
3D Model Generation from Freehand Drawings

Pedro Rossa∗ Daniel Camozzato Fernando Marson Rafael Hocevar

Universidade do Vale do Rio dos Sinos, Brasil

Figura 1: a) hand-drawn image; b) webcam analysis; c) binary Image; d) detected corners; e) virtual model representation.

RESUMO

We propose a model to analyze freehand labyrinth drawings in or-
der to generate a 3D model of it. The drawing is captured using a
webcam and the images are then analyzed by a computer vision al-
gorithm that detects the labyrinth’s 2D lines and builds the walls by
extrusion. We aim to use the drawing itself as a marker, overlaying
the 3D model to create an augmented reality effect.

Keywords: Computer Vision, Augmented Reality.

1 INTRODUCTION

Computer vision applications have become popular in different
areas of knowledge in recent years. Augmented reality is an area
that depends heavily on advances in computer vision techniques,
and is necessary for the development of numerous applications for
entertainment, education and business. One of the main challen-
ges when working with computer vision is the need for controlled
environments to enable image capture of acceptable quality.

In this article, we present a model to recognize hand-drawn
labyrinth designs from images captured with a webcam. We per-
form a luminosity calibration applying filters to detect the laby-
rinth’s edges. With this information, we then perform a sequence
of steps to connect each pair of corners forming a line, resulting in
points which can be used to create a 3D model through an extrusion
process.

2 RELATED WORK

Several methods have been presented to create 3D building models
from CAD files and scanned images [6], [7], [8]. While CAD-based
systems avoid the overhead of image processing, many drawings
are still done on paper and saved as scanned images. According to
Yin et al. [8], these image-based systems are not fully automated,
and vectorization and symbol recognition remain open issues.

Heras et al. [3] present a method in which a set of assump-
tions about the graphic representation of walls is used to generate
segmentation candidates and select the one which better characte-
rizes the walls in a given floor plan. This allows the method to
identify walls in floor plans drawn using different graphic styles.

*e-mail: prossa@unisinos.br

Ahmed et al. [1] present an approach using successive morpholo-
gical operations to recover walls represented with lines of different
thicknesses. Macé et al. [5] present a technique which uses com-
puter vision algorithms to extract lines from the input image, and
which then identifies walls among the lines by using the lines as
markers upon the input image. Walls are detected considering the
directions of the lines and the texture between each two lines in the
input image.

These image-based systems are suitable for use in recovering
floor plans drawn using specific graphic styles for walls and ope-
nings. However, the reviewed methods are not fully automated,
and vectorization, symbol recognition and robust image recogni-
tion in uncontrolled environments remain open issues. In our case
the input is a hand-drawn sketch captured with a webcam in an un-
controlled environment. Therefore, we focus on automation and
robustness.

3 THE MODEL

The first step is to draw the labyrinth layout on a clean white sheet
of paper using horizontal and vertical lines only, as shown in Fi-
gure 1a. It is preferred to use a thick-tipped pen of dark color to
achieve better results.

To generate a 3D model from a freehand drawing, we pro-
pose a sequence of steps. First, the camera is calibrated to reduce
artifacts caused by performing image capture in an uncontrolled en-
vironment. Then, the full color input image is filtered, generating a
two-color bitmap, with the background in black and the foreground
(the labyrinth walls) in white. This is a preparatory step, and the
detected edges must be further processed to create 2D vertices and
lines which can be extruded to create a 3D model. Next, a corner
detection algorithm is used to identify intersections between edges,
such as corners in the labyrinth. Finally, the detected corners are
used as markers to scan the input image, creating 2D lines upon the
labyrinth drawn by the user. These steps are further detailed in the
following sections.

3.1 Brightness Calibration

Brightness may vary greatly according to the environment in which
the camera is operating. In order to solve this problem and achieve
better results, the user is asked to do a quick calibration, which
will consider the ambient brightness when performing the image
capture. To perform the calibration, a clean sheet with the same

ABSTRACT
ABSTRACTBSTRACTBSTRACT

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 226

color used for the drawing is placed in front of the camera for a few
seconds to collect some frames.

Figura 2: Representative image of the white balance algorithm.

This step is important because it enables the algorithm to adapt
according to the ambient luminosity, which allows the detection to
be more precise as seen in the Figure 2.

3.2 Color Filtering

The full color input image is filtered, creating a two-color bitmap.
In this filtered image, the background (empty space) is black and
the foreground (labyrinth wall) is white. This simplified image is
further processed in a corner detection step, and also used later in a
line scanning step. Our model detects both vertical and horizontal
lines with a certain degree of freedom, such that lines do not need to
be perfectly aligned (see Figure 1a), i.e., small changes in direction
are detected and considered.

Figura 3: Two color image to analyze corner points.

3.3 Detection of Corners

After detecting the edges in the drawing, a second step is perfor-
med to detect corners and intersections between edges. Corners
and intersections are features in the image, marked by a change in
the edge’s direction and, as a result, the gradient of the image has
a high variation. This variation can be detected using the Harris
filter [4], which sweeps a region of interest over the image, iden-
tifying intensity variations.

The Harris filter [4] generates multiple corner candidates for
each actual corner between two lines, making it necessary to elimi-
nate duplicates. The x and y coordinates for each corner candidate
are stored in a buffer, and a neighborhood analysis is performed
to eliminate duplicated corners. The neighborhood analysis elimi-
nates each corner candidate beyond the first within a user-defined
threshold. Iterating over each corner candidate, the distance to all
other corners is calculated, and any corners closer than the threshold
are removed.

The result is a set of coordinates for corners between the lines
in the image (as shown in Figure 1d). The Harris filter may occa-
sionally create a false positive, such as identifying a corner in the
middle of a straight line. However, this does not cause a problem
as the extra corner will simply be an extra vertex in our model.

3.4 Line Scanning

The corners detected in the previous step can be used as vertices
for the 3D model extrusion. However, we must first identify which
pairs of corners are actually connected with lines. Thus, a scanning
process is performed as follows.

First, the previously detected corners are used as markers in
the input image. Then, for each corner, we analyze the nearest li-
nes in the original drawing by sweeping horizontally and vertically
with a search window. The process of line detection occurs by fol-
lowing a set of rules defined as follows: the group of points detected
by the Harris filter, and each of its values is analyzed horizontally
and vertically. The diagram presented in Figure 4 demonstrate this
concept.

Figura 4: Corner analysis fluxogram.

Thus, there are three possibilities:

• First, a corner may be found before the line ends, representing
a junction of lines (Figure 5.a);

• Second, a corner may be found at the end of a scan, represen-
ting a full line (Figure 5.b);

• Third, a corner may be found off the line, representing an error
in the corner detection. This coordinate is then removed from
the list (Figure 5.c).

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 227

Figura 5: A hand-drawn design with the detected corners represen-
ted by red dots. From left to right: a corner detected in a junction of
lines, a full line, and an isolated corner, which is not upon a line.

3.5 3D Model Creation

Using the pairs of corners obtained in the previous module (Sec-
tion 3.4), a floor plan is defined for the 3D representation of the
drawing, as shown in Figure 6. An example of this file can be seen
in Listing ??. Each line of the file contains two points, with each
coordinate X and Y - respectively, separated by a ’#’ symbol. So,
each line of the file represents a connection between two corners.

Figura 6: A 3D model result loaded in a graphics engine.

Figura 7: An example of text file containing the initial three pair of
corners used to build the 3D model.

This file can be loaded by a 3D graphics engine to build the
labyrinth walls. Each wall is extruded from the pairs of points con-
tained in the file and connected to each other to created the corners.

The next section presents some results obtained through a pro-
totype implemented to test our model.

4 RESULTS

In order to test our computational model, we developed a prototype
using the OpenCV library [2] and the Unity 3D 1. The experiments

1www.unity3d.com

were performed using an Intel i7 processor equipped with NVidia
GeForce 830M GPU and a Logitech HD WebCam C270. To test
the robustness of the algorithm, we performed image capture in dif-
ferent environments, with different light sources. The results of our
corner detection were satisfactory, with full corner detection both
under natural light (sun and cloudy weather) and under artificial
lights, such as incandescent and fluorescent lamps. Environments
with fluorescent lamps can present light flickering. This issue is
dealt with by the use of the image buffer (see Section 3.1), which
allows the flickering of illumination to be ignored. Moreover, even
in low light (with shadows over the design), the detection is still
acceptable. The occurrence of isolated points increases but they
are automatically eliminated. The three-dimensional representation
of the design was performed for different types of designs, and we
observe a limitation where lines must not be placed too closely, to
avoid overlapping during corner detection.

Figure 8 and Figure 9 presents results obtained from two diffe-
rent drawing as input to our prototype.

Figura 8: On the left, the original drawing with detected corners indi-
cated by red dots. On the right, the detection of edges formed by the
pairs of corners. Inside of the yellow rectangle it is possible to see
spots that are very close, generating an error on line detection.

Figura 9: Another example of labyrinth. On the upper left, the ori-
ginal drawing with detected corners indicated by red dots. On the
upper right, the detection of edges formed by the pairs of corners,
and bellow is the corresponding 3D model.

5 FINAL CONSIDERATIONS

In this paper, we presented a model to generate a 3D representation
from a freehand drawing designed by the user. The model receives
as input the 2D drawing of a labyrinth composed by horizontal and
vertical lines captured by a camera, and the final output is a 3D mo-
del extruded from the labyrinth’s floor plan, initially designed by

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 228

the user. In order to deal with light variations, a brightness calibra-
tion is performed before the detection process begins, allowing the
algorithm to achieve more accurate results. After calibration, the
model follow a sequence of steps, in which each detection module
output serves as input to the next one, as seen in Figure 1. First, the
algorithm detects each line in the original drawing. In the second
step, line intersections are perceived, i.e, the corners of the laby-
rinth. Next, we search for connections between this corners points
by analyzing the line extrapolations around these points in the origi-
nal drawing. The final step takes into account all these connections,
which represent the labyrinth’s floor plan, to generate the walls for
a 3D model. This model is then exported to a file that can be loaded
by any 3D engine, as explained in Section 3.5.

In order to test our model, we developed a prototype in C++
programming language and the OpenCV library [2]. We tested the
model’s robustness by using several labyrinth drawings as input and
capturing these images in different light conditions. We believe that
the results were satisfactory, since the program was able to create
the floor plans with good precision as demonstrated in Section 4
and generate the 3D model representation for graphic engines.

6 FUTURE WORK

Our model can be employed in a wide variety of applications. For
instance, an architect can use this model to facilitate the generation
of a 3D model by drawing an apartment layout. In future versions,
the model could be extended to automatically detect doors, win-
dows and furniture by analyzing other drawing patterns.

Although the model can be applied in other areas, our efforts
will be focused on creating virtual reality games. Therefore, as
future work, we have defined three distinct objectives that will im-
prove the model and allow new features:

• First, the detection of diagonal lines and curves, allowing
more complex designs to be created;

• Second, the application of augmented reality, using the design
itself as a marker to allow the resulting 3D model to be viewed
upon the original drawing using a mobile phone;

• Finally, the use of the 3D environment together with a head
mounted display, enabling the user to navigate inside the laby-
rinth generated from the freehand design created by the user.

REFERÊNCIAS

[1] S. Ahmed, M. Liwicki, M. Weber, and A. Dengel. Automatic room de-

tection and room labeling from architectural floor plans. In Document

Analysis Systems (DAS), 2012 10th IAPR International Workshop on,

pages 339–343. IEEE, 2012.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software

Tools, 2000.

[3] L.-P. de las Heras, D. Fernandez, E. Valveny, J. Lladós, and G. San-

chez. Unsupervised wall detector in architectural floor plans. In Docu-

ment Analysis and Recognition (ICDAR), 2013 12th International Con-

ference on, pages 1245–1249. IEEE, 2013.

[4] C. Harris and M. Stephens. A combined corner and edge detector. In

Alvey vision conference, volume 15, page 50. Citeseer, 1988.

[5] S. Macé, H. Locteau, E. Valveny, and S. Tabbone. A system to detect

rooms in architectural floor plan images. In Proceedings of the 9th

IAPR International Workshop on Document Analysis Systems, pages

167–174. ACM, 2010.

[6] C. So, G. Baciu, and H. Sun. Reconstruction of 3d virtual buildings

from 2d architectural floor plans. In Proceedings of the ACM sympo-

sium on Virtual reality software and technology, pages 17–23. ACM,

1998.

[7] W. Y. Yeung. Creation of 3d model from 2d floor plan. 2008.

[8] X. Yin, P. Wonka, and A. Razdan. Generating 3d building models from

architectural drawings: A survey. IEEE Computer Graphics and Appli-

cations, (1):20–30, 2009.

Powered by TCPDF (www.tcpdf.org)

RREFERENCES

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 229

http://www.tcpdf.org

	157708
	157708

