
Proposal of a tool for pseudo-infinite 3D virtual world generation
Fernando Bevilacqua

Cesar Pozzer
Universidade Federal de Santa Maria

Abstract

We present a proposal of a tool for pseudo-infinite 3D virtual world
generation. The main idea is to split up the problem of generating
a virtual world in three main steps: the first one is to generate the
paths, the second one is to generate the terrain and the last one is to
generate the world elements, like grass over the fields, trees, rocks
and plants, for example. The world is divided in cells and only
the ones that are visible by the user are kept in memory. To reach
this goal, many techniques will be used, like height maps, real-time
cities generation, terrain texturing and path-planning.

Keywords:: MMO, Terrain Generation, Virtual World, Path-
planning

Author’s Contact:

{fernando,pozzer}@inf.ufsm.br

1 Introduction

A game is composed of many elements like sounds, AI, physics
and scenario. In multiplayer games, specially in MMO (Massively
Multiplayer On-line games), the scenario has an important role, be-
cause the player spends a lot of time observing the world around
his character.

The virtual world must be interesting, otherwise the game expe-
rience can become boring and frustrating. In addition, it’s highly
recommended a detailed scenario supported by a good history, so
the player will be invited to explore all the fields, mountains and
lands of the virtual world. One example of such things are the
MMO World of Warcraft [Blizzard Entertainment 2007], where
the player can explore a huge virtual world, organized in at least
two different continents. Over the virtual terrains of the game, the
players can view and interact with forests, mountains, fields, farms,
deserts, and more, all these elements binded to a complex history
of magic and epic fights.

The creation of such a complex virtual worlds is a very important
task in the development of a MMO. The use of tools to generate the
virtual landscape can be useful to developers and game designers,
which can spend more time planning world details and history than
modeling mountains or fields of the game, for example. Concerning
about this subject, this paper describes a new proposal for an autom-
atized virtual world generation tool, which aims to produce big and
complex virtual worlds, but still caring about the game logic, such
as path-planning and distribution of key elements, like gold mines
in a strategy game.

2 Related work

This section presents four related works about creation of virtual
worlds. The first three are focused on generation of virtual sce-
narios, while the last one is centered in making those generated
scenarios look more realistic.

2.1 Height maps to generate terrains

A common technique for terrain generation is height maps, which
are bidimensional arrays with each dimension representing the X
and the Y axis, and the pair (i,j) in this array represents the point’s
height in the Z axis [Ribble 2001]. The main idea behind this
form of terrain generation is to introduce controlled noise into a
flat surface, which will produce terrains like the ones found in real
world.

One method of height maps generation is called fault forma-
tion [Ribble 2001]. In this method, at every step, a line is traced
in a random position over the map, and then the height of all points
in one side of the line is increased. Another example of height
maps are those generated through midpoint displacement, which
can be used so simulate the effects of tectonic plates in the earth
surface [Ribble 2001]. The method splits up the surface into small
segments, then rise or lower the height map by a random amount in
each segment (using the midpoint). After several steps, the terrain
contains height variations over the surface, as shown in Figure 2.1.

Figure 2.1 Midpoint displacement method in a 2D
view [Ribble 2001]

Another method of height maps generation is called particle depo-
sition [Ribble 2001]. This method simulates a lava flow using a
simple particle system, where the elements are dropped by specific
sources located in random positions. The sources drop a bunch of
particles during a random time, what can be controlled to produce
higher or lower heights over the map. When the particle is dropped,
it "falls" into a point in the height map, then it tries to reach a lower
level (e.g. a neighbor point with lower height). The movement is
made in all direction in a random way. If the particle reaches a
point with no low height neighbors, it ends the movement. Figure
2.1 shows a terrain generated by particle deposition method.

Figure 2.1 Terrain generated by the particle deposition
method [Ribble 2001]

2.2 Real-time generated city

Another related work is the real-time generated city proposed by
[Greuter et al. 2005]. In that work, the authors present a system able
to generate pseudo-infinite cities that can be interactively explored
in a first person view. All elements in the virtual city (like streets
and buildings) are generated in real-time, as they are encountered
by the user. The geometric form of each element is determined by
its position, what makes possible to the user see the same buildings
again in a specific place he walked before, no matter how far he
walked around since then.

To reduce the amount of resources needed, the system keeps in
memory just the elements that the user is able to see. As the user
walks, the elements far away from the user view are released from
the memory; the inverse process is performed to new elements in



the user’s view, which are loaded into the memory as they appear to
the user. This process can ensure a rational and acceptable memory
use, even with a pseudo-infinite city with huge boundaries.

The management of the elements within the camera’s view is called
view frustum filling, according to the authors. In that approach,
the world is splitted up in many square cells on a 2D grid, each
of them with geometric elements, such as buildings and/or streets.
The cells are arranged in square loops around the cameras position.
To be part of the user view, the cell must be located within a 120◦

viewing angle and a distance of loops X cellsize. Figure 2.2 shows
the visible cells in the users view.

Figure 2.2 Visible cells in the users view [Greuter et al. 2005]

The form and appearance of each building in the world are deter-
mined by a 32 bits pseudo-random number generator. Each cell has
its own 32 bits hash, generated by hashing the cells coordinates X
and Z with a global seed. The mathematical formula is:

seed = hash(x XOR hash(z XOR citySeed))

where hash() is the 32 bit Mix Function proposed by Thomas
Wang [Wang 2000]. All elements in an arbitrary cell are generated
by a random processes seeded by the cells hash. In that way, a
cell will have always the same elements, no matter how far the user
walked around. The Figure 2.2 illustrates the process.

Figure 2.2 a) 2D grid (b) hashed seeds (c) generated
buildings [Greuter et al. 2005]

2.3 AdVantage Terrain Library

The AdVantage Terrain Library (ATL) [Strugar 2007] is a tool de-
signed to generate large virtual terrains, intended to be used in mas-
sively multiplayer online games, flight simulators and similar ap-
plications. The ATL was written in C++ and is distributed as .dll or
.lib file, so it can be easily integrated into C++ applications.

The library is able to generate terrains from huge height maps,
using huge textures (64000x64000 pixels or bigger) as well. As
stated by the ATL author, some features of ATL are: fast rendering
techniques, collision detection support, multithreaded data stream-
ing/decompression and platform independent.

The ATL Win32 SDK is free of any charge for commercial or non-
commercial purposes. Figure 2.3 shows a terrain generated by ATL
from a height map of 24577x15233 pixels.

3 Mapping textures

Mapping textures on virtual terrains is important to make the land-
scape interesting to the end-user. As highlighted by Sinvhal [2005],
terrain texturing in computer games, for example, doesn’t have to

Figure 2.3 Terrain generated by AdVantage Terrain [Strugar
2007]

imitate the real world perfectly, it only have to be "believable" to
the user. A non-realistic textured terrain can be more interesting
then a realistic one, which will result in a better game experience.

In the work of [Sinvhal 2005], cellular automata are used in the
automatic generation of textures for large surfaces. As defined by
[Weisstein 2007], a cellular automaton is a collection of "colored"
cells on a grid of specified shape that evolves through a number of
discrete time steps according to a set of rules based on the states of
neighboring cells. The work of Sinvhal [2005] presents a research
about elements that make a computer generated texturing for a ter-
rains seems to be realistic. Some of those elements are:

1. Natural terrains have strong characteristics, like the large area
of sand in beaches;

2. Landscapes have random elements that make them seems to
be natural;

3. Characteristics can be influenced by height, like the snow in
higher elevations in a mountain.

To reach those elements in the terrain texturing process, the author
uses a cellular automaton with a set of specific characteristics; the
initial population in the cellular automata evolves over many steps
to simulate a natural environment. To avoid a texture pattern, ran-
domness is used. The features produced by height (like snow in
mountains) are made through a probabilistic distribution of texture
tiles for each state of the cellular automaton, according to the terrain
height.

Figure 3 shows a textured terrain resulted from cellular automata
proposed by [Sinvhal 2005]. Height elevation areas have different
texturing pattern then lower height areas.

Figure 3 Textured terrain resulted from cellular automata
texturing process [Sinvhal 2005]

4 Proposal of a tool for virtual world gen-
eration

As explained before, the task of generating a complex virtual world
does not rely on terrain creation only, but also on other elements.
Generate a random terrain with height variation is not enough to
make it useful to be used in a game, for example. In a game designer
view, the player hopes to see a world filled with paths, cities, secret



places, and so on, elements that can keep the player’s attention for
a long time. In that way, the generation of a complex virtual world
requires a method able to create, in addition to terrains, a number
of extra elements that together can produce a rich environment.

This proposal is about a tool able to generate virtual worlds, using
for that most of the techniques explained in this paper and also new
ones, like path-planning. The main idea of our proposal is to split
up the problem of generating a virtual world in three main steps:
the first one is to generate the paths, the second one is to generate
the terrain and the last one is to generate the world elements, like
grass over the fields, trees, rocks and plants, for example. As far
as we have researched, no other tool was designed to create such a
complex virtual worlds using terrain generation (with height varia-
tion), addition of cities and path-planning to ensure a way to reach
every place in the world.

This approach of splitting up the world generation in three main
steps is a way we have found to solve some problems related to
terrain generation. One of them is about paths and height variations:
we have decided to generate the paths first because it can simplify
the task of generating height variations in the world surface. If we
generate the height variations first (mountains and so on), then we
have to scan the map looking for possible paths, but there are no
guarantees we could find adequate paths (we could find no paths
in the worst case). Generating the paths in the first step make us
able to know where a big mountain can be placed, for example; we
are also able to know if a mountain is blocking a path, so we can
change the mountain height in that point, so it will no longer block
the path already defined.

To reach this goal, the virtual world will be divided in cells, like the
approach made by [Greuter et al. 2005]. In the first step, the tool
will calculate the cells the user (e.g. player) is able to see, using a
view frustum approach; for each of those visible cells, the tool will
generate a set of graph nodes and then use path-planning to connect
them to create the paths. Each cell will have five control nodes,
which will define the path configuration for that cell. One of those
nodes is called origin node and it will be used as the beginning of
all paths in the cell. The other four nodes are called binding nodes
and each of them will be located near a specific side of the cell. A
small group of the generated nodes, called boundary points, will be
placed in the cell boundary. The Figure 4.1 shows three arbitrary
cells and their origin nodes (o), binding nodes (i) and the boundary
nodes (u).

Figure 4.1 Three arbitrary cells and their origin nodes (o),
binding nodes (i), boundary nodes (u) and the generated paths

After the nodes generation, the visible cells will present a set of
graph nodes, but no paths. At this point, the tool will start connect-

ing the nodes to create paths, so the user can walk over the visi-
ble cells. This process will be performed using the binding nodes:
for each side of the cell the user is located (called focus cell), the
tool will search for neighbor boundary nodes; the binding nodes of
the focus cell will be connected to the searched neighbor boundary
nodes, resulting in a set of new paths. In the end, the focus cell will
have a set of own paths (generated from the origin node) and also a
set of shared paths (originated from its own binding nodes and the
neighbor boundary nodes). Figure 4.2 shows the paths originated
by the connection between the binding nodes of the focus cell with
the neighbor’s boundary nodes (dotted lines) and the paths gener-
ated by the connection between the inner nodes of each cell (non-
dotted lines).

Figure 4.2 Three arbitrary cells and the generated paths used
to connect them

The use of binding and boundary nodes are required because we
do not want a recursive process to determine the graph nodes (and
paths) of the visible cells. If those special nodes are not used, every
cell must know where the neighbor nodes are, because all nodes
have to be connected to create an uninterrupted path. Our idea of
binding and boundary nodes tries to avoid recursive information
requests between the cells. An example of recursive information
request is when the focus cell asks cell A to inform its paths: A has
to ask the same information to its neighbor cells, because it must
find out where the neighbor nodes are to be able to generate its own
paths. When A asks information, all asked cells also have to request
information from their neighbor cells to be able to generate their
own paths, and so on, in a recursive process, until a cell with no
dependencies is found (a cell able to generate its own paths without
asking any other cell).

The user will be able to explore all the places in the virtual world
using the graph route or not. The paths resulted by the graph nodes
will ensure a way to reach all places in the world, but the user will
still be free to walk in places with no paths. The only restriction for
that is the terrain height: the user cannot across a big mountain, for
example.

The second main step is to generate the terrain. Using a combina-
tion of techniques described by [Ribble 2001], the tool will gen-
erate mountains and other height variation over the surface of each
cell.

The last main step is to generate the world elements (like trees and
cities) and to texturize the generated content in all the steps. All
elements of this step will be added to each cell through specific
function calls, like addTrees() and addCity(). All of those
functions will work as a combination of random actions (seeded by
the cell’s hash) and statistical calculation, like the texturing process



proposed by [Sinvhal 2005]. Using the city generation as an ex-
ample, the function addCity() will use all information available
in the cell and its neighbors to determine the city score for the cell.
The city score is largely calculated by the cell’s height average and
by the cell’s hash. Another element used in the score calculation is
the average city score of neighbor cells. If the cell fits the city score
required, then a city will be added to that location. As a result, if
a cell has a very high city score, then probably all of its neighbors
will have such high score too. If a neighbor cell has a bad city score,
then it will decrease the average to the city score of its neighbors, so
they will have a smaller probability to become cities. If the neigh-
bors of the neighbors have a bad city score too, then the average
city score will be decreased again, what will result in no more city
cells around the first cell with high city score.

5 Conclusion and future work

A proposal of a tool to generate virtual worlds with height vari-
ation, path-planning and texturing through cellular automata has
been presented. To support that tool, height variation techniques
were presented, as well as related work about virtual world gen-
eration. The main idea of this tool is to split up the problem of
generating a virtual world in three main steps: the first one is to
generate the paths, the second one is to generate the terrain and the
last one is to generate the world elements.

The creation of a virtual world like the one used in World of War-
craft is a very hard task to accomplish. In addition to height vari-
ation, all surfaces and terrains need textures to seem interesting to
the player. Extra elements are also required (e.g. trees, rocks) and a
geographic features must be present (like snow in higher elevations
of a mountain). A tool to generate virtual worlds in an automated
way, with all those related elements, can help in game development.

All explained steps in this proposal are our first ideas to solve the
problem of generating a complex virtual world. Our next steps will
be modeling all C++ classes required for the tool, starting with the
classes related to the main steps one and two: generate paths and
height variation. After that, we will start planning and coding the
classes related to the main step three that is about generation of
world elements, like texturing, cities, rocks, trees, and so on.

References

BLIZZARD ENTERTAINMENT, 2007. World of warcraft. Available
at: <http://www.blizzard.com>.

GREUTER, S., PARKER, J., STEWART, N., AND LEACH, G., 2005.
Realtime procedural generation of ’pseudo infinite’ cities.

RIBBLE, M. 2001. Using various techniques to generate height
maps used in terrain generation. Tech. rep.

SINVHAL, S. 2005. Mapping Textures on 3D Terrains. Master’s
thesis, Texas A&M University, Texas.

STRUGAR, F., 2007. Advantage terrain. Available at:
<http://www.advantageterrain.com/>.

WANG, T. 2000. Integer hash function. Tech. rep. Available at:
<http://www.concentric.net/ Ttwang/tech/inthash.htm>.

WEISSTEIN, E. W., 2007. Cellular automaton. Available at:
<http://mathworld.wolfram.com/CellularAutomaton.html>.


