
Parallel Lazy Amplification: Real-Time Procedural Modeling and
Rendering of Multi-Terabyte Scenes on a Single PC

Carlúcio S. Cordeiro
Luiz Chaimowicz

Universidade Federal de Minas Gerais

Figure 1: Some images of our massive procedural world. Although quite simple, the entire scene has about 8 terabytes.

Abstract

In this paper, we propose a new procedural modeling paradigm
called Parallel Lazy Amplification. This paradigm may be under-
stood as a combination between two traditional techniques of pro-
cedural modeling: data amplification and lazy evaluation. Data
amplification consists in pre-synthesizing the whole geometry be-
fore viewing. Alternatively, in the lazy evaluation paradigm, the
geometry is generated only when it is needed. The central idea of
the paradigm that we propose is to pre-synthesize the geometry that
will be potentially seen in the near future and keep it on a cache. A
visibility prefetching algorithm determines which models should be
generated and which will be discarded. The generation of models is
done in parallel with the visualization, without interrupting the sys-
tem. We implemented a prototype of this paradigm and some initial
experiments with a procedural scene of about 8 terabytes showed
the feasibility of this new paradigm, especially when performed on
multi-core architectures.

Keywords: procedural modeling, geometry management, real-
time rendering, parallel computing.

Author’s Contact:

carlucio@gmail.com
chaimo@dcc.ufmg.br

1 Introduction

Procedural modeling is an research field in Computer Graphics that
includes a number of alternatives to traditional geometric modeling.
In this approach, the geometry is specified by a set of parameters
and a procedure (algorithm) that creates a model from these de-
scriptions. Some of the main motivations in this area have been the
challenge of representing algorithmically the complexity of the ob-
jects in the real world both in terms of their form and their behavior.
As examples of objects in that class we can mention terrains, vege-
tation, gases, liquids, fire, architectural buildings, cities and planets
[Ebert et al. 2002].

The use of procedural modeling can greatly reduce the modeling
time of massive and complex scenes. The use of these techniques
is becoming increasingly common mainly in the entertainment in-
dustry. For example, procedural modeling techniques have been
applied successfully in the movie industry [White 2006].

In computer games, procedural techniques were largely explored in
the past. By that time, memory limitations imposed severe restric-
tions on storage and the use of procedural techniques was a creative
way to solve these problems. Some examples includes the game

Elite, originally published for the former BBC Micro in 1984, and
The Sentinel, a game published for the Commodore 64 in 1986.

With the modernization and the increase of available memory on
computers and video-game consoles, the use of these techniques
have been somewhat neglected by the game industry and have not
been much used in the top games in the past years. Recently, with
the great level of details that the games are presenting today, pro-
cedural techniques are becoming more popular again. If before
the restriction was the hardware, now the limitation is the grow-
ing demand for artists. The relationship of artists by programmer is
growing with each new generation of games. Currently, the game
studios employ two to three artists per programmer. Thus, procedu-
ral modeling help reducing the need for artists generating scenarios
automatically.

Another inspiration for this work is the Demoscene [Tasajärvi
et al. 2004; Demoscene.info ], a digital art subculture that produces
audio-visual applications in real time, called Demos. This culture
has emerged between users of old platforms, such as Apple II, Com-
modore 64, ZX Spectrum and Commodore Amiga. The Demos are
applications whose executable code is generally composed of only
a few kilobytes. The most common categories are 4 Kb and 64
Kb. They usually do not use any kind of external file, as models,
pictures, music and sound. All resources are compressed or syn-
thesized. The Demos are undoubtedly a form of digital art amazing
and unique.

Procedural modeling brings at least two major challenges for re-
search in computer graphics. The first challenge is to create proce-
dures and algorithms that synthesize complex and realistic objects
and textures. The second challenge is to manage the large amounts
of data that are generated by procedural models. This second chal-
lenge is relatively less studied and is the main focus of this paper.

In a home PC today, a single procedural model of a terrain, a tree,
or a building is easily generated and rendered in real-time. But to
generate and visualize a massive procedural model in real-time, as
a huge forest, a large urban center, or even an entire planet, more
elaborate techniques and tools are required. In these scenarios, the
amount of geometry can easily extrapolate the available main mem-
ory.

Basically, there are two main techniques for data generation: data
amplification and lazy evaluation (these paradigms will be detailed
in the section 3.3). Data amplification consists in pre-synthesizing
the whole geometry before viewing while lazy evaluation paradigm
generates the models only when they are needed. Lazy evaluation
works well for offline rendering. However, to generate all the ge-
ometry of each frame in real-time becomes practically impossible.
In the other hand, data amplification pre-generates all the geometry
and is feasible to be displayed in real-time. But it applies only to
models that fit in the main memory.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 126



In this paper, we propose a paradigm that combine data amplifica-
tion and lazy evaluation. The main idea is to generate the geometry
on demand but, differently from lazy evaluation, when the geome-
try is generated, it will be kept in a cache to be used in subsequent
frames. As with data amplification, we have a pre-processing time
for building the cache before the beginning of visualization. During
the visualization, the system determines which models or parts of it
will be seen in the near future and which are already out of context.
The models that have low priority of been viewed are discarded,
and those who are potentially in the field of view are generated in
parallel with the visualization, without interrupting user interaction
with the system. We called this new paradigm Parallel Lazy Ampli-
fication.

The rest of this paper is organized as follows. In Section 2, we dis-
cuss some of the main works related to this paper. In Section 3,
we do a quick review of basic concepts that are used in the text.
The Parallel Lazy Amplification paradigm proposed in this paper is
presented in Section 4. Section 5 gives an overview of the graphics
engine implemented for the experiments. In section 6, we present
and discuss the experimental results obtained. Finally, our conclu-
sions and future work are show in Section 7.

2 Related Work

Procedural techniques have been used throughout the computer
graphics history. Many researchers have developed their own pro-
cedures to simulate materials, objects and natural phenomena. One
of the first procedural techniques used in the graphics community
were fractals. Musgrave et al. [1989] describes a model for the
synthesis of eroded terrains based on fractals. Later, he described
procedural models of a whole planet [Musgrave 1999]. This work
was the basis for MojoWorld software[MojoWorld ] that was origi-
nally created by Ken Musgrave.

Another procedural modeling technique is called L-Systems, which
was originally proposed by Lindenmayer [1968] to model the devel-
opment of filamentous bodies in a work of theoretical biology. As
will be explained later, L-Systems are quite similar to formal gram-
mars used in compilers. The pioneer work in the use of L-Systems
in computer graphics is Prusinkiewicz [1986]. The use of this tech-
nique is very powerful for the procedural modeling of plants and
vegetation, as described in Prusinkiewicz and Lindenmayer [1990]
and Deussen et al. [1998]. Inspired by the work of Prusinkiewicz,
some authors developed an extension of L-Systems for procedu-
ral modeling of cities and buildings called CGA shape [Parish and
Müller 2001; Müller et al. 2006; Müller et al. 2007]. Like the L-
Systems, these techniques are similar to a formal grammar.

Another extension was proposed in [Lluch et al. 2003] to generate
procedural models of plants and trees with multi-resolution infor-
mation embedded in the model. This representation is more ap-
propriate and does not fail in preserving the visual structure of the
model, as normally occur with the use of a geometry simplification
algorithm.

In an attempt to integrate the characteristics of different procedural
modeling systems, Gangster and Klein [2007] presents a new kind
of visual language in a single modeling environment. The system
shows results of procedural models consisting of buildings, plants
and terrains, without the need of external tools.

In the area of representation and management of procedural geom-
etry, Hart [2002] shows how the scene graphs can be used for that
purpose. The work presents the paradigms data amplification and
lazy evaluation. It also described the Procedural Geometric Instanc-
ing technique, which follows the lazy-evaluation paradigm.

Researchers have studied the problem of rendering complex mod-
els at interactive frame rates for many years. Clark [1976] pro-
posed many of the techniques for rendering complex models used
today, including the use of hierarchical spatial data structures, level-
of-detail (LOD) management, hierarchical view-frustum and oc-
clusion culling, and working-set management (geometry caching).
Garlick et al. [1990] presented the idea of exploiting multiproces-
sor graphics workstations to overlap visibility computations with
rendering.

Figure 2: Example of a scene graph: below is a description of a
hierarchical scene and above we have the same scene rendered.

Correa [2004] introduced a system for interactive viewing of large
datasets. The system uses new techniques for out-of-core visualiza-
tion of models larger than main memory. In a pre-processing phase,
a hierarchical decomposition of the model is built using a octree, the
coefficients used to test visibility are calculated, and levels of detail
are determined. In run time, multiple threads are used to override
calculations of visibility, managing cache and rendering.

Out-of-core visualization techniques could be used with data am-
plification to avoid the size limitations of the main memory. But
with this approach the model should be fully generated on disk and
pre-processed before viewing. In addition to the generation and
pre-processing time, this method would demand extra storage space
in disc, which can become a problem for massive multi-terabyte
scenes. Pre-generate all the geometry is also less flexible, because
the whole model would be completely static. As mentioned, the
approach proposed in this paper try to overcome these problems
combining Lazy Evaluation and Data Amplification.

3 Basic Concepts

3.1 Scene Graphs

Scene graphs are data structures that are much discussed and re-
searched in computer graphics field. Basically, a scene graph is a
spatially consistent data structure, which is used for the representa-
tion of three-dimensional virtual environments in computer graph-
ics applications, including procedural modeling. Examples of these
structures include bounding volume hierarchies, octrees and grids.
Dollner and Hinrichs [2000] present a detailed discussion of scene
graphs.

A scene graph is a directed acyclic graph. Each node has a set of at-
tributes that may or may not influence its children nodes. The nodes
are organized in a hierarchical fashion corresponding semantically
and spatially to the modeling scene.

All scene graph nodes have an attribute called bounding volume.
This attribute is a simple volume, usually a box or a sphere, which
includes the geometry of all of its children nodes. The bounding
volume is used for fast computations of approximate intersection
tests of the node with other objects. Intersection tests are mainly
used to determine visibility and collision. Figure 2 [OpenSG ] il-
lustrates the scene graph concepts.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 127



3.2 Bounding Volumes

The bounding volumes for procedural models can be static or dy-
namic. A static bounding volume involves all possible geometries
synthesized by the procedural model. In other words, a dynamic
bouding volume is designed to fit tightly each particular instance of
the procedural model. Dynamic bounding volumes are more effi-
cient than static bounding volumes, but they are much more diffi-
cult to plan. Dynamic bounding volumes need to be computed at
instantiation time.

All procedural models should provide a method for bounding vol-
ume estimation from its parameters. Depending on the procedural
model, the bounding volume computation can be very simple or
very hard. Heuristics to determine the bounding volume should
be developed when computing the optimal bounding volume is not
feasible.

3.3 Procedural Modeling Paradigms

Virtually all interactive graphics systems follow the same pattern of
rendering pipeline, with three conceptual stages: application, ge-
ometry, and rasterization. The user articulates a conceptual model
to the modeler. The modeler interprets the articulation and converts
it into an intermediate representation suitable for rendering by the
renderer.

The synthesis of procedural models follows the same data flow. But
the way the intermediate representation is generated can follow two
different paradigms: data amplification and lazy evaluation [Hart
2002].

3.3.1 Data Amplification

Models that follow the data amplification paradigm synthesize
some sort of intermediary geometric representation. This interme-
diary representation is generally a description consisting of trian-
gles, polygons or other primitives. Smith [1984] coined the term
data amplification to explain how procedural models transform a
small amount of data in models with rich details and described by
a large amounts of geometry.

The intermediate representation of a complex scene can become
very large. For example, a very simple procedural model of a tree,
described by only a few floating-point numbers, when evaluated
produces a few thousand triangles. A huge forest can easily extrap-
olates main memory limitations. Data amplification causes data ex-
plosion due to the fact that the procedural model is converted into
a geometric representation to be rendered. Figure 3 [Hart 2002]
illustrates the data amplification paradigm.

Figure 3: Diagram that shows the data amplification paradigm.

3.3.2 Lazy Evaluation

Lazy evaluation avoids the intermediate representation problems
that we have with data amplification. The geometry synthesis pro-
cedure is performed only when necessary. Procedural models de-
mand a large processing time, then to generate all the geometry
each frame in real-time applications is practically impossible. Lazy
evaluation keeps a dialogue between the Renderer and the Modeler,
as illustrated in Figure 4 [Hart 2002].

Scene graphs also support lazy evaluation for procedural models.
For example, the system can generate a bounding volume for a
procedural model and perform a test to determine if the geome-
try contained therein is necessary to render the scene. If the test is
negative, the system does not generates the procedural model. The

heuristic here is to determine the bounding volume without actually
performing the procedure for the model generation.

Figure 4: Diagram that shows the lazy evaluation paradigm.

3.4 Visibility Prefetching Algorithms

In the proposed paradigm, visibility prefetching algorithms will be
used to determine which models, or parts of them should be gener-
ated on demand. Visibility prefetching algorithms can be based on
the viewpoint of the observer and the bounding volumes [Corrêa
et al. 2003]. In out-of-core rendering, the system uses the algorithm
to determine the geometry most likely to be seen in the near future,
which are read from disk and kept in a cache.

One difference between a out-of-core visualization system and pro-
cedural approach, is that in out-of-core visualization we have the
whole model a priori. In a pre-processing stage the model is di-
vided in a top-down fashion. In the procedural modeling, the model
is generated at runtime. Then the partitioning can be built bottom-
up in the model generation.

4 Parallel Lazy Amplification

The main idea of the Parallel Lazy Amplification proposed in this
paper is to combine the paradigms of data amplification and lazy
evaluation. During the visualization process, the system estimates
a set of potentially visible models that will be seen in the near fu-
ture. Similar to lazy evaluation, the geometry is generated on de-
mand and also in parallel with the visualization. But not only the
visible geometry is generated. As with data amplification, parts of
the scene are pre-generated and maintained in a cache of geometry
to be used in the following frames.

Figure 5 illustrates the Parallel Lazy Amplification paradigm using
the same symbolic notation of Hart [2002]. When the Renderer
needs of a certain model, it makes a request to the Cache. To try
to ensure that the geometry will be available when requested, the
Cache uses a visibility prefetching algorithm. When the algorithm
determines that a procedural model should be present in the Cache,
it makes a request to the Synthesis Manager. The Synthesis Man-
ager task is to manage and load-balancing the Modelers, which are
responsible for the generation of models. So far, the prototype im-
plemented uses only one Modeler and the Synthesis Manager uses a
First-In First-Out (FIFO) policy. When more Modelers are present,
FIFO may not the ideal algorithm because it can generate load un-
balance. For example, supose a particular situation when we have
10 models to generate and two modelers. If the fisrt and sixth mod-
els takes 0.4 seconds to generate each model, and the other eigth
models takes 0.1 seconds each, one good strategy is one modeler
generate the fisrt and sixth models and the second modeler generate
the other eigth models. In Section 6, we will discuss a strategy for
a better distribution of processing between the Modelers.

The visibility prefetching algorithm used in our approach is the
Prioritized-Layered Projection (PLP) [Klosowski and Silva 2000].
PLP is a visibility test algorithm that needs very little processing.
The PLP can be understood as the traditional hierarchical frustum
culling algorithm, used to discard models outside the field of view.
In the frustum culling algorithm, the scene graph is traversed in a
depth first order, from the root node to the leaves. If a node is out-
side the field of view, the node and all its children are discarded.
In the PLP, the leaf nodes are kept in a priority queue called front.
When a node in the front is visited, it is added to a set of visible
nodes. Then, the node is removed from the front and all its neigh-
bors that have not yet been visited are added to the front. PLP
requires that each node of the scene graph refers not only to their
children but also all to its neighbors.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 128



Figure 5: Diagram that shows the parallel lazy amplification paradigm.

The key point in the PLP implementation is the heuristic that deter-
mines priorities for each node. Klosowski and Silva [2000] presents
several heuristics to compute the initial solidity of a node and ac-
cumulates it in a certain direction. The solidity of a node is an
estimate of how much he occludes an object behind himself. The
heuristic that we use was proposed by Correa et al. [2002]. This is
a very simple heuristic to determine priorities for nodes. The node
containing the camera receives priority -1, its neighbours receive
priority -2, the neighbours of neighbours receive priority -3, and so
on.

5 Implementation Details

To implement and test the paradigm described in this paper we de-
veloped a game engine (PSYGEN) that supports different procedu-
ral models. This section presents an overview of this engine and
the models that have been implemented. It is important to clarify
that it is not the objective of this paper to discuss the architecture
of a game engine as the PSYGEN. We will only show some details
related to procedural modeling employed by the system.

5.1 PSYGEN

PSYGEN (Procedural Synthesis Graphics Engine) is a graphics
engine that allows the implementation and visualization of differ-
ent procedural modeling algorithms and implements various tech-
niques for real-time rendering. It is composed of several modules
that abstracts and facilitates the implementation of procedural mod-
eling algorithms. Figure 6 shows a UML diagram with the organi-
zation of the prototype that we implemented.

• Renderer: the renderer provides an abstract interface that en-
capsulates hardware calls and the graphics API. At the present
time, PSYGEN has only an implementation of a renderer us-
ing OpenGL.

• Cache: is responsible for memory managing of the system,
maintaining a collection of models and objects potentially
seen by the observer. The cache determines which models
should be generated, based on PLP algorithm. The cache
should also discard geometry with low priority.

• SynthesisManager: is responsible for the generation of mod-
els. SynthesisManager runs in parallel with the renderer, al-
lowing the generation of models without interrupting the in-
teractive visualization. In the implemented prototype, the
Synthesis Manager also plays the role of Modeler. This Man-
ager was implemented using pthreads.

• SceneNode: the main structure of the system of data visu-
alization of PSYGEN is a scene graph. SceneNode abstract
class is the base of all of scene graph nodes. A SceneNode

Figure 6: UML diagram of the main classes involved in the PSY-
GEN’s procedural modeling system.

can reference zero or more Shapes, which share the same ren-
der state encapsulated by SceneNode.

• ProceduralModel: provides an abstract interface to procedu-
ral models supported by the system. Some examples of pro-
cedural models in PSYGEN implemented so far include trees,
terrains and rocks.

• Shape: all models and geometry of the system derives from
abstract class Shape, for example, the classes TriMesh and
Heightfield. These are concrete classes that implement the
methods of Shape.

5.2 Procedural Models

In this section we presented the three procedural models in PSY-
GEN implemented so far (rock, terrain and tree) and briefly discuss
the asymptotic growth of the algorithms for model generation. Fig-
ure 7 shows an image of PSYGEN with the three procedural models
implemented.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 129



Figure 7: A view of our simple procedural world. This image shows
the three procedural models that we implemented: trees, rocks and
terrains.

5.2.1 Rock

The procedural model of a rock implemented in PSYGEN is a
variation of a classic technique know as midpoint displacement or
plasma fractal. The difference is that the rock algorithm starts with
a tetrahedron and the classic algorithm is done on a plane. Each
triangle in the tetrahedron is divided into four new triangles, so that
new points are the average points of initial edges of the triangle.
After the subdivision, the new corners are disturbed in the direction
of the surface normal at the point in question. The parameters of
the rock procedural model are:

• Seed: Seed to the pseudo-random number generator.

• Subdivisions: Number of divisions in which the original
mesh will be divided.

• Radius: Average radius of the rock.

• Amplitude: Disturbance factor in the radius of each iteration.

• Decay: Decay factor of the amplitude of each iteration.

The parameter that dominates the generation time is the number of
subdivisions. If n is the number of subdivisions and c is a constant
that depends on the processor used, the time complexity of rock
model is given by:

T (n) = c n 4n−1 (1)

5.2.2 Terrain

Terrain is probably the most popular procedural model in literature.
The PSYGEN terrain procedural model is an implementation of the
Ridged Multifractal Algorithm described in Ebert et al. [2002]. The
Ridged Multifractal parameters are:

• Seed: Seed to the pseudo-random number generator.

• Heighmap Size: Size of terrain block.

• Height: Determine the largest possible fractal dimension.

• Lacunarity: Gap between successive frequencies.

• Octaves: Number of frequencies in the multifractal..

• Offset: Factor that determines the multifractal characteristic.

The parameters that influence the generation time are the heightmap
size and the octaves. If n is the heightmap size and m is the octaves,
the time complexity of terrain generation algorithm is given by:

T (n, m) = c m n2 (2)

As the octaves does not change for a particular terrain, we can also
describe the time complexity in a simplified form:

T (n) = c n2 (3)

As the terrain is virtually infinite, it should be built in blocks. We
use block sizes of 64 and 9 octaves in our prototype.

5.2.3 Tree

Procedural models of trees are usually implemented using L-
Systems [Prusinkiewicz and Lindenmayer 1990]. L-Systems are
quite similar to formal grammars used in compilers. From an initial
symbol of a particular L-System, the model is derived by a number
of iterations. The derivation tree (data structure) represents struc-
turally the model (object tree). The parameters of L-System that we
implemented are:

• Seed: Seed to the pseudo-random number generator.

• Iterations: Number of iterations that will determine the tree
height.

• Branches: Average number of ramifications. The algorithm
select a random value between branches-2 and branches+2.

• Size: Size of the first branch.

• Radius: Radius of the first branch (trunk).

If n is the number of iterations and m is the average number of
branches by iteration, the time complexity of tree generation algo-
rithm is given by:

T (n, m) = c mn (4)

6 Experimental Results

We performed a set of initial tests and experiments for an prelimi-
nary analysis of the proposed paradigm and the impact of the gener-
ation of models in parallel with the visualization. To do this we de-
fined a procedural world made of a large terrain divided into blocks.
Each block has width 64 vertices, totaling 7,938 triangles per ter-
rain block. For each block, 23 trees were distributed with 3 to 5
iterations and 2 to 4 branches by iteration, and also 40 rocks with 2
subdivisions. Whereas each tree has on average 5,000 triangles and
each rock is accurate 64 triangles, each block has about 125,000 tri-
angles. The total size of the world was set to 512x512 blocks. That
totals approximately 32,768,000,000 triangles throughout the vir-
tual world. As each triangle has information as its vertices, normal
vectors, coordinates of texture and other values (about 256 bytes),
the estimated total size of the world procedural hold about 8 ter-
abytes, if it were entirely generated. That means even to limitations
of secondary memory (disk) if we deemed current reality of home
PCs.

To the first battery of tests, we established a path through which
the camera flies in the virtual world. During the camera walk, a
log was generated with the measurements of the framerate for each
frame along the walk. The experiments were performed on two
different computer configurations:

1. AMD Athlon 64 3400+ processor, 1 GB of RAM and a ATI
Radeon X800 XT Platinum Edition GPU running Ubuntu
Linux 8.04.

2. Intel Core 2 Duo T8300 2.4 GHz, 2 GB of RAM and a
NVIDIA GeForce 8600 GT GPU running Mac OS X 10.5.3.

Figure 8(a) shows the results for the first configuration. The result
clearly shows that when the generation takes place in parallel with
visualization, the framerate drops sharply from about 25 frames per
second to less than 15. Though not interrupting the process of in-
teractive visualization, we can clearly see the performance drop.

The same experiment was performed in a dual-core processor (con-
figuration 2). Figure 8(b) shows the results of this second experi-
ment. We can see that when the generation occurs in a multicore
processor, the framerate does not drop as in a single core processor.
To confirm this assertion, we carried out a third experiment with a

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 130



configuration similar to the second test. However, this time one of
processor cores was off and the test was conducted with only one
core asset. The results are shown in Figure 8(c).

The results of this first battery of tests confirms our hypothesis that
when the parallel generation is done in multicore architectures, we
do not have major impacts on the framerate of the system.

A second battery of tests was performed to confirm the complex-
ity analysis presented at the Section 5.2. For this we measured the
generation time of each model for a given set of parameters. These
data were used to carry out a curve fitting with their respective com-
plexity functions of each model. The experiments were performed
using the first computer configuration. Figure 9 shows the results.

Analyzing the results, we observed that the time complexity of gen-
eration algorithms reflects well the generation time. Thus, the sys-
tem can calculate the constants for each complexity function in the
startup. Once constants are computed, the complexity function pro-
vides a reasonable estimate of the generation time for a given pro-
cedural model. The generation time is a essetial information to have
a better load balancing, as we have shown in Section 4.

7 Conclusions and Future Work

This article proposed a new procedural modeling paradigm called
Parallel Lazy Amplification. In a comparative analysis of parallel
lazy amplification with lazy evaluation and data amplification, we
can see that parallel lazy amplification can manage large amounts
of data that can not be hold by data amplification. We also noticed
that lazy evaluation generates all the procedural models whenever
they are seen and has no memory management. In a simple situa-
tion where the camera is spinning around its axis would do the same
models are generated and discarded in a cycle. As the generation
of procedural models may require great processing time, this can
cause models not shown correctly, models popping in screen and
other problems that makes the use of lazy evaluation in real-time
impracticable. we believed that we showed the feasibility of the
proposed paradigm for the generation and display of massive pro-
cedural models in real-time, testing with a very simple procedural
world, but that hold terabytes of data if it were entirely generated.
The tests also showed that the paradigm is suitable for multicore ar-
chitectures. Tests done in a dual-core processor showed a minimal
impact on the framerate.

The generation time of each procedural model was also analyzed.
We showed that the asymptotic growth of algorithms for procedural
models provide a good estimate of the generation time. With this
estimative we can do a better schedule of models to be generated
by available processors and can get a better load balancing of the
system.

In a future work, we planned to use the asymptotic growth to de-
termine a good schedule policy for the Synthesis Manager. Other
future work includes an implementation with more than one Mod-
eler running on different threads, enabling the generation of more
than one model in parallel. We also plan a parallel distributed mem-
ory version of PSYGEN to run on visualization clusters. A multi-
thread version is more suited to the reality of home PCs. Dual-core
and quad-core processors are already common today. However, We
intended to analyze the efficiency and scalability of the system in
more than four CPUs, as well as the impact of parallelism in proce-
dural generation. In this scenario, the distributed memory version
will be more appropriate, allowing the execution of the system in
a visualization cluster with 32 CPUs, for example. Other features
planned to be implemented in the future include:

• Level-of-Detail (LoD) Management: As procedural mod-
els are multiresolution in nature, the system can generate the
model with various levels of detail.

• Geometry Shaders: The latest GPU generations has a new
type of shader called geometry shader. Unlike the vertex
shaders and pixel shaders, geometry shaders can create new
vertex during its evaluation. This new feature allows the gen-
eration of geometry directly into the GPU, allowing a more
compact intermediate representation of the model.

• Mixing traditional models with procedural models: We
also have plan to develop tools and editors to integrate tradi-
tional models along procedural models, providing more con-
trol to the user in the desired points in the procedural world.

Acknowledgements

We would like to thank Wagner T. Corrêa, for all comments and
suggestions.

References

CLARK, J. H. 1976. Hierarchical geometric models for visible
surface algorithms. Commun. ACM 19, 10, 547–554.

CORRÊA, W. T., KLOSOWSKI, J. T., AND SILVA, C. T. 2002.
Fast and simple occlusion culling. In Game Programming Gems
3. Charles River Media, 353–358.

CORRÊA, W. T., KLOSOWSKI, J. T., AND SILVA, C. T. 2003.
Visibility-based prefetching for interactive out-of-core render-
ing. In Proceedings of PVG 2003 (6th IEEE Symposium on Par-
allel and Large-Data Visualization and Graphics), 1–8.

CORRÊA, W. T. 2004. New techniques for out-of-core visualization
of large datasets. PhD thesis, Princeton, NJ, USA.

DEMOSCENE.INFO. A webportal providing information on the de-
moscene. http://www.demoscene.info/.

DEUSSEN, O., HANRAHAN, P., LINTERMANN, B., MĚCH, R.,
PHARR, M., AND PRUSINKIEWICZ, P. 1998. Realistic model-
ing and rendering of plant ecosystems. In SIGGRAPH ’98: Pro-
ceedings of the 25th annual conference on Computer graphics
and interactive techniques, ACM, New York, NY, USA, 275–
286.

DÖLLNER, J., AND HINRICHS, K. H. 2000. A generalized
scene graph. In Proceedings of Vision, Modeling and Visual-
ization 2000, IOS Press, Amsterdam, H. N. H.-P. S. B. Girod,
G. Greiner, Ed., 247–254.

EBERT, D. S., MUSGRAVE, K. F., PEACHEY, D., PERLIN, K.,
AND WORLEY, S. 2002. Texturing & Modeling: A Procedural
Approach, third ed. Morgan Kaufmann, December.

GANSTER, B., AND KLEIN, R. 2007. An integrated framework
for procedural modeling. In Spring Conference on Computer
Graphics 2007 (SCCG 2007), Comenius University, Bratislava,
M. Sbert, Ed., 150–157.

GARLICK, B., BAUM, D., AND WINGET, J. 1990. Interac-
tive viewing of large geometric databases using multiprocessor
graphics workstations. In Siggraph Course: Parallel Algorithms
and Architectures for 3D Image Generation.

HART, J. C. 2002. Procedural synthesis of geometry. In Texturing
& Modeling: A Procedural Approach, third ed. Morgan Kauf-
mann.

KLOSOWSKI, J. T., AND SILVA, C. T. 2000. The prioritized-
layered projection algorithm for visible set estimation. IEEE
Transactions on Visualization and Computer Graphics 6, 2, 108–
123.

LINDENMAYER, A. 1968. Mathematical models for cellular in-
teraction in development, parts i and ii. Journal of Theoretical
Biology 18, 3.

LLUCH, J., CAMAHORT, E., AND VIVÓ, R. 2003. Procedural
multiresolution for plant and tree rendering. In AFRIGRAPH
’03: Proceedings of the 2nd international conference on Com-
puter graphics, virtual Reality, visualisation and interaction in
Africa, ACM, New York, NY, USA, 31–38.

MOJOWORLD. Mojoworld 3. http://www.pandromeda.com/.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
GOOL, L. V. 2006. Procedural modeling of buildings. 614–
623.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 131



(a) AMD Athlon 64. (b) Intel Core 2 Duo with two active cores. (c) Intel Core 2 Duo with only one active core.

Figure 8: Using a multi-core processor to improve frame rates. We measured the frame rates during a 27 seconds walkthrough of the
procedural world under three configurations: (a) using a single-core CPU; (b) using a dual-core CPU; (c) using the same dual-core machine
used in (b), but with one of the cores off.

(a) Rock (b) Terrain (c) Tree

Figure 9: Asymptotic growth for the three procedural models analysed.

MÜLLER, P., ZENG, G., WONKA, P., AND GOOL, L. V. 2007.
Image-based procedural modeling of facades.

MUSGRAVE, F. K., KOLB, C. E., AND MACE, R. S. 1989.
The synthesis and rendering of eroded fractal terrains. In SIG-
GRAPH ’89: Proceedings of the 16th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 41–50.

MUSGRAVE, K. 1999. Building worlds in cyberspace. In CGI
’99: Proceedings of the International Conference on Computer
Graphics, IEEE Computer Society, Washington, DC, USA, 164.

OPENSG. Open scene graph. http://www.opensg.org/.

PARISH, Y. I. H., AND MÜLLER, P. 2001. Procedural modeling
of cities. In Proceedings of ACM SIGGRAPH 2001, ACM Press,
New York, NY, USA, E. Fiume, Ed., 301–308.

PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1990. The algo-
rithmic beauty of plants. Springer-Verlag New York, Inc., New
York, NY, USA.

PRUSINKIEWICZ, P. 1986. Applications of l-systems to computer
imagery. In Graph-Grammars and Their Application to Com-
puter Science, Springer, H. Ehrig, M. Nagl, G. Rozenberg, and
A. Rosenfeld, Eds., vol. 291 of Lecture Notes in Computer Sci-
ence, 534–548.

SMITH, A. R. 1984. Plants, fractals, and formal languages. SIG-
GRAPH Comput. Graph. 18, 3, 1–10.

TASAJÄRVI, L., STAMNES, B., AND SCHUSTIN, M. 2004. De-
moscene: the Art of Real-Time. Even Lake Studios.

WHITE, C. 2006. King kong: the building of 1933 new york city. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Sketches, ACM, New
York, NY, USA, 96.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 132




