions are important tools that allow the creation of complex
railway networks, since they permit the creation of branches. Let’s
say, for example, that there is a route connecting two industries.
Near the source industry there is another industry that produces the
same type of cargo (that is, its production can be transported to
the destination industry already connected by the route). Without
the use of junctions, it would be necessary to create a new railway
connecting the new industry to the destination industry. However,
it is possible to use the already existing railway by connecting the
new industry to it. This connection will be made using a junction
as shown in figure 7.

The adoption of junctions on railways permits the concentration of
production. The production of multiple source industries can be
carried to a single industry. Some industries can only produce car-
gos by processing other industries production (a Sawmill, for ex-
ample, uses wood to produce goods). If the production of various
industries can be routed to a single processing industry its produc-
tion rate will be very high. Thus, this industry will be an excellent
candidate for a route.

Junctions are also modeled as double parts. There are 12 differ-
ent junctions and each one can be placed over some specific parts.
Thus, to create a branch at specific point of the route, one must
choose the proper junction part that fits on the part at that point.

Figure 7: This figure shows a junction used to create a branch on
a railway connecting a Coal Mine to a Power Station. After the
construction of the junction, there are two Coal Mines connected to
one Power Station. It also shows that two trains can pass through
the junction at the same time if their paths are independent, i.e.,
they do not cross.

At the junctions, the tracks of the railway cross with each other. So,
signals must be placed to avoid accidents. The signals used here
are from the path signal type, which allows more than one train to
enter in a block if their paths do not intercept themselves. Hence, it
permits that two trains use the junction at the same time, in the best
case. This approach attenuates traffic jams caused by the necessity
of mutual exclusion on junctions.

4.2 Railroad Station Construction

Cargos are loaded and unloaded at stations, which should also be
constructed by the company owner. These stations should be com-
patible with the double railways adopted. We selected a format in
which there is a single entry point and a single exit point in each
station. Each point connects with one of the tracks that compose
the double railway. A station can operate with multiples trains at
the same time as the number of platforms can be configured. We
use two platforms for unloading station and one for the loading sta-
tion. The number of unloading platforms is bigger to avoid traffic
jams since multiple source industries can share the same destination
industry.

To create a station, it is necessary to find a large area of flat land
close to the desired industry (so far, trAIns only creates routes con-
necting industries). Unfortunately, there is rarely an available area
satisfying these constraints so it is necessary to use the terraform-
ing tool to flat the land. Since the cost of this operation can be very
high, the approach adopted here is to test a number of different pos-
sible lands to then choose the least expensive. The number of tests
is not high since there is a distance restriction between the station
and the industry (if this distance is too large the station will not be
associated with the industry).

4.3 Management

There are two primarily management tasks that should be treated
by the AI: route management and the investment of the company’s
available money. The first task has higher priority: the AI will only
invest the money in new routes if none of the current existing routes
needs it. In this case, the last task is treated using a very simple
approach: always invest (although some restrictions are adopted
to avoid spending money on industries with very low production
rates). Another important restriction is that trAIns AI must have
a minimum amount of money before starting to construct any new
route.

The process of creating a new route demands some decisions. One
of them is the choice of which pair of industries will be connected

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

190



by the route. To solve this problem, trAIns AI considers some in-
dustry characteristics such as the number of stations around the in-
dustry, the cargo type and the amount of cargo already transported.
Thus, the algorithm computes a ratio for each industry in the game
and then chooses the industry with the highest ratio. This ratio is
given by the production that is not already transport divided by the
number of stations around the industry (at least one) and by the
price paid for one unit of that cargo transported across 20 tiles with
just 10 days of delay. That is, the trAIns AI tries to select the indus-
try with the largest potential of money generation.

After choosing the source industry, it is necessary to find an in-
dustry to where the production must be transported. The optimal
distance between two industries follows a curve similar to the one
shown in figure 3, but can not be too long as time to plan the rail-
way will increase too much. Firstly, it tries to use an industry that
already has a route and railways. The condition to do this is that the
distance between industries and the distance between the source
industry and the closest part of the railway that forms the already
existent route are limited for a given range. If so, a junction will be
created. Otherwise, a new railway will be constructed.

Finally, the number of trains and the locomotive type must be cho-
sen. As the number of trains in the route depends on the locomotive
type, it is selected first. The selection process is also based on the
computation of a ratio. For locomotives, this ratio varies from 0 to
1 and considers aspects such as the price, the maximum reliability,
the maximum speed, its weight and power. All these variables are
normalized according to the largest value available. Basically, the
trAIns AI computes the financial cost of the locomotive benefits.
All benefits have the same importance.

The created routes must be managed during the game. One of the
managing tasks is the decision of the number of trains in a route.
The process used to solve this problem estimates the load time and
the travel time using the distance between stations, the production
rate and the locomotive maximum speed. Thus, the number of
trains is given by the load time plus the total travel time divided
by the load time. This formula tries to guarantee that there will
always be a train waiting to be load.

Another important management problem is the decision of when
the locomotive type must be changed. This problem is also related
with the rail type change. To solve these problems, trAIns calculates
the same ratio used to decide with locomotive is the best. If the
current locomotive is not the best it will be replaced. If the new
locomotive can not operate on the current rails it must be changed
as well. To avoid constant locomotive changes the AI only replaces
locomotives in intervals of five years.

5 Experiments and Results

We performed some experiments to evaluate the proposed AI.
These experiments compared trAIns AI with the Admiral AI play-
ing with only trains. Fourteen scenarios have been used: half with
flat terrain and the other half with mountainous terrains. All maps
have 512x512 tiles, very small amount of seas (they are predom-
enantly are formed by lands) and the landscape style used was the
temperate (the game has 4 different landscape styles). Games begin
at the first day of 1960 and go for about 15 years. The locomo-
tive failures were disabled and the other attributes were configured
using the medium difficulty level. The games were executed in
OpenTTD version 16724, available at the game SVN server.

Tables 1 and 2 present a summary of the results. Two metrics
were used to compare the performance of the AIs: the company
value and the detailed performance rating. The last considers dif-
ferent aspects such as the total number of vehicles, the total num-
ber of stations, the minimum and maximum incomes, the minimum
profit, the number of cargo types transported and the total amount
of money. The evaluation is based on some thresholds that must be
reached by the company. Thus, if the company reaches all thresh-
olds it will be evaluated with the maximum value: 1000 (figure 10
shows more details about this evaluation process).

The tables also present the number of routes created (a route is con-
sidered a pair of connected industries). They also exhibit the route

Figure 8: All highlighted industries have their production trans-
ported to the same destination industry. That is, they share the
destination station and part of the railway.

Figure 9: The figure shows an overview of the routes presented
in figure 8. The source industries have been circulated and the
destination industry is pointed by an arrow. It is also possible to see
that the created railways have a small number of direction changes.

average size that is computed using the Manhattan distance between
the stations. Other selected fields are the total number of trains and
the total number of stations.

Considering the company value as metric, trAIns AI defeated Ad-
miral AI in all scenarios. On average, it reached a company value
about eight times bigger than Admiral AI company value.

One of the causes for this success is the size of constructed routes.
The routes created by our AI are longer than Admiral’s as shown in
the last column. They are also more lucrative. Table 3 shows the ra-
tios: company value per trains and per routes. The trAIns AI routes
are about 3 times more lucrative than Admiral AI routes. This re-
iterates the results shown in figure 3. Moreover, long railways de-
mand a large number of trains per route because of the increase in
travel time. That is, if the distance between stations increase, to
keep the monthly transported cargo rate, it is necessary to operate
with more trains on the route. On average, trAIns AI had about 2.66
trains per route against about 2 trains used by Admiral AI (table 3).

The use of junctions allowed the sharing of a large number of sta-
tions among routes. trAIns AI uses on average 1.44 stations per
route against 1.86 used by Admiral AI. It also provided a mecha-
nism to create railroad networks as shown in figures 8 and 9. During
the experiments we observed that, in some situations, five different
source industries shared the same destination industry.

When the terrain type is mountainous, it is more difficult to plan
railways. On hilly terrains, the number of restrictions for path plan-

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

191



Figure 10: This figure shows the companies detailed performance rating in match number 6 with flat terrain type. As mentioned, it is
computed based on different criteria. It also shows the companies finances.

AI Performance rating Company value (pounds) # trains # routes # stations Route average size (tiles)
Match 1, finished date: 8 - Jun - 1975.

Admiral 841 6,090,193 121 67 110 63.79
trAIns 837 46,124,685 221 81 112 193.04

Match 2, finished date: 1 - Feb - 1975.
Admiral 780 4,634,504 98 52 90 59.46
trAIns 786 18,437,790 103 43 65 192.74

Match 3, finished date: 11 - Jan - 1975 .
Admiral 775 8,272,364 175 84 129 67.01
trAIns 831 43,477,220 202 83 114 195.19

Match 4, finished date: 4 - Jan - 1975.
Admiral 598 3,729,935 79 44 79 65.43
trAIns 812 41,622,238 174 67 96 188.28

Match 5, finished date: 21 - Jan - 1975.
Admiral 595 4,073,063 92 51 91 62
trAIns 831 35,198,641 153 61 94 185.34

Match 6, finished date: 1 - Nov - 1975.
Admiral 716 4,955,126 97 49 93 61.25
trAIns 831 39,619,536 207 77 104 192.20

Match 7, finished date: 2 - Jan - 1975.
Admiral 801 6,591,956 120 62 107 66.50
trAIns 791 19,586,151 143 43 68 195.20

Table 1: Admiral AI versus trAIns AI: played in scenarios with flat terrain type.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

192



AI Performance rating Company value (pounds) # trains # routes # stations Route median size (tiles)
Match 1, finished date: 1 - Jan - 1975.

Admiral 703 4,581,543 103 47 88 67.74
trAIns 796 23,004,009 123 50 72 179.74

Match 2, finished date: 23 - Set - 1975.
Admiral 133 29,700 9 4 10 69
trAIns 823 22,927,440 137 53 74 195.32

Match 3, finished date: 26 - Jan - 1975.
Admiral 716 5,408,988 120 65 110 62.35
trAIns 831 21,110,332 200 73 102 190.79

Match 4, finished date: 5 - Aug - 1975.
Admiral 439 2,280,652 48 23 46 62.82
trAIns 831 40,170,005 192 70 98 194.10

Match 5, finished date: 7 - May - 1975.
Admiral 285 3,030,691 24 14 28 72.28
trAIns 837 34,544,942 180 64 91 207.57

Match 6, finished date: 26 - Jul - 1975.
Admiral 332 1,283,846 29 15 27 60
trAIns 831 33,816,215 173 63 91 198.28

Match 7, finished date: 5 - Jan - 1975.
Admiral 468 1,462,148 34 16 34 61
trAIns 816 17,162,685 121 49 73 201.28

Table 2: Admiral AI versus trAIns AI: played in scenarios with mountainous terrain type.

AI #stations
#routes

#trains
#routes

company value
#routes

company value
#trains

Company Value (pounds) Relative company value
Scenarios with flat terrain type.

Admiral 1.73 1.9 92,941 48,914 5,478,163 1
trAIns 1.45 2.67 527,191 200,083 34,866,609 6.36

Scenarios with mountainous terrain type.
Admiral 2 2.02 97,247 50,560 2,582,510 1
trAIns 1.43 2.65 399,024 149,679 24,585,847 9.52

All scenarios.
Admiral 1.86 1.96 95,094 49,737 4,030,336 1
trAIns 1.44 2.66 463,107 174,881 29,726,228 7.94

Table 3: This table summarizes some statistics related with the matches presented in tables 1 and 2. The ratios that used the company value
are in pounds.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

193



ning increases. The terrain landscape also causes a decrease in av-
erage locomotive acceleration. So, the total company value tends
to reduce. As table 3 shows that Admiral AI was more affected by
land format.

If the criterion used to compare the AIs is the performance rating,
trAIns AI still defeats Admiral AI. The aspects evaluated by this
criterion cover various game details. It is based on some thresholds
and if the company reached the minimum values it will be ranked
using the high value: 1000.

The railways created by trAIns AI do not have too many direc-
tion changes, in spite of the absence of punishment for direction
changes. This is a very important result because enables the cre-
ation of large railways without degenerating their quality. Figure 9
shows a railway created by trAIns AI.

6 Conclusion

Artificial intelligence is one of the main components of a game and
largely influences its quality. In OpenTTD, artificial intelligence
algorithms are mainly responsible for controlling game agents,
specifically, the companies controlled by the computer. These al-
gorithms must generate actions and decisions so that agents behave
similarly to the human players.

In this work, we presented trAIns, an AI for OpenTTD. The main
motivation for its creation was the lack of good AIs capable of play-
ing using trains. The existent AIs have some common problems:
they can not deal with complex railroads, are not able to plan large
railroads, can not change railroad track type, use poor algorithms to
choose the locomotive engines and also construct very differently
from human players. These problems affect the performance of the
company controlled by the computer and also degrade game’s qual-
ity.

trAIns AI presented some approaches to better deal with these prob-
lems. A careful implementation of A* search algorithm increased
the performance without lowering solution quality. Despite the use
of simple function costs, the generated railways do not have too
many direction changes and are similar to human players’ railways.
Double railways enabled the use of various trains on the same route
and with the adoption of the junctions the sharing of stations were
also possible. Finally, the decision processes implemented in trAIns
were able to satisfactorily manage the transport company during the
entire game.

In the future, we intend to improve the AI decision and planning
processes. We believe they can be refined with the adoption of op-
timization techniques. However, these techniques must be adapted
to generate fast responses. Another way to upgrade these processes
is the adoption of some techniques, like GOAP [Orkin 2004], com-
monly used in digital games.

The pathfinding algorithm can also be improved. There are some
approaches capable of performing a replanning without the neces-
sity of recomputing the whole solution. These approaches, for
example [Koenig et al. 2004; Koenig and Likhachev 2002], can
be adapted and used for programming an OpenTTD AI. Another
possibility is the use of real time algorithms such as [Koenig and
Likhachev 2006] to generate fast solution for the game.

Finally, there are some other game resources that still can be imple-
mented in the AI. The use of tunnels is one of them. Like bridges,
they can transpose some kinds of obstacles and are important in the
game. Another important resource is the adoption of terraforming
to decrease the number of curves and altitude changes.

Acknowledgments

The authors would like to thank the financial support provided by
CNPq and Fapemig in the development of this work.

References

BOURG, D., AND SEEMANN, G. 2004. AI for Game Developers.
O’Reilly Media, Inc., July.

BYL, P. B.-D. 2004. Programming Believable Characters for
Computer Games (Game Development Series). Charles River
Media, Inc., Rockland, MA, USA.

DEMICHELIS, A., 2009. Squirrel. http://squirrel-
lang.org/default.aspx, June.

HART, P. E., NILSSON, N. J., AND RAPHAEL, B. 1968. A for-
mal basis for the heuristic determination of minimum cost paths.
Systems Science and Cybernetics, IEEE Transactions on 4, 2,
100–107.

IERUSALIMSCHY, R., DE FIGUEIREDO, L. H., HENRIQUE, L.,
WALDEMAR, F., AND FILHO, W. C., 1996. Lua - an extensible
extension language.

KOENIG, S., AND LIKHACHEV, M. 2002. D*lite. In Eighteenth
national conference on Artificial intelligence, American Associ-
ation for Artificial Intelligence, Menlo Park, CA, USA, 476–483.

KOENIG, S., AND LIKHACHEV, M. 2006. Real-time adaptive a*.
In AAMAS ’06: Proceedings of the fifth international joint con-
ference on Autonomous agents and multiagent systems, ACM,
New York, NY, USA, 281–288.

KOENIG, S., LIKHACHEV, M., AND FURCY, D. 2004. Lifelong
planning a*. Artif. Intell. 155, 1-2, 93–146.

OPENTTD, 2009. Openttd. http://www.openttd.org/en/, June.

OPENTTDFORUM, 2009. Transport tycoon forums - noai discus-
sion. http://www.tt-forums.net/viewforum.php?f=65, June.

ORKIN, J. 2004. Applying goal-oriented action planning to games.
Game Programming Gems, 217–228.

RABIN, S. 2000. A* aesthetic optimizations. Game Programming
Gems, 264–271.

ROLLINGS, A., AND ADAMS, E. 2003. Andrew Rollings and
Ernest Adams on Game Design. New Riders Publishing, May.

RUSSELL, S. J., AND NORVIG, P. 2003. Artificial Intelligence: A
Modern Approach. Pearson Education.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

194



VhCVE: A Collaborative Virtual Environment Including Facial Animation
and Computer Vision

Henry Braun, Rafael Hocevar, Rossana B. Queiroz, Marcelo Cohen, Juliano Lucas Moreira, Julio C. Jacques Júnior, Adriana
Braun, Soraia R. Musse, and Ramin Samadani*

Graduate Programme in Computer Science
PUCRS - Av. Ipiranga, 6681, Porto Alegre, RS, Brazil

*Hewlett Packard Laboratories
1501 Page Mill Rd., Palo Alto, CA, USA

Figure 1: Snapshpts from VhCVE platform.

Abstract

In this paper we present a platform called VhCVE, in which rel-
evant issues related to Collaborative Virtual Environments appli-
cations are integrated. The main goal is to provide a framework
where participants can interact with others by voice and chat. Also,
manipulation tools such as a mouse using Computer Vision and
Physics are included, as well as rendering techniques (e.g. light
sources, shadows and weather effects). In addition, avatar anima-
tion in terms of face and body motion is provided. Results indicate
that our platform can be used as a interactive virtual world to help
communication among people.

Keywords:: CVE, Facial Animation, Avatars, Computer Vision

Author’s Contact:

{henry.braun, rafael.hocevar}@cpph.pucrs.br
{rossana.queiroz, marcelo.cohen,
julio.silveira,soraia.musse,adriana.braun}@pucrs.br
ramin.samadani@hp.com

1 Introduction

Many years ago, at the beginning of Virtual Reality (VR) area, peo-
ple expected to have a new interface where they could interact with
others, in a parallel world. The application which probably summa-
rizes this expectation is the CVE (Collaborative Virtual Environ-
ment). CVEs are three-dimensional computer-generated environ-
ments where users are represented by avatars and can navigate and
interact in real-time, independently of their physical location [Fré-
con 2004].

In CVEs, VR and Computer Graphics (CG) technologies are used
to immerse multiple individuals in a single shared space. Such
environments support a range of activities, e.g. virtual conferenc-
ing [Frécon and Nöu 1998] and games 1. Although new technolo-

1http://secondlife.com/

gies are available, CVEs still present relevant challenges, such as
human-computer interaction in the virtual world, real-time render-
ing and animation, how to control and interact with avatars, among
others.

In our platform we use OpenGL for low level rendering process
(such as facial animation) and the graphics engine Irrlicht 2 for
shading and other functions in the graphics pipeline. The advan-
tage of using a graphics engine for rendering is the optimization
and the faster coding. Other aspects are also important in CVEs,
such as:

• Avatars animation (body and face);

• voice tools;

• chat tools;

• functions to provide object interaction (Physics);

• human-computer interaction based on Computer Vision (CV);

• real-time frame rates, among others.

In this work, we propose a modular approach, i.e. a number of sep-
arate modules are composed together in order to provide the CVE
functionalities. The advantage is the possibility of integrating sev-
eral toolkits, by combining their output in the same application. Our
platform helps to create an application for real-time visualization of
virtual humans, allowing the best possible interaction among con-
nected people. The CVE is called Virtual Humans Collaborative
Virtual Environment-(VhCVE).

The paper is organized as follows: related works are described in
the next Section, followed by an overview of the VhCVE archi-
tecture and its key components. Section 4 presents some results
obtained and, finally, section 5 describes the ideas for new compo-
nents and final remarks.

2http://irrlicht.sourceforge.net/

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

195



2 Related Work

Nowadays, a rather well known CVE is Second Life. It offers the
exploration of a 3D virtual world, allowing the user to create his/her
own avatar, as well as walking and flying to different 3D envi-
ronments. In this system, it is also possible to use voice and text
communication for more realistic human interactions. Other well
known CVE is Playstation Home 3: integrated with every PS3 sys-
tem, it brings a large community of users allowing them to chat,
walk around, see movies, customize their avatars and play games.
In the Home world it is possible to see several advertisements such
as movie trailers and game releases.

Few surveys have been published in literature about CVEs. In
2004, Emmanuel Frécon [Frécon 2004] presents a very complete
overview of CVEs since 1990s. Also, Frécon discusses proposed
standards as well as system trends. In 2008, Wright [Wright and
Madey 2008] describes APIs, frameworks and platforms used to
build CVEs.

The report by [Wright and Madey 2009] led to another publication.
The authors propose the survey with two main goals: first, to con-
cisely review several prominent, active desktop-VR technologies,
and, second, to recommend the technology or technologies most
well suited to building a CVE.

According to the classification proposed in [Wright and Madey
2009], in this paper we describe a CVE platform which uses Irrlicht,
OpenCV, OpenGL, and other components, as later described.

3 CVE Architecture

VhCVE performs real-time visualization of virtual humans in 3D
environments using a set of libraries and toolkits, where most of
them are open source. Figure 2 illustrates architecture components
and subcomponents. The components are the main modules in the
architecture: Application Manager, Core and State Manager, while
subcomponents are related to specific purposes. All subcomponents
have an initialization process and most of them contain an update
function, e.g. Webcam and Network Managers which are related
with image capturing and packet communication, respectively.

The visualization is performed using Irrlicht rendering engine. This
engine includes important functionalities and interfaces for commu-
nication among components. Irrlicht is an open source engine, and
uses either DirectX or OpenGL in order to create 3D scenarios and
animations. Other components are described next. One possible
output of CVE is the Video Recorder, responsible for calculating
the elapsed time between each frame and grab a screenshot of the
scene. The files can be compressed and filtered using any video
processing software. Next Section presents components and sub-
components of VhCVE, while in Sections 3.2 and 3.3 Computer
Vision and Facial Animation features are described.

3.1 Components and Subcomponents

There are three main components which are responsible for execut-
ing and managing the subcomponents. The Core component coor-
dinates the subcomponents initialization and it is also responsible
for the display functions. The State Manager defines the finite
state machine used to control VhCVE, sending events/request to be
treated by the Application Manager. This last component send
tasks to be executed into the subcomponents, as required. In next
sections we present further details about subcomponents organized
in three main topics: Interfaces, Characters and Visualization.

3.1.1 Interfaces

In DirectX or OpenGL environments, the Graphics Processing Unit
(GPU) hardware is represented by a software entity called device.
The Device Manager allows to access the required device from any
other subcomponent. One of integrated devices aims to perform
physic calculations. Physics is an important part of games, for this

3http://www.us.playstation.com/PS3

Figure 2: CVE architecture overview.

reason we use a library called IrrPhysx 4, which is a PhysX wrapper
for the Irrlicht graphics engine.The main idea of this wrapper is
to abstract the PhysX SDK methods from the user. Instead, we
just have to use a simple interface into Irrlicht. Using PhysX, we
are able to simulate the behavior of several kinds of objects like
rigid and articulated bodies, cloths, fluids and terrains, which can
be interesting in CVE applications. Figure 3 shows an example of
rigid bodies with animation.

Figure 3: Rigid bodies with animation.

VhCVE has a simple graphics user interface (GUI) allowing access
to the framework functionalities in an easy and fast way. The GUI
Manager subcomponent is based on Irrlicht GUI toolkit classes,
and also is responsible for creating and updating GUI components
such as labels and buttons.

To perform the Internet connection and voice over IP communica-
tion there is a component called Network Manager, which uses an
input file containing the server IP and port for connection (it is used
in the CVE initialization). RakNet is a cross-plataform C++ game
network engine 5. This network engine is easily integrated with Ir-
rlicht. RakNet is responsible for creating the peers, receiving and
sending data packets to the server. This server keeps receiving the
players positions, rotations, text messages (illustrated in Figure 4)

4http://chris.j.mash.googlepages.com/irrphysx
5http://www.jenkinssoftware.com/

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

196



and facial status. After that, it sends all the data to the players in
order to provide visualization.

Figure 4: Chat communication.

The RakVoice toolkit is a feature of RakNet. This toolkit allows
voice communication in real-time among connected users into the
chat room. The RakVoice is attached into the RakNet device, af-
ter that it is necessary to specify the size of the audio that will be
encoded at a time. RakVoice provides the means to encode and
decode sound data. In order to listen to the sound, a sound en-
gine is required to provide other audio features such as mute, play
and stop. Every time a user speaks in the microphone the audio
is buffered and sent to the server, which in turn is responsible for
sending it to the other players. Our framework is not capable yet to
treat avatars proximity in terms of spatial sound, so in this case the
voice communication works for everybody online in the room.

To handle sound output, Irrlicht allows the use of a library called
Ambiera IrrKlang Audio Library6. The Audio Manager performs
the environment audio and provide support to different audio file
formats such as MP3, OGG and WAV. This is the default library for
sound output enabling stereo and 3D sound sources. It is important
that CVEs support full 3D environmental sounds in a intelligent
way. Every sound emitting entity must have a radius distance at-
tached, determining the reachability and the volume of the emitted
sounds in order to prevent mixing of distant sounds, hence produc-
ing unrealistic environments.

Any webcam can be used to capture images. Then the Webcam
Manager handle these images as frames and process them using
OpenCV allowing to create applications such as CVMouse and Vir-
tual Mirror, explained in Sections 3.2.1 and 4.

3.1.2 Characters

The virtual characters are structured in four parts: body model,
bones, animations and facial animation. The Character Manager
manages this structure in memory and it is in charge of all ac-
tions related to characters along the simulation, except the facial
animation. The body animation is executed through Irrlicht Ani-
matedMeshSceneNodes. The bone system allows attaching objects
to the characters, such as a briefcase or a hat. The facial anima-
tion uses other subcomponent called VHFace Manager to handle
the character’s facial expressions. Further details are explained in
Section 3.3.

The Simulation Input is a module responsible for integrating our
CVE with external simulators. It receives the simulation data file
and it is responsible for reading and parsing it. This file has XML
format and defines a simulated scenario containing positions of vir-
tual characters, among other data. With this feature it is possible to
have NPC (Non Player Characters) interacting into the CVE world,
e.g. crowd simulation [Musse and Thalmann 2001].

6http://www.ambiera.com/irrklang/

3.1.3 Visualization

The Light Manager allows determining how the environment illu-
mination should be. It is possible to add and modify light sources
customizing the scene and increasing the environment realism. The
shadows created by the light sources are also controlled by this
component.

In order to increase the graphic quality and realism of the visual-
ization, we can use the Weather Manager. This component is ca-
pable of creating weather effects such as fog, rain, snow and clear
weather. For better visualization results the Shader Manager al-
lows the use of different rendering techniques e.g. bump mapping,
cartoon shader (illustrated in Figure 5). These shaders are written
in OpenGL Shading Language (GLSL) [Rost 2005].

Figure 5: Cartoon shader example.

For terrain generation we can use the Terrain Manager subcom-
ponent, built upon Irrlicht TerrainSceneNodes. This subcomponent
manage terrains created by a height map input and also integrate
the terrain mesh with PhysX.

The Camera Manager subcomponent allows the user to explore
the scene in a practical way. It provides three types of camera nav-
igation, also making it possible to change navigation styles at any
point of the application. The possible styles are: i) FPV (First per-
son view), allowing to navigate like a first person point of view; ii)
TPV (Third person view) aims the camera at the main avatar; and
SCV (Static camera view), which fixes the camera, enabling the
mouse to control the framework menus.

3.2 OpenCV

OpenCV [Bradski and Kaehler 2008] is largely used by scientific
communities for facial tracking among other applications. In this
work we propose to integrate Irrlicht and OpenCV in order to pro-
vide interaction tools based on computer vision algorithms. Indeed,
this integration is very easy since OpenCV and Irrlicht has similar
“frame loops”, providing a solution without extra callbacks imple-
mentation. The image captured through OpenCV can be dealt in
Irrlicht display loop, eliminating the need of a new thread or call-
back function.

3.2.1 CVMouse

The objective of CVMouse is to work as a pointer/scratch interface
improving the human-computer interaction. Using a webcam and
computer vision algorithms, CVMouse is able to simulate the states
of the mouse. The idea is to track a learned-based color distribution
and generate a mouse state, based on previous information.

The CVMouse states are, but not limited to: (i) capturing mouse
position; (ii) clicking the mouse with the left button; (iii) clicking
and holding the left button; (iv) releasing the left button. Basically
only the first two stages could be used in machine-interaction appli-
cations, but the following ones are implemented with the objective
of using them in drawing applications, such as a pencil in a painting
system (or to drag and hold things).

In this work we use the YCbCr color space as color representation,
but probably many other color spaces could be used, such as HSV
or Lab. The idea is to use a color invariant feature to be more robust
with illumination changes. Another used information is the area of
the tracked object. This can be used to estimate the distance to the

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

197



object from the camera. With the information of the position of
the object through time and their distance from the camera, we can
simulate the states of a virtual mouse.

To learn the color distribution, we fix a colored object in a specific
region, as shown in Figure 6, and for the channels Cb and Cr we
compute their median value and standard deviations. We do not use
the ’Y’ information, with the objective to be lighting invariant. It
is important to notice that the color of the adopted object must not
be visible in any other location of the scene, because the tracking
system will track the largest object with the detected color.

Figure 6: Learning color distribution.

Creating a color model Let S be a vector (with size = n) com-
posed by the pixel values captured over the predefined region, in the
Cb channel. Firstly we compute their median and standard devia-
tion values (m and σ, respectivally).

Before create a color model, we remove some outliers, in a simple
way, as described in Eq. 1:

Snew(i) =

{
Sj if ‖Sj −m| ≤ 2 · σ, (for j = 1 to n)

else , (1)

then we recompute the standard deviation (σ) over the new vector
Snew. Thus, we can create a more robust color model. We apply the
same method to the Cr color channel. After the outliers removal ap-
proach, our color model is composed of C(m1, σ1,m2, σ2), where
m1 is the median of channel 1 and σ1 is their standard deviation
(respectively for the second channel).

Background subtraction For each pixel (x, y) in the whole
image captured from the camera, we compute the absolute differ-
ence over the median values (for the channels Cb and Cr). We de-
fine the foreground pixels as the ones whose difference are lower
than a predefined threshold (K = 6, obtained by experiments), as
can be seen in equation 2:

BCb(x,y) =

{
1 if ‖Cb(x, y)−m1‖ ≤ K · σ1

0 else . (2)

The final binary image is composed by an AND operator over the
two channels (BCb and BCr).

Some morphological operators (closing and opening) are used to
eliminate small artifacts and to close small holes in the resulting
binary image.

States definition To simulate the states of the mouse, we mon-
itor the position of the tracked object in time and their size. In our
application we use the last N frames (N = 30, obtained by experi-
ments) as mouse tail, to generate the states of the simulated mouse.
In a general way, each state is described as follows:

• state (i) capturing mouse position: the centroid of the biggest
object (after the background removal) is defined as mouse po-
sition in each frame;

• state (ii) clicking the mouse with the left button: if, in the
last N frames, the position of the mouse do not change very
much (it means that it stop to move) and its area increases at a
predefined threshold (Tc) and after decrease approximately to
the initial area, we assume that the mouse was clicked (Tc =
3× initial area, obtained by experiments);

• state (iii) clicking and holding the left button: if, in the last N
frames, the position of the mouse do not change very much (it
means that it stop to move) and its area exceeds a predefined
threshold (Tc) and remains, we assume that the mouse was
clicked and hold;

• state (iv) releasing the left button: the same as state (ii).

When the user simulates the click of the mouse with the CVMouse,
the position of the cursor usually changes a lot. To prevent that the
user clicks in erroneous positions, we fix the last detected position
of the object after the system detect that the object stopped to move.
In this way, the user can click in a very specific location. Figure 7
shows an example of object tracking.

Figure 7: CVMouse tracking an object.

3.3 VHFace - Facial Animation

Another challenge in the project of a CVE is to provide real-time
generated facial animation to the avatars. The facial animation
module, called VHFace Manager, integrates the framework pro-
posed by Queiroz et al. [Queiroz et al. 2009], based on XFace core
libraries [Balci 2004]. The framework follows the MPEG-4 Facial
Animation (FA) standard [Pandzic and Forchheimer 2003] for pa-
rameterization and animation of faces. The standard specifies a set
of 84 feature points (FPs) located on the 3D face mesh. A subset of
them acts as control points for the 68 Facial Animation Parameters
(FAPs), also defined in the standard.

The two first FAPs describe high-level actions (6 facial expressions
and 14 visemes) and the remaining deal with specific regions of the
face, describing low-level actions, such as “raise left cornerlip” and
“close top left eyelid”. The FAPs are encoding as numerical values,
which are measured by a set distances of key-features of the face,
called FAPU (Facial Animation Parameter Units).

A FAP-based animation provides, for each animation frame, the
variation of the FAP values. Thus, for each frame, we have a stream
of these values. In order to optimize the sending of these streams
through the network, a bit mask is also sent indicating which of the
68 FAPs are active (i.e. had values changed) in the frame.

Having the FAP stream, it is necessary to deform the face skin ver-
texes to produce the animation. Each FAP acts over one FP and its
neighborhood (influence zone) vertexes, producing a deformation
in the mesh. This means that each FAP value is scaled by its FAPU
to provide the displacement of the FP vertex and the vertexes of its
influence zone can be deformed through the application of differ-
ent functions, such as cosine [Balci 2004] and radial basis [yong

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

198



Noh et al. 2000; Wu et al. 2006] functions. The information about
the FAPU, FPs and their influence zones of a 3D mesh (the Face
Definition Parameters – FDP) are described in files called FDP.

In this context, the VHFaceManager has two main modules (see
Figure 8):

• The CV2FAP/FDL2FAP module, which receives as input
Computer Vision data or high-level face actions and maps it
to FAPs, according to Queiroz et al. [Queiroz et al. 2009]
methodology. The high-level face actions include facial ex-
pressions, lip synchronization and eye behaviors, using the
FDL script language (Facial Description Language), also de-
scribed in [Queiroz et al. 2009].

• The FAP2MeshDeformation module, which receives the FAP
streams provided by the CV2FAP/FDL2FAP module or re-
ceived by the network and performs the deformation in the
3D mesh, according to the FDP model data.

CV Data

Pre-scripted
animation

(FDL)

3D Mesh

FDP Data

Webcam 
Manager

FAP Streams

VhCVE Core

CV2FAP
FDL2FAP

FAP2Mesh 
Deformation

VhFace Manager

Network
Manager

Speech 
Files

Figure 8: Diagram of the VhFaceManager Architecture

Note that FAP values are independent of the 3D model. These val-
ues are scaled by the FAPU, providing the displacement of the af-
fected FPs. The influence zone of each FP is affected by a deforma-
tion function, also according to the FAP direction. So, a FAP-based
animation can be performed by different face models.

4 Results

This section presents some preliminary results aiming to explore the
features robustness of the proposed framework. Figure 9 shows an
application in a city environment which allows the user to explore
it with an avatar.

Figure 9: VhCVE system display.

Using the CVMouse model presented in Subsection 3.2.1, we built
an application that allows the user to draw in the screen by moving
a colored real object, as showed in Figure 10.

We also implemented an application called “Virtual Mirror”, in
which the characters “mimic” the facial movements of the user. It

Figure 10: Illustration of CVMouse-based application.

explores the functionalities of the VHFace and Webcam Manager
modules, using facial feature detector algorithms (for face, eye and
mouth regions) from OpenCV [Viola and Jones 2001; Castrillón
et al. 2007]. The mapping of the detected features to simple events
(opened mouth, closed mouth, smile and direction of the horizontal
gaze) and then to FAP animations is implemented according to the
methodology of Queiroz et al. [Queiroz et al. 2009]. Once infor-
mation from face components is acquired, it is used to animate the
avatar’s face, as shown in Figures 1 and 11.

Figure 11: Illustration of Virtual Mirror application, integrating
OpenCV and VHFace.

As a result of preliminary performance tests, the framework bot-
tleneck is visible when rendering more than 110 characters. The
virtual human animation update is bound to the computer process-
ing unit (CPU), requiring a large amount of CPU time. On the
other hand, with static virtual humans (without body animations),
the amount of rendered characters has increased to 360 while keep-
ing a frame rate of 24 frames per second. Each virtual human con-
tains 3686 triangles. The results were obtained executing VhCVE
on a Intel E8500 Core 2 Duo, 4GB RAM DDR2, equipped with two
GeForce 8800GTS OC 320MB in SLI mode.

5 Final Remarks

This paper presented a framework for collaborative virtual environ-
ments integrating several toolkits and computer vision algorithms.
Moreover, it is possible to use the framework physics and network
features to create different styles of multiplayer games, such as first
person shooters or online role playing games.

The obtained results were acquired with the current VhCVE ver-
sion. For the next version, we plan to include new techniques in
order to improve the graphics quality and to increase the number of
characters rendered in real-time. For instance, new shaders could
be used to provide better lighting and also to offer new effects such
as realistic water and fire. Also different techniques for shadow cre-
ation and weather effects could be implemented. Finally, the use of
LOD (level-of-detail) and culling techniques, combined with im-
postors and rendering acceleration techniques [Ciechomski 2006],
could increase the amount of characters rendered in real-time.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

199



References

BALCI, K. 2004. Xface: Mpeg-4 based open source toolkit for 3d
facial animation. In AVI ’04: Proceedings of the working confer-
ence on Advanced visual interfaces, ACM Press, New York, NY,
USA, 399–402.

BRADSKI, D. G. R., AND KAEHLER, A. 2008. Learning opencv,
1st edition. O’Reilly Media, Inc.

CASTRILLÓN, M., DÉNIZ, O., GUERRA, C., AND HERNÁNDEZ,
M. 2007. Encara2: Real-time detection of multiple faces at dif-
ferent resolutions in video streams. J. Vis. Comun. Image Repre-
sent. 18, 2, 130–140.

CIECHOMSKI, P. S. D. H. 2006. Rendering massive real-time
crowds. PhD thesis, EPFL.

FRÉCON, E., AND NÖU, A. A. 1998. Building distributed virtual
environments to support collaborative work. In VRST ’98: Pro-
ceedings of the ACM symposium on Virtual reality software and
technology, ACM, New York, NY, USA, 105–113.

FRÉCON, E. 2004. A Survey of CVE Technologies and Systems.
SICS Technical Report T2004:03. Swedish Institute of Com-
puter Science.

MUSSE, S., AND THALMANN, D. 2001. Hierarchical model for
real time simulation of virtual human crowds. IEEE Transactions
on Visualization and Computer Graphics 7, 2, 152–164.

PANDZIC, I. S., AND FORCHHEIMER, R., Eds. 2003. MPEG-4
Facial Animation: The Standard, Implementation and Applica-
tions. John Wiley & Sons, Inc., New York, NY, USA.

QUEIROZ, R. B., COHEN, M., AND MUSSE, S. R. 2009. An
extensible framework for interactive facial animation with facial
expressions, lip synchronization and eye behavior. Comput. En-
tertain. (to appear).

ROST, R. J. 2005. OpenGL(R) Shading Language (2nd Edition).
Addison-Wesley Professional.

VIOLA, P., AND JONES, M. 2001. Rapid object detection using a
boosted cascade of simple features. Computer Vision and Pattern
Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on 1, I–511–I–518 vol.1.

WRIGHT, T. E., AND MADEY, G. 2008. A survey of collaborative
virtual environment technologies. Tech. rep., University of Notre
Dame - USA.

WRIGHT, T. E., AND MADEY, G. 2009. A survey of technolo-
gies for building collaborative virtual environments. The Inter-
national Journal of Virtual Reality 8, 1, 53–66.

WU, Z., ZHANG, S., CAI, L., AND MENG, H. M. 2006. Real-
time synthesis of chinese visual speech and facial expressions
using mpeg-4 fap features in a three-dimensional avatar. In
INTERSPEECH-2006.

YONG NOH, J., FIDALEO, D., AND NEUMANN, U. 2000. An-
imated deformations with radial basis functions. In VRST ’00:
Proceedings of the ACM symposium on Virtual reality software
and technology, ACM, New York, NY, USA, 166–174.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

200


	60381_2
	59793_2
	60508_2
	60394_2
	60424_2
	60330_2
	60291_2
	60431_2
	60412_2
	59968_2
	60326_2
	60335_2
	60505_2
	60416_2
	60417_2
	59250_2
	60405_2
	60374_2
	60358_2
	60341_2
	60450_2
	60267_2
	60365_2
	60282_2
	60388_2



