
Multi Agent System For Intelligent Game Cinematography

Erick Baptista Passos Esteban W. Gonzales Clua

Centro Federal de Educação Tecnológica do Piauí, Brasil
Universidade Federal Fluminense, Instituto de Computação, Brasil

Abstract

This paper describes a system to improve the visual
experience of spectators in massively multiplayer
online games. The proposed architecture uses
distributed agents to detect actions and control the
camera using cinematographic techniques for computer
graphics.

Keywords: Game spectators, cinematography, multi-
agent systems.

Authors’ contact:
erickpassos@gmail.com
esteban@uff.br

1. Introduction

A computer game can be seen as a virtual world, thus
making it as believable and attractive as possible is a
challenge for both development and artistic teams. This
challenge is becoming more important as games gain a
new kind of audience: spectators. This audience can
bring more players to the game itself or even serve as a
target for in-game advertising [Drucker et al. 2002].

Carefully designed computer graphics and realistic
physics play an important role in this context since
they have a direct impact on players and spectators
immersion. However, having good graphics is not
enough, as poor camera control and unconvincing
behavior of any AI controlled object can ruin this
immersion. The movie industry and also academia has
already demonstrated that cinematography, the
methods for controlling cameras and lights in a scene,
can influence the perception of moods, emotions and
actions by the audience [Brown 2002; Mascelli 1965].

One has to remember that games, being interactive
applications, are different from films in the sense that
there’s no prior knowledge or control over the actions
happening in the scene. For proper use of
cinematography to improve spectators experience in
interactive games it’s also important to recognize these
actions in a way to form coherent storylines [Pinhanez
1999]. To apply these storytelling and cinematographic
camera techniques to massively multiplayer online
games, the ideal candidates to passive spectators, more
difficulties arise:

a) With the huge amount of actions happening at
the same time, how to decide what is relevant

to show to each spectator without
compromising performance?

b) How much of this task can and should be
automated and how much control let to the
spectator?

c) How to explore the, possibly under loaded,
computing power of this hugely distributed
grid of spectator machines to help improving
their experience?

There has been little to no work so far trying to

answer these questions. In this paper, we propose a
multi-agent system to efficiently distribute the tasks
needed by intelligent camera control for game
spectators. The main goals of our project are:

a) Creating real-time cinematographic
experience for game spectators;

b) Massive distribution of cinematography
agents over servers and clients;

The remaining of the paper is organized as follows:

section 2 shows state of the art research in related
areas; section 3 explains system architecture and
challenges; finally, section 4 concludes the paper and
discusses future work.

2. Related Work

A good amount of research has already been done in
applying cinematographic techniques and other
intelligent mechanisms of virtual camera control in
computer games. The majority of this research so far
proposes the creation of higher level mechanisms for
camera manipulation using cinema oriented constructs
and language such as shots, cuts, directors, editors and
cinematographers [McCabe and Kneafsey 2006; Hermann
and Celes 2005; Hornung 2003; Drucker 1994; He et al.
1996]. These efforts often use the concept of film
idioms, commonly used methods for camera
positioning in recognizable scenes, like a dialog
between two characters, a boxing match or a car
pursuit.

Even though these are clever building blocks, they
solve only part of the problem. Games are not like
films, because there is no prior knowledge and control
of what is going to happen in the scene. In this sense,
there has to be a link with the storytelling perspective,
filling these camera modules or agents with
information about the actions taking place in the game
virtual world. Pinhanez [Pinhanez 1999] proposed

models and algorithms to represent and detect actions
in the context of a virtual world.

Hawkins [Hawkins 2002] proposed an architecture
with three logical layers: directors, editors and
cinematographers, comparing these with their
counterparts in a real movie set, where the director is
responsible to propose the film idioms. The editor is in
charge of choosing the shots that will be in the final
cut, while the cinematographer takes care of direct
camera positioning. Bringing this organization to
virtual cameras in computer graphics makes it possible
to decouple the different modules needed by our
distributed system.

We are proposing a system that is a complementary
work to this previous research, where some of these
techniques will be part of it, while others will not. As
can be seen in the next sections, our agents are based
on the architecture proposed by Halkins [Halkins 2002]
but distributed over the network. Our director agent is
closely related to the work done by Pinhanez [Pinhanez
1999] and also uses film idioms to communicate with
the other types of agents.

3. System Architecture

The architecture is meant to be attached to an existing
game engine, which has to provide a basic library with
a scene graph, client-server communication and
simulation loops. The agents communicate by using
asynchronous messages and are organized in three
different logical layers: directors, editors and
cinematographers. Since the system is targeted to
networked games with complex virtual worlds, these
layers are distributed over this network. These agents
and their communication are detailed in the next
sections.

3.1 Director agent

In our system, directors are distributed and
independent agents, being responsible for detecting
actions based on real time events generated by game
objects. They run on player machines to monitor
locally visible objects, like the main character, bots or
even passive physics entities. Being unable to control
the story, their only responsibility is to detect and keep
record of the actions involving the monitored objects.
We use the term action as proposed by Pinhanez
[Pinhanez 1999], where they are meant to represent the
events that happen in the virtual world and its context.
By distributing these directors to client machines it’s
possible to simultaneously keep track of different
storylines, each one comprising a set of related actions,
without increase the load on servers. Figure 1 shows a
diagram for the player client.

Each action may consist of several smaller ones,
each one described by a simple verb, representing the

event, and the list of game objects involved and the
type of involvement. Since a single object can be
involved in several actions, these are also indirectly
connected, making it possible to follow the storyline of
a character. Director agents keep records about past
actions detected in local memory and persistent storage
for future use, as explained in the next section. This
history information is kept as a time-oriented graph,
with causality information whenever possible, with
current actions at one end. Based on this history
registry, the director maintains a list of possible film
idioms for each storyline’s current
actions.

Player client

Director agent

Scene graph

Actions

Action 1

Action 3

Action 2

Local storage

Figure 1: player client

3.2 Editor agent

The editor is an agent that runs locally on the spectator
machine and is responsible for collecting action
information from remote directors. The editor will get
a list of active director agents from a server and choose
one storyline to follow. The editor then connects to that
particular director and gets the information related to
the current actions and suggested shots. It chooses the
appropriate shot and passes this information to the next
layer, the cinematographer, to properly position the
camera, based on the suggested idiom.

The editor is an intelligent semi-automated interface
with the spectator. When logging on to the game, one
can inform the editor the wanted mood/theme, being it
full of fight action or more complex dialogs. With
more complex criteria, the editor can make detailed
queries to the servers and get a list of more specific
active directors on the network. It’s also possible to
create a bookmark of favorite characters and storylines
for each spectator. Combining this editor information
with a real time voting system and the actions history
from the directors, servers can automatically choose
interesting highlights to record permanently, without
compromising performance and using real time

feedback from the audience. The spectator client
diagram is shown in figure 2.

Spectator client

Cinematographer

Scene graph

Local storage
(favorites)

Editor

Action

Figure 2: spectator client diagram

3.3 Cinematographer agent

The cinematographer agent also runs locally on
spectator machines, and is responsible for directly
controlling the camera, following the shot rules chosen
by the editor, which in turn received them from the
director. The architecture does not specify any idiom
format for this shot information, neither the algorithms
used for directly positioning the camera. Occlusion
detection and line of action coherence are all
responsibilities of the local cinematographer. One
important decision is to develop this camera
positioning algorithms based only on the action and
suggested shot information, making it possible to
reproduce a whole storyline without keeping more
persistent information.

3.4 Communication

The proposed system involves three machine types:
servers, player and spectator clients. Three different
agent classes were also described: directors, editors
and cinematographers. The servers don’t need to run
any agent. The only extra task for them is to keep
databases of active and inactive directors and related
storylines for querying purposes, and also for the
spectators feedback system. Notice that game
simulation servers, not described here, are still needed,
since they are still responsible for coordinating the
simulation between the player clients. Player clients
run the director agents while spectator clients run the
editors and cinematographers. This architecture is
shown in figure 3.

As can be seen in figure 1, directors periodically
send summarized information about current storylines
to the servers, which are constantly queried by editors.

The editors, after choosing the desired storyline, start a
communication with the director, for receiving actions
and suggested shots. This information needs to be
exchanged once per cut only, not compromising
bandwidth. Communication between editors and
cinematographer is local. Both spectator and player
machines rely on the simulation servers for updated
scene information of game objects.

Servers

Player Client Spectator Client

Storyline

Queries

Actions and idioms

Figure 3: system architecture

4. Conclusion

We’ve proposed a new architecture for a multi-agent
system to improve the experience of spectators in
massively multiplayer games. This architecture is
strongly based on previously researched building
blocks, but presents a distribution model that relies
mainly on client machines, not imposing more
computing complexity or relevant network traffic to
the already overloaded simulation servers.

This project is still a work in progress and we
expect to have experiments results with the prototype
soon. We’re also investigating the use of this
architecture to distribute other storytelling related
tasks, like the detection of future events by the director
based on physics engine prediction. This can also
improve spectators, and also players experience.

References

BROWN, B. 2002. Cinematography: image making for

cinematographers, directors and videographers. Oxford:
Focal

DRUCKER, S.M., HE, L., COHEN, M., WONG, C. AND GUPTA,

A., 2002. Spectator games: a new entertainment modality
for networked multiplayer games [online] Microsoft
Research. Available from:
research.microsoft.com/~sdrucker/papers/spectator.pdf
[Acessed 17 July 2007]

DRUCKER, S., 1994. Intelligent camera control for graphical

environments. PhD Thesis, Massachusetts Institute of
Technology

HALKINS, B. 2002. Creating an event driven cinematic

camera. Game Developer Magazine. Sep/Nov 2002.

HE, L., COHEN, M. AND SALESIN, D., 1996. The virtual

cinematographer: a paradigm for automatic real-time
camera control and direction. In: Proceedings of
SIGGRAPH ’96. p 217-224, 1996

HERMANN, R., CELES, W., 2005. Posicionamento automático

de cameras em ambientes virtuais dinâmicos. In:
Proceedings of IV workshop on games and digital
entertainment of the Brasilian Simposium on Computer
Games and Digital Entertainment, 2005

HORNUNG, A. 2003. Autonomous real-time camera agents in

interactive narrative and games. MsC Dissertation,
Kunsthochschule für Medien Köln [Academy of Media
Arts]

MASCELLI, J.V. 1965. The five c’s of cinematography. Los

Angeles: Silman-James Press

MCCABE, H. AND KNEAFSEY, J. 2006. A virtual

cinematography system for first person shooter games.
In: Proceedings of iDig – international digital games
conference. 2006

PINHANEZ, C.S. 1999. Representation and recognition of

actions in interactive spaces. PhD thesis, Massachusetts
Institute of Technology

