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ABSTRACT

The study and development of intelligent agents is important to in-
dustry due to the fact that they can be used in a range of applica-
tions, such as: simulating the human behavior in games of various
genres; testing tools and; generating content, e.g maps or cities.
This paper presents the generation of artificial intelligence models
which mimic the human behavior. Our approach for this generation
is to use an approximate agent with Q-Learning, a technique of re-
inforcement learning. A 2D rogue-like game was used as testbed,
which the user goal is to survive the maximum number of days, and
it needs to collect food to not starve, and avoid enemies to not get
killed. Our aim is to create a model online collecting data during
the gameplay. As it do not require the user to answer a questionary
or some kind of inconvenient input, or even pause the game this
approach is transparent for the player. Furthermore, we present a
discussion of the gameplay’s performance of the generated model,
demonstrating its mimic’s hability and generalization. The results
demonstrates that the accuracy was 37.04% for the testing sample
and 43.5% for the training sample. However our agent reaches its
goal, acting with a similar human behavior; having score similar to
the human players and; completing the levels with a smaller time
on average.

Keywords: procedural content generation, reinforcement-learning,
player modeling.

1 INTRODUCTION

The development of a game is a complex task that requires exten-
sive knowledge in order to produce a good work. With the evolu-
tion of graphics and hardware, one of the main goals is to attract the
players using computational resources that helps in the generation
of content [5]. Procedural Content Generation (PCG) is a confident
tool used both online and offline [8] to create content like maps [3]
and characters [6], decreasing the cost and time of a development
team that is creating a game [1].

One of the issues where the artificial intelligence is applied sat-
isfactorily is to hold the player’s game interest. In practice there
are players who learn faster than others, making the experience rel-
ative, causing an intervention by the level’s algorithm generator to
all kinds of people [10]. Without this, the engagement in the game
may decrease, making the player feel bored or frustrated.

In Yannakakis et al. [4], Player Modeling consists in the study of
Artificial Intelligence (AI) techniques to build player models. This
can be done through detecting behavioral, affective and cognitive
patterns. Some of the studies presented ways to simulate this be-
havior using techniques such as reinforcement learning and neural
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network. Also, comparisons were made from the utility and perfor-
mance of each technique.

When working with human behavior, it is important to check
the level design balance to keep the player motivated to progress
through the game and face the challenges. The work presented in
Silva et al. [12] was introduced as an alternative to balance the dif-
ficulty of the game as the player advance, called Dynamic Difficulty
Adjustment (DDA). According to the player’s skills, the agent was
adapted in order to adapt their level of gameplay in levels similar to
the opponent. As our work, actions taken by the player will directly
influence the Intelligent Agent (IA), which whether he reach an ob-
jective, this action will be considered good. Similarly, if your hero
is defeated, he will suffer losses and know that this is a negative
action to take.

Another way to adjust the game difficulty is presented in Prez et
al. [10], where the technique called Evolutionary Fuzzy Cognitive
Maps (E-FCM) is apllied, a modeling tool based on Fuzzy Cogni-
tive Maps. The difference here is that each state is evolved based
on external causes.

There are several techniques to create an IA, where some of
them are more effective than others according to the game style.
A fighting game called ”Boxer” was presented in Mendona et al.
[9], which demonstrated the use of intelligent agents created from
two approaches, the first was based on reinforcement learning us-
ing Q-Learning algorithm, able to make an agent simulates human
behavior through a set of conditions and actions. The second used
an Artificial Neural Network (ANN), which was trained through
the history of several fights made by human players. In the training
period, the agent using Q-Learning had a better performance, while
in the testing period the agent ANN got a better response of most
players, due to be more challenging and fun.

Another approach using player modeling is presented in Car-
valho et al. [2], where the goal was to create an endless game with
a map that is considered playable while maintaining an appropriate
level balance for the player. It use chunks as obstacles in the map,
and to control the production of that, two neural networks was used.
The first receives controllable features as input, and the other re-
ceives both non-controllable and controllable features as input. The
chunk difficulty is the output of the networks. After available, the
second network it is used to make adjustments to the game in order
to reclassify the chunks. Thus, as more data available, more chunks
with real difficulty will be perceived by the players.

In Holmgard et al. [6] the Q-Learning was used to produce the
agent of the game sample. This technique was selected because any
reinforcement learning satisfies the game requirements. Besides,
the use of a lookup table, which contains all the Q-Values, was
a good idea, due to the small game world and the limited player
actions. Each state of the table contains all the game world and the
player’s hitpoints.

This work aims to present a way to mimic the human behav-
ior through the use of reiforcement learnign technique. We use Q-
Learning with an approximate agent approach using features. We
collect data through 84 days of the game, where volunteers played
to improve the diversity that each of them had some level of diffi-
culty and take some time to think and act in the levels. Finally, we
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discuss the results obtained from the agent compared to players and
presents the conclusion.

2 METHODOLOGY

This section describes the conducted steps in this research. We
present the simulation environment; data collection process; Ar-
tificial Model (AM) building and evaluation tests.

2.1 Data Collection
The data gathering was made during a gameplay session, where
an individual was asked to play until it death or survive all days.
This process was repeated for only 6 students who were willing
to collaborate, generating a sample of 84 days. We split it in two
samples, one with 70%, the training sample (Ins), and the testing
sample (Outs) with the later.

For each day played during all sessions we stored: the player’s
score, with respect to Table 1; which day was; the time to complete
the level; if the player survived or not and; the set of actions taken.
This process was also applied collecting data from game sessions
where our generated model played, in order to compare it to the
human player’s game sessions.

2.2 Testbed Game
A 2D rogue-like game was adopted as testbed to evaluate our ap-
proach. This game is based on an Unity’s tutorial and uses its graph-
ical resources, which are available for free download1. The goal is
to survive the maximum number of days as possible, in a zombie
apocalypse.

A day is represented by a single level, in which the player must
reach the exit to complete it. The game is turn based, where all
enemies move once after the player moves twice. Each step decre-
ments the player food and being attacked by an enemy decreases it
by 10 or 20, while collecting a fruit or soda increase by 10 or 20.
Other hazards, such as sticks (breakable) and rocks (non-breakable)
might be found in a level.

A range of 15 days were stipulated. At the end of each day, the
player score is calculated by the sum of rewards from each step
taken. Table 1 demonstrates each situation’s score. These levels
were created with the aim to increment the challenge provided, in-
crement gradually the difficulty by populating the map with ele-
ments that induce the action of the players.

Table 1: This table demonstrates the rewards received at each
game’s situation.

Situation Step Z1 Z2 Apple Soda Die Win

Reward -1 -10 -20 10 20 -100 300

2.3 Artificial Model Generation
This section describes the process used to generate the artificial
model. First, we briefly describes the learning algorithms and the
agent’s type we used. Finally, the features selected and model gen-
eration applied are presented.

2.3.1 Q-Learning
The Q-Learning algorithm is a reinforcement learning technique
where the agent learns through its past actions, trying to maximize
the sum of rewards it receives [15].The algorithm build up the Q-
Table through the environment exploration using an adapted Bell-
man’s equation which is mathematically represented as:

Q(s,a) = (1−α)Q(s,a)+α(r+ γ max(Q(s′,a′))) (1)

1unity3d.com/pt/learn/tutorials/projects/2d-roguelike-tutorial

The particularity of this algorithm is that its table stores the Q-Value
for each action A which is allowed in a state S. Furthermore, it is
argued that if both learning exploration rate decreases as required
from 1 to 0, it will converge to the optimal policy.

After try an action in a state, the agent evaluate the state that it
has lead to. If it has lead to an undesirable outcome the Q value of
that action from that state is reduced, so that other actions will have
a greater value and will be chosen, for the next time it is in that
state. Similarly, if the agent are rewarded for taking a particular
action, the Q-value of that action for that state is increased, so it
is more likely to choose it again the next time if it is in that state.
Thus, the goal of an agent is to maximize the total reward.

It is important to notice that when updating Q-value, the algo-
rithm is updating it for the previous state-action combination. After
the agent see the results, the Q-value can be updated.

2.3.2 Approximate Agent
The artificial model that we generated to mimic the players uses
an approximated agent [11], which is an agent that abstract the
main features of the environment. This approach improves the Q-
Learning because it allows to represent the pertinent aspects from a
state through the weight attributed to each feature, which represents
the learning value of that state. Thereby, there is no need to store
the Q-Table.

While the approximate agent assists in the state of abstraction
and thus the Q-Learning, it requires a high computational complex-
ity due to the fact that it is necessary to define the vector containing
all the features values. The biggest challenge in this case is to de-
fine these values in order to find acceptable results in accordance
with the proposal of the game.

Given a state s, the action is chosen by the following equation

A(s) = argmax
a

F [s,a]∗W [s,a] (2)

where a is the set of possible actions, F[s] is the vector containing
the sign of each feature and W[s] represents the weights vector, both
which respect to state s.

2.3.3 Features
All features calculates the cost from a position X to a position Y
using an A* algorithm, with Manhattan Distance as heuristic. The
sign of each feature is calculated using the equation

s(x) =
c

cost[x]+1
(3)

where cost[x] returns the cost from the player position to element’s
position represented by x, e.g. the exit tile. The sign function aim
is to maximize the sign as the player approximates to its goal.

The feature E captures the main goal of a day, where E repre-
sents the exit tile. MinZ and MeanZ covers the cost to the enemy
which is closest and the mean cost from all enemies. Similar, MinF
and MeanF have the same aim but with respect to both apples and
sodas. E is missing on the extracted features only if the player is
corned from enemies. The zombie and food features are generated
always that at least one of them exist in the level, at the moment of
extraction, e.g. chosing an action. However, when a state leads to
the exit position the zombie features will not be generate, once that
they do not have relation with the winning state.

E uses c = 0.05 and the others c = 0.1. This avoids the feature to
diverge too much from the others, once that it is the single feature
extracted; surviving a day invoke its highest sign and; gives the
largest reward.

The cost function ignores the fact that a zombie or soda on the
path might influence in its cost. It only considers enemies non
traversals position, such as rocks; both food as regular traversable
positions and; the cost per action is 3 when it moves over a stick
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and 1 otherwise. Note that enemies and foods are captured in its
own features, distinguishing when a state is closest to an element
and when it is more surrounded, having a high mean.

2.3.4 Model Generation

The model was generated through a training process using a learn-
ing rate equals to 0.02 and discount of 0.9; the number of training
episodes was 55.

This approach differs from the general Q-Learning because it
does not follow the exploration process. It uses data gathered from
the players, allowing our model to learn how the players acts, using
online learning. This enables the model to absorb knowledgement
from all players and abstract their behaviour in the environment,
enabling it to act in a similar way to them. Table 2 display the
learned weights.

Table 2: This table demonstrates the weights from each feature
learned during the training process.

Feature Weight

Bias 31.2758617

E 1.6145191

MinZ -0.07409985

MeanZ -0.0466128

MinF 0.2423068

MeanF 0.0238249637

2.4 Evaluation

In this section we describe the test we used to evaluate our gener-
ated model and the motivation. All tests were made for both Ins
and Outs, measuring the agent’s generalization, besides its capacity
to mimic players.

Prediction was evaluated replicating the players’ actions and
comparing with the action our model chosen in the same state.

Level Evaluation might be used as fitness function, on level gen-
eration, applying artificial agents to simulate a real player game-
play, assessing the challenge it should provide to a regular player.
We compare the similarity of score our model received to the hu-
man players’ mean score.

Efficacy has the aim to evaluate the time our model took to com-
plete a level compared to real players. The agent time was com-
pared to the mean time humans took, for each day.

Efficiency was used to check the hability to win each day for our
agent compared to the other players.

3 RESULTS AND DISCUSSION

In this section we present and discuss the results about our gener-
ated model reached after the tests we described in 2.4.

In this test we evaluated the similarity of the rewards our model
received, after completing a level. Table 3 demonstrates detailed
data about the performance from both InS and OutS, beyond our
model. All values were normalized using min max normalization,
between the values from all samples. The minimum (-388) value
came from InS, when a player get corned by 2 enemies and; maxi-
mum (359) from OutS.

Table 3 demonstrates that our model was able to reach a slight
better performance from both samples on average. Also, it demon-
strates that the model’s standard deviation was smaller. However,
this is due to our agent won each testing episode, despite that the

Table 3: This table demonstrates statistic’s data from the rewards
received during the game play from our model, InS and OutS .

– AI InS OutS

Mean 0.9105849 0.9066569 0.8991368

Std 0.05751841 0.1325192 0.1759487

Min 0.7416332 0.0000000 0.008032129

Q1 0.8982597 0.8995984 0.899598394

Median 0.9196787 0.9330656 0.925033467

Q3 0.9357430 0.9504685 0.961178046

Max 0.9973226 0.9866131 1.000000000

largest sum of rewards was received from the other samples. Oth-
erwise, in both samples some individuals died without finishing the
last day.

Using an intelligent agent to evaluate a level is a well proposed
approach [7, 14, 13]. We argue that the agent generated using the
methodology we proposed would be feasible for this purpose. On
average, its score was similar to both samples and it was able to
finish all levels, despite the use of a small data set.

This test, similar to the Score, investigates the artificial model’s
performance against the other samples. The values of Table 4
were normalized using the minimum of 12 seconds, reached by our
model and; maximum of 67 seconds, where player in both InS and
OutS samples took.

Table 4: This table demonstrates statistic’s data from our model,
InS and OutS collected during their gameplay with respect to the
amount of time they took to complete the levels.

– AI InS OutS

Mean 0.2250784 0.221157 0.4432602

Std 0.1591309 0.2067062 0.27857

Min 0.0000000 0.01818182 0.1090909

Q1 0.1090909 0.10909091 0.2181818

Median 0.1636364 0.14545455 0.3636364

Q3 0.3454545 0.21818182 0.6000000

Max 0.5636364 1.00000000 1.000000000

On average, our agent and the InS players almost took the same
time, with a slight advantage to our model, while the OutS player
took about twice the time. Despite the several A* searches our
model realizes, extracting the state features, the time it took to com-
plete the levels. We argue that the human player took more time due
to the game being turn based. Most players took time thinking in
which action they should take, while the agent always follows the
same algorithm. This is demonstrated in Table 4 through the stan-
dard deviation.

The Q-Learning algorithms uses the discount factor to control
how much a successor of the state the agent intends, in order to go
influence on its utility. However, it is common the human players
plan more steps ahead than the agent is able. This is a limitation on
our model, which might increase the performance, as a similarity to
the players that it is modeled. Furthermore, taking less time to de-
cide the action it will take gives an interesting insight on using this
model as utility function together with a Min-Max or Expect-Max,
for example. This algorithm would increase the time to choose an
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action, in exchange of being able to plan its actions looking more
than 2 steps ahead.

To evaluate how the action’s selection from our agent mimics
the players, we replicated each action the player took, in the same
level, and also choose an action with our model. In comparison to
the OutS, it had an accuracy of 37.04% and 0.1108783 as standard
deviation. With respect to InS, our agent had 43.5% of accuracy
and 0.1567165 as standard deviation. Table 5

This demonstrates that our approach was not able to mimic the
players’ action by action. However, this does not confirm that our
approach is irrelevant to the purpose of player’s mimicking, once
that our aim is to abstract the player’s behavior, and not to repeat
their actions.

The agent settings can be configured with simple but also com-
plex features, using factors that can lead to greater learning. Ex-
amples like [12, 9] demonstrates that this kind of technique can
generate reliable results, creating the agents that will be used as op-
ponents in games of different genres, like fight and strategy. Our
technique might be used in games of other genres, 2D or 3D .How-
ever, its perfomance relies on the selected features and their extrac-
tion from the environment.

We argue that this high error index is due to our limited data
base, reducing the number of episodes available to train. That fact is
given to all features used are numerical and we stipulate them based
on the testbed game, however, using another set of features might
improve its performance. Furthermore, the fact that human player’s
mostly takes an action based on future steps also contributes to the
low accuracy.

Table 5: This table demonstrates statistic’s information with respect
to the accuracy our agent had, when the action it selected was com-
pared to the actions taken from both InS and OutS, at the same state.

– InS OutS

Mean 0.4350518 0.3704231

Std 0.1567165 0.1108783

Min 0.1578947 0.2162162

Q1 0.3288288 0.3636364

Median 0.4117647 0.3636364

Q3 0.5000000 0.4400000

Max 0.9411765 0.6071429

4 CONCLUSION

This paper presented a methodology for procedural generation of
Artificial Agent models, using reinforcement learning. As proof of
concept, we used a rogue-like game, where we collect data from the
gameplay of 6 players, generating a data set of 84 days, which we
splited 70%-30% for training and testing.

We stipulate a set of features based on a rogue game main goals,
e.g. avoid enemies and reach an exit tile. The training process was
guided by the players actions, using online learn. This approach
avoids the necessity of stopping the player during the gameplay.
Also, it does not require to capture any player information or image.

The results demonstrate that our generate agent was able to com-
plete all 15 levels, while most players also did, but sometimes they
got stuck by enemies or died with no food. Thus, it was able to
reach a mean score which differentiates less than 0.02 for both InS
and OutS. Also, on average, our model finished the level’s in a sim-
ilar time to the InS and faster than OutS. However, when the agent
was exposed to the same state that a human, it selected the same
action 37.04% and 43.5% for OutS and InS respectively.

Our generation process reach our goal, being able to receive
scores approximated from the one’s the human players had. We
argue that its low accuracy is due to the small data set and features
selection. Also, the fact that the agent cannot choose its actions
based on several steps ahead, such as was noted during the human
players’ gameplay, and reinforced by the time they took to finish
the levels, has influence on the high error index.

We believe that this paper gave interesting insights from how to
continue this research and pretend to expand this work, investigat-
ing which features reaches the best performances. Also, improving
the action’s selection algorithm, using an adversarial search, such
as Min-Max or Expect-Max, to allow our agent to look more steps
ahead. Furthermore, testing it with a learning rate different of 0
might increase the similarity to a real player, causing it to constantly
adapts itself to the environment.
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