SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259

Computing Track — Full Papers

Framework for registration and recognition of free-hand gestures in
digital games

Tiago Ramos Ribeiro'*
Petterson de Sousa Diniz !
Geraldo Braz Junior !

Daniela de Sousa Costa !
Paulo Roberto Jansen dos Reis !

Polyana Bezerra da Costa !
Aristofanes Corréa Silva 2
Anselmo Cardoso Paival

'Federal University of Maranh&o, Department of Informatics, Brazil
2Federal University of Maranhao, Department of Electrical Engineering, Brazil

ABSTRACT

This paper presents a framework that aims to simplify the develop-
ment of digital games based on gestural interaction with the Leap
Motion device (LM). The framework’s architecture allows the reg-
istration of a set of free-hand gestures and enables their recognition
in whichever game its used. Based on the natural user interface
(NUI) paradigm, the framework to be presented promotes a sim-
ple and intuitive way of interaction between the final user and the
application, allowing developers to use it without extensive knowl-
edge of the device’s hardware and its SDK, due to the application’s
level of abstractness. Using this approach, developers only have
to relate gestures to events. In order to guarantee loose coupling
between the framework and the client’s application, it was applied
the design pattern Publisher/Subscriber, where one does not need
to know the existence of the other. Furthermore, as a case of study,
it will be presented the integration of the proposed framework to a
wheelchair game built on Unity Engine.

Keywords: Natural User Interface, Leap Motion, Unity, gesture
interaction

1 INTRODUCTION

The wide availability of devices capable of tracking the whole body
for interaction (such as Microsoft Kinect, Creative Interactive Ges-
ture Camera, Leap Motion) has enabled a pervasive introduction of
gestural interaction in our everyday life. This incorporates more
natural ways for interaction, named Natural User Interface (NUI).

The natural user interface paradigm aims to reduce the barrier
between user and application, resembling the way people interact
with things in their daily activities. According to [18], the word
’natural” implies that the final user will be capable of using the in-
terface or interacting with the software with minimum to no train-
ing. Gestures are the most primary and expressive form of human
communication, thus it must be also useful for human computer
interaction [20].

Hand gestures provides a natural and convenient way of hu-
man—computer interaction (HCI) and they are one of the most used
forms of interaction in the NUIs paradigm. NUIs allow interaction
with computer applications in a manner which mimics the physical
world. When used properly they are easy to understand by novice
users. Free-hand interaction has been used in various applications
such as 3D modeling in immersive environments [8], augmented
reality applications [5], writing and sketching [19], etc. Recently it
has become popular in the video game industry.

The richness and intuitiveness of free-hand interaction often
comes at the cost of posing a great challenge for developers to con-

*e-mail: tiago.rr@outlook.com

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

struct these gesture based dialogs. The combination of the relative
positions of the hand and the fingers, associated with the hand’s
movement result in a complex model, increasing the difficulty for
developers to program, test and iterate with these gestures. To deal
with this challenge, it is necessary to provide tools that allow de-
velopers to easily incorporate free-hand interaction to their applica-
tions. There are central problems to develop these interactions: ges-
ture specification (representation) and recognition (manipulation)
of the specified gestures. In general the tools provided by sensors
companies are focused on textual programming. The representa-
tion problem is in general addressed by three paradigms: use of
two-dimensional graphs of the data; use of a a visual markup lan-
guage; and, use of a a time-line of frames. To implement the manip-
ulation process the representation model may use two approaches:
demonstration and declaration. When programming by demonstra-
tion the developer describes gestures by example. In general, many
examples of the same gesture must be provided in order to account
for the differences in gesturing between users and over time. The
declarative approach involves the use of a high-level specification
language to describe the gesture and recognize it.

This work proposes an alternative approach for free-hand ges-
ture recognition that is based on the use of a simple representation
of the hand pose and movements. Thus we propose a framework
to help developers to incorporate free-hand interactions in games
applications, providing a simple way of interaction with less effort
from the user. The framework aims to support the developers who
want to use gestural interactions with Leap Motion device, allowing
them to integrate the framework to their application easily, without
knowing the device hardware and its SDK. The framework is based
on single registration of a gesture by an example made using the
sensor, and a posterior recognition capability. There is the possibil-
ity to work with three different types of gestures and the user is free
to choose what kind of them is more suitable to its needs.

The remainder of this paper is organized in another five sections.
Section 2 presents related work, projects with purposes similar to
ours using Leap Motion and other devices plus a brief comparison
between them and the proposed framework. Section 3 presents the
paradigms and patterns that composed the basis of this work. In
Section 4, the framework itself is presented and each module of it
as well. The categories of hand gestures, the application of the pub-
lish/subscribe pattern, the recording and recognition module and
the device used to track the hands are discussed. As a case of study,
the fifth section shows the integration between our framework and
a game developed in Unity Engine. The sixth section shows the re-
sults of this work, obtained through tests focused on the accuracy of
gesture recognition. The final section presents the conclusion and
remarks of this work.

2 RELATED WORK

This section presents works published in the literature that are re-
lated to the use and recognition of free-hand gestures.

146

SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259

Gesture Spotting Framework [9] is a gesture recognition systems
that do not use Leap Motion. This framework is based on video
processing and models. Each gesture is a sequence of smaller units
(sub-gestures). The video is defined as a set of zero or more ges-
tures, and aims to find the frame that initiate an finalize each ges-
ture. The classification algorithm uses a Hidden Markov Model
(HMM) variation, obtained by its combination with the model of
Hidden Conditional Random Fields (HCRF). This approach pro-
vides a simple structure to deal with explicit modeling of sub-
gestures. Additionally, requires training algorithms computation-
ally less expensive and results in a model with a better accuracy
than the obtained by the use of each technique separately.

In [4] is presented a library of functions developed to ease the
manipulation of games interfaces based on gestures and voice.
Using the hardware Kinect the gestures/poses are registered and
stored, generating a catalogue that is queried when a new gesture
is detected. Other framework proposal, using Kinect data and com-
puter vision techniques for real time static gestures recognition is
presented in [17]. The main application of this proposal, named
XKin, is the recognition of American Sign Language alphabet, that
include letters that involves hands poses and movements.

A system using Leap Motion is presented in [11]. The device
captures depth information and use them to create a model for
recognition based on convolutional neural network. To create a
set of 12 pre-defined gestures, it was used 100 volunteers. Each
volunteer must register a version for each of the 12 gestures.

Other approach was proposed in [10] to combine Leap Motion
with Kinect. The proposal uses some information acquired by LM,
like angle, distance and finger elevation. From Kinect it uses other
information like distance from fingers to hands palm and hands cur-
vature. All these characteristics are subdivided in 5 feature vectors
(3 from LM and 2 from Kinect), that are used by an SVM classifier.
The test was done using 10 gestures acquired from the two devices,
obtaining an accuracy of 91.8%.

Other proposal, that is not restricted to one recognition technique
is the Leap Trainer framework [16]. It proposes three strategies for
gestures and poses recognition. : Geometric Template Matching,
Cross-Correlation and Artificial Neural Networks. Each strategy
may be used through the Leap Trainer API. It allows the record and
recognition of movements. In this way its expected that developers
may explore and also increment the algorithms for these task.

Other proposal that uses different algorithms for gesture recog-
nition is presented in [15]. It uses a movement classification that
is based on the gesture type we want to recognize (static or dy-
namic). For each gesture type there is a different set of features.
Static Gestures are recognized using five features and Support Vec-
tor Machine (SVM), on the other side dynamic gestures use Hidden
Markov Models (HMM) with six classes.

To the best of our knowledge, we see that there is no framework
that provides three types of gesture and allows these gestures to be
defined by a single session record.

3 BACKGROUND

This section presents the methods, patterns and the device used as
a basis to develop this work: the natural interface paradigm, the
publisher/subscriber pattern and the Leap Motion device. A brief
explanation of these methods and the Leap Motion device is shown
in the subsections below.

3.1 Leap Motion

Leap Motion is a USB device designed to be used in desktops to get
hands information. Leap Motion uses three LEDs and two near in-
frared cameras to acquire frames and a software called Leap Motion
Service to process data to get hands information.

The Leap Motion system employs a right-handed Cartesian coor-
dinate system. The origin is centered at the top of the Leap Motion

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

Computing Track — Full Papers

Measure Unit
Distance millimeters
Time microseconds
Speed millimeters per second
Angle radian

Table 1: Units of measurement used by Leap Motion

Controller. The x and z axes lie in the horizontal plane, with the
x-axis running parallel to the long edge of the device. The y-axis is
vertical, with positive values increasing upwards (in contrast to the
downward orientation of most computer graphics coordinate sys-
tems). The z-axis has positive values increasing toward the user.[1]
(Figure 1)

A
+Y

+X

+Z

Figure 1: Leap Motion Coordinates System [1]

Table 1 shows the units of the physical quantities measured by
Leap Motion.

Leap Motion is able to track hands, fingers and arms in a field
of view of one half space and one meter of distance. By providing
complete information about the hand, Leap Motion’s tracking is
very accurate.

We chose to use this sensor in our framework because of its
portability and accuracy. Leap Motion is small, light weighted,
charged by an USB cable and it can be easily positioned for hand
tracking. These factors make Leap motion the ideal device for free-
hand gestures recognition.

3.2 Natural User Interface

According to [7], Human-Computer Interaction (HCI) is used to
make computer technology more usable by people. The human-
computer interaction is a fundamental part of the user’s experience
in a digital application, especially in games. Nevertheless, the tra-
ditional way of interaction through mouses and keyboards aren’t
natural and in certain applications, such as immersive games, does
not contribute to a good experience. In order to guarantee a intu-
itive and natural interaction, the mouse and the keyboard are being
replaced by touch and motion based interfaces, known as Natural
User Interfaces (NUI) [3].

The Natural User Interface paradigm was the base to choose
the approach of the proposed framework, since it offers a human-
computer interaction that resembles the way we interact in our daily
routines.

Some of the most used interactions in NUI are listed and ex-
plained below, including the one used in our framework.

e Gaze: This HCI is defined as the direction to which the eyes
are pointing in space. It is a strong indicator of attention

147

SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259

[6]. Eye tracking systems can be grouped into wearable or
non-wearable, and infrared-based or appearance-based. In
infrared-based systems, a light shining on eye creates a red-
eye effect the difference in reflection between the cornea and
the pupil is used to determine the direction of sight. Infrared-
based system are very accurate, but long exposure to these
kind of light could damage the eyes. In appearance based sys-
tems, computer vision techniques are used to find the eyes in
the image and then determine their orientation. Wearable sys-
tems are the most accurate but they are also very invasive and
non-wearable system often requires calibration [7];

e Facial expressions recognition: The detection of facial expres-
sion consists on the basic movements of facial features. They
are called action units (AUs). A facial expression is a high
level description of facial motions represented by regions or
feature points called action units. The most used approaches
on Facial expressions recognition are: the feature-based ap-
proach and the region-based approach. The feature-based ap-
proach tries to detect and track specific features of the face,
such as the corners of the mouth, eyebrows, etc. On the other
hand, the region-based approach focus on facial motions in
certain regions on the face, such as the eye/eyebrow and the
mouth.[7];

e Hand gesture recognition: Gestures are the link between our
linguistic abilities and our conceptualizing capacities, accord-
ing to [12] . So, it’s expected that gestures play a especial role
in NUI Especially hand gestures, since the user is already fa-
miliar with devices that use hands, such as mouses, keyboards
and joysticks.

Gesture recognition systems in general are divided into these
steps [14]:

1. Image pre-processing: Consists in preparing the video
frames for further analysis by extracting clues about the
position of the hands. It’s also called feature extraction;

2. Tracking: In this step, the position and other attributes
of the hands must be tracked from frame to frame. To
extract motion information for recognition of dynamic
gestures, it’s necessary to distinguish a moving hand
from the background and other moving objects, that’s
why the frame-to-frame tracking is required;

3. Gesture recognition: Based on the collected data such
as the position of the hands and fingers, motion and pose
clues, a valid gesture is detected, or not.

Within all these approaches, we chose to use the free-hand ges-
tures interaction. The subsection 4.4 will explain which phases of
the gestures recognition showed above are performed by our frame-
work.

4 FRAMEWORK
4.1 Gesture Types

The proposed framework recognizes 3 types of gesture, a basic ges-
ture and other two gestures derived from the basic one. The basic
gesture, named static, consists only in one pose, i.e., a gesture cap-
tured in only one frame. To recognize the hand pose the algorithm
uses the relative position of the distals phalanges and a fixed posi-
tion on hand’s palm. The figure 2 shows the bones captured by the
Sensor.

The second gesture type is a dynamic gesture. It is defined by a
static gesture and a translation in X or Y axis, i.e., upwards, down-
wards, to the left or to the right. For this gesture, initially we recog-
nise the hand’s pose, a static gesture. When the static gesture is
recognized, a time window is opened to wait the translation of the

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

Computing Track — Full Papers

Distal phalanges z

2

Intermediate phalanges ‘ l
Proximal phalanges \l

Ul

(=5

Metacarpals

0-length thumb metacarpal

Figure 2: Bones recognized by Leap Motion [1]

Figure 3: A static gesture

hand. If the hand translates in the time window and the translation
direction is compatible to the expected, the gesture is recognized.
The third gesture, named transition gesture, consists in the detec-

Figure 4: A dynamic gesture

tion of two static gestures inside a time window. When the first
gesture is recognized, a time window is opened to wait the second
one. If the second one is recognized in the time window, the gesture
is recognized.

148

SBC - Proceedings of SBGames 2016 | ISSN: 2179-2259

Figure 5: A transition gesture

4.2 Publish/Subscribe Project Patterns

Microsoft Developer Network (MSDN)[2] defines the Pub-
lish/Subscribe as a pattern of project recommended in contexts
which there are messages to be sent to other unknown applications,
making possible, a superficial relationship. The solution proposed
by this pattern involves messages/subjects and subscribed applica-
tions that are interested in receiving messages. In this way, a mech-
anism is created and sends specific messages to all subscribed ap-
plications.

This pattern has three variations: List-Based Publish/Subscribe,
Broadcast-Based Publish/Subscribe and Content-Based Pub-
lish/Subscribe. List-Based Publish/Subscribe notifies all interested
applications through a list. Broadcast-Based Publish/Subscribe
sends the message to a Local Area Network (LAN) and each node
verifies if that message was subscribed. Finally, Content-Based
Publish/Subscribe sends a message to interested applications based
on context.

One of the main benefits of this pattern is the loose coupling
because the final application does not need to know the applica-
tion that is sending the messages. In the same way, the application
sending messages does not need to know the messages receivers.
In this framework, we choose to implement the List-Based Pub-

~ | ApplicationNotificationservice g

e
SubscriberForAppEvent

7™

DeviceController g

Applicationsubscriber g7

DeviceNorificationService 5]

Figure 6: Component diagram.

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

Computing Track — Full Papers

lish/Subscribe pattern. The system’s architecture is presented in the
form of a component diagram in Figure 6. The component Devi-
ceNotificationService manage the list of all applications interested
in the events trigged by DeviceController, which provides a higher
level of abstraction in the manipulation of the framework, gathering
functions of register, calibration, and recognition of gestures. When
aevent is trigged, DeviceController notifies DeviceNotificationSer-
vice that transmit this notification to all subscribers. Application-
NotificationService manage the notifications of the clients. The no-
tifications are limited by the framework’s limitations, e.g., requests
of gesture capture, calibration and enable/disable of the recognizer.

In addiction to the signature, an observer component needs to
implement the interface required by the publish component. All
client applications need to implement the interface SubscriberDe-
viceEvent, which is the interface that encapsulates the notifiable
methods.

4.3 Capturing Module

To capture gestures, we developed a module of the framework to
manage it. In this module, it’s possible to see the current pose,
select the type of gesture, give a name to the gesture and finally
capture the gesture. When a gesture is captured, the user can save
this gesture in a XML file. The name of the file is the same of
the gesture and is located in the folder GestureDatabase, in same
directory of the application. This folder can be used in a future
application that uses a gesture database. The framework can load
this database, if it is in the same folder of the application that will
use it.

It is possible to register a gesture by script, using a function of the
framework with all the parameters that was aforementioned. Figure
7 shows the capturing module in action.

Figure 7: Example of a gesture being captured inside the framework

4.4 Recognition Module

The subsection 3.2 showed that in general, the gesture recognition
process pass through a phase of image pre-processing, tracking and
the recognition of the gesture itself. In our framework, the image
processing phase and the tracking phase is performed by the Leap
Motion sensor. The device analyzes the image and extracts hand
data. Our framework collect these data and interpret it to discover
if the gesture performed is in the gesture database.

149

SBC - Proceedings of SBGames 2016 | ISSN: 2179-2259

First, the gesture’s database is loaded and the performed gesture
is compared to each gesture of the set. Our framework interprets the
data provided by the sensor and extracts the features to categorize
the received data according to the types of gestures shown in the
subsection 4.1.

To recognize a performed gesture, it is necessary to set which
fingers are active and the distances between them. An active finger
is a non-folded finger. To determinate whether if a finger is folded
or not, the distance of the distal phalange, i.e., the tip of the finger
to the palm of the hand is evaluated. After making the match of
fingers, the palm normal is verified to define the hand orientation.

Figure 8: Features analysed to make the match of a pose. The labels
T, I, M, R e P stands for Thumbs, Index, Middle, Ring and Pinky
finger.

In case of dynamic gestures, a time window is opened to wait for
the hand translation. The translation is processed and the direction
to which the hand is moving is determined. In order to classify tran-
sition gestures, if the first pose matches an already existent gesture,
a time window is opened to wait for the second pose. The figure 8
shows some of the features required to make the pose matching.

If all these features match to a saved gesture, the performed pose
is recognized and classified. The figure 9 shows a person testing the
recognition module. The user performed a gesture already saved in
gesture’s database.

The figure 10 shows the recognition module interface.

5 STUDY CASE OF THE
WHEELCHAIR GAME

The framework was integrated into a serious game [13] developed
in Unity3D. This game aims to educate the player about the prob-
lems faced by wheelchair users around the city. In the game, the
player controls a wheelchair with the commands go forward, go

INTEGRATION INTO THE

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

Computing Track — Full Papers

Figure 9: Example of a user performing a gesture in the recognition
module.

Figure 10: The interface of the recognition module. The text box
shows the name and the state of the recognized gestures.

backwards, turn left, turn right, brake, speed up and slow down.
The user is free to register its own set of gestures and relate them to
wheelchair commands.

For each command there is an associated gesture, that should be
recognized and notified to the game when executed. The integration
of the framework and the game was accomplished by adding con-
figuration settings for gesture registration, device calibration and
gesture recognition to the game. Nevertheless, the player can also
use the keyboard as input.

150

SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259

A survey (Fig. 11) was applied to a group of developers of the
game. Using the Likert Scale, this survey aims to evaluate the dif-
ficulty level faced by a four-person team to integrate each function
provided by the framework. For the first question, the maximum
value obtained in the range was 4 for 25% of the development team,
which reveals that the majority doesn’t qualify as an expert in LM.
As for the second question, half of the team gave score 2 for the dif-
ficulty in capturing module coupling, while the rest of the team was
divided into scores 1 and 3. Regarding calibration and recognition,
most of the team (75%) considered the integration of the calibra-
tion module as very easy, and 100% gave score 2 to the coupling
of the recognition’s component . Finally, the evaluation of the ef-
fort generated by the framework integration received scores 2 and
3, each representing the opinion of 50% of the team. In general, the
difficulty’s level of the integration process earned a medium score.

How well do you know the Leap Motion's SDK?
almost nothing @ } } } | } @ iamexpert
1 2 3 4 5
How hard it was to integrate the capturing module to your application?
vEry easy [} i } } } @ very difficult
1 2 3 4 5
How hard it was to integrate the calibration module to your application?
wery easy [} : | | I ® verydifficult
1 2 3 4 5
How hard it was to integrate the recognition module to your application?
wery easy [} } i } } } & very dificult
1 2 3 4 5
Evaluate, in general, your efforts in the integration process of the framework
to your game.
lot of effort [} | } } } i @ efforless
1 2 3 4 5

Figure 11: The survey’s structure

The figure 12 shows a frame of the game where the user controls
the wheelchair through a pre-recorded gesture.

6 TESTS AND RESULTS

In order to analyze the accuracy of the framework, several tests
focused on the recognition module were performed. An instance
of the framework and a Leap Motion device were placed on a local
school and the volunteers were able to perform a pre-recorded set of
gestures. About 10 volunteers were part of the testing process. The
set of gestures and their types are listed in the paragraphs below, as
well as the accuracy of each gesture. For each type of gesture, the
volunteers performed a set of five different gestures, making a total
of fifty tests per category.

Concerning the Static type of gesture, the chosen repertoire was:
1- an open hand(all fingers active); 2- a closed hand, but the index
finger is active; 3- a closed hand, but the thumbs is up; 4- a closed
hand; 5- a closed hand, but the thumbs and index finger are ac-
tive (an active finger is a non-folded one). The Open hand gesture
and the Thumbs up gesture were recognized every time they were
performed. They obtained an accuracy of 100%. The Index finger
active gesture obtained the second best accuracy, 98%. The closed
hand gesture obtained an accuracy of 92%. At last, the lowest accu-
racy belongs to the Thumbs and index finger active gesture, making
a total of 60% of accuracy in the recognition module.

Regarding the Dynamic gestures, the chosen set is listed with the
pose and its direction: 1- an open hand with the fingers spread, hand
moving leftwards; 2- a closed hand, but the index finger is active
and the hand is moving to the right; 3- thumbs, 4- index and pinky

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

Computing Track — Full Papers

.." ‘Te B "oma
- D e

~

9

i
,"."",

Figure 12: Example of a user controlling a wheelchair through hand
gestures.

finger active, hand moving downwards; 5- a closed hand moving
upwards; thumbs, index and middle finger active, hand moving
downwards. The first and the last gesture obtained the best accuracy
of the set, a total of 100%. The second gesture obtained the second
best accuracy, 96%. The third gesture obtained 82% of accuracy.
The lowest accuracy of the set belongs to the closed hand moving
upwards, making a total of 60%.

At last, in order to analyse the accuracy of the recognition mod-
ule with transitional gestures, the following repertoire of gestures
was chosen: 1- Pose A: a closed hand with the thumbs and pinky
finger up, Pose B: closed hand with the pinky finger up; 2- Pose
A: a closed hand with the index finger up, Pose B: closed hand
with index and middle finger up; 3- Pose A: closed hand with the
thumbs, index and pinky finger up, Pose B: index and pinky fin-
ger up; 4- Pose A: closed hand with all the fingers spread, Pose B:
Closed Hand; 5- Pose A: Fingers Spread, Pose B: closed hand with
the thumbs, index and pinky finger up. The best accuracy of the
repertoire belongs to the third gesture, making a total accuracy of
100%. The second gesture has the second best accuracy, with 94%
of success in the recognition process. The first gesture has 92% of
accuracy. The fourth gesture had a recognition accuracy of 88%
and the fifth gesture had 78% of accuracy in the in the recognition
module.

The performed tests showed promising results. The average ac-
curacy of gestures recognition was 89%. Gestures with a closed
hand showed highest error rate, in the overall process. In general,
gestures with all fingers spread showed an excellent accuracy, about
100%. The accuracy rate of each type of gesture is presented at the
figure 13.

The ergonomy of the performed gestures is beyond the scope of
this report, although it is a theme to be analysed in the future.

In conclusion, the table 2 shows a comparison between the pro-
posed framework and the works presented in previous sections. A

151

SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259

Accuracy

91
90,5
90
88,5
29
88,5
88 W Static Gesture
87,5
87 1
86,5
86 -

B Dynamic Gesture

B Transition Gesture

Dynamic Gesture Static Gesture Transition

Gesture

Figure 13: Accuracy of each type of gesture

Comparison of Frameworks

Refference [91 | [4]]| [17]f [11]] [10] [16]f [15]] Proposal
LeapMotion || no | no | no | yes| yes| yes| yes| yes
Static Gest. yes| yes| yes| yes| yes| yes| yes| yes
Dynamic no | yes| yes| yes| no | yes| yes| yes
Gest.

Transition yes| yes| no | no | no | no | no | yes
Gest.

Training yes| no | yes| yes| yes| yes| yes| no
Reusability no | yes| no | no | no | yes| no | yes

Table 2: Comparison between Frameworks.

further analisis of these works shows that all of them work with
static gestures, 75% of them accept dynamic gestures and only
37,5% of them all accept transitional gestures. We may see that
our framework along with [4] have the most complete set of ges-
tures, registering three different types. Nevertheless, the proposed
framework has Leap Motion as input device while [4] uses Kinect.
Although being an excellent sensor, Kinect does not offer complete
information about the hands, such as the tip of the fingers or the fin-
gers itself, requiring even more processing to recognize gestures.

7 CONCLUSION

This paper presented a framework for registration and recognition
of free-hand gestures whose main contribution is the development
of a software architecture and a set of algorithms that facilitate the
use of gestural interaction in games and digital applications, in or-
der to grant an intuitive interaction. The proposed framework pro-
vides gestural interaction in games based on the use of Leap Motion
device. An evaluation performed with developers showed that the
framework allows easy integration with games, without requiring
previous knowledge of the device. Also, it presents a simple ap-
proach, based on a single registration of a gesture using the sensor,
and a posterior recognition module. Additionally, it serves a rich
set of possible gestures as it is also possible to work with three dif-
ferent types of gestures, providing the developers agility and a great
flexibility in the gesture interaction design.

The recognition accuracy of the gesture presented good results
and it is greater when the gesture is performed with a distance from
one hand to another. When compared with other frameworks pro-
posed in the literature we may see that the presented work offers a
more complete set of different types of gestures.

As future work we intend to extend the framework to work with
other devices like Intel Depth camera and data gloves. Also there
is a need to adjust the recognition algorithm for some gestures tem-
plates that presented smaller accuracy in the tests.

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

Computing Track — Full Papers

ACKNOWLEDGEMENTS

The authors acknowledge the financial support provided by CNPq
and FAPEMA.

REFERENCES

[1]1 Leap Motion Overview. Available at: https://developer.leapmotion.
com/documentation /csharp/devguide/Leap_Overview.html. Ac-
cessed: 2016-06-08.

[2] Publish Subscribe. Available at: https://msdn.microsoft.com/en-
us/library/ff649664.aspx. Accessed: 2016-06-08.

[3] A.Camara. Natural user interfaces. In Human-Computer Interaction—
INTERACT 2011, pages 1-1. Springer, 2011.

[4] G. S. Cardoso, A. Schmidt, and C. da Computagao. Biblioteca de
fun¢des para utilizacdo do kinect em jogos eletronicos e aplicagdes
nui. In XXVI conference on graphics, pat terns and images (august
2013, Arequipa, Peru), 2012.

[5] D.Datcu and S. Lukosch. Free-hands interaction in augmented reality.
In Proceedings of the 1st Symposium on Spatial User Interaction, SUI
"13, pages 33—40, New York, NY, USA, 2013. ACM.

[6] A.T. Duchowski. A breadth-first survey of eye-tracking applications.
Behavior Research Methods, Instruments, & Computers, 34(4):455—
470, 2002.

[7]1 A.Jaimes and N. Sebe. Multimodal human—computer interaction: A
survey. Computer vision and image understanding, 108(1):116-134,
2007.

[8] H. Kim, G. Albuquerque, S. Havemann, and D. W. Fellner. Tangible
3d: Hand gesture interaction for immersive 3d modeling. In Proceed-
ings of the 11th Eurographics Conference on Virtual Environments,
EGVE’05, pages 191-199, Aire-la-Ville, Switzerland, Switzerland,
2005. Eurographics Association.

[91 M. R. Malgireddy, J. J. Corso, S. Setlur, V. Govindaraju, and D. Man-
dalapu. A framework for hand gesture recognition and spotting using
sub-gesture modeling. In Pattern Recognition (ICPR), 2010 20th In-
ternational Conference on, pages 3780-3783. IEEE, 2010.

[10] G.Marin, F. Dominio, and P. Zanuttigh. Hand gesture recognition with
leap motion and kinect devices. In Image Processing (ICIP), 2014
IEEE International Conference on, pages 1565-1569. IEEE, 2014.

[11] R. McCartney, J. Yuan, and H. Bischof. Gesture recognition with the
leap motion controller. In Proceedings of the International Confer-
ence on Image Processing, Computer Vision, and Pattern Recognition
(IPCV), page 3. The Steering Committee of The World Congress in
Computer Science, Computer Engineering and Applied Computing
(WorldComp), 2015.

[12] D. McNeill. Hand and mind: What gestures reveal about thought.
University of Chicago Press, 1992.

[13] S. A. Melo, G. S. Drummond, D. de Sousa Costa, P. B. Costa,
M. A. M. Silva, I. M. Maia, J. V. M. Figueiredo, and A. C. Paiva.
Design de um jogo sobre problemas de acessibilidade enfrentados por
cadeirantes. 2015.

[14] T. B. Moeslund and L. Norgard. A brief overview of hand gestures
used in wearable human computer interfaces. Computer Vision and
Media Technology Lab., Aalborg University, DK, Tech. Rep, page 8,
2003.

[15] M. Nowicki, O. Pilarczyk, J. Wasikowski, K. Zjawin, and
W. Jaskowski. Gesture recognition library for leap motion controller.
Bachelor thesis. Poznan University of Technology, Poland, 2014.

[16] R. O’Leary. Leap trainer framework.
https://github.com/roboleary/LeapTrainer.js/tree/mastersub-
classingthe-leaptrainercontroller, 2015.

[17] F. Pedersoli, S. Benini, N. Adami, and R. Leonardi. Xkin: an open
source framework for hand pose and gesture recognition using kinect.
The Visual Computer, 30(10):1107-1122, 2014.

[18] G. Steinberg. Natural user interfaces. In ACM SIGCHI Conference on
Human Factors in Computing Systems, 2012.

[19] S. Vikram, L. Li, and S. Russell. Writing and sketching in the air,
recognizing and controlling on the fly. In CHI ’13 Extended Abstracts
on Human Factors in Computing Systems, CHI EA *13, pages 1179—
1184, New York, NY, USA, 2013. ACM.

152

SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track — Full Papers

[20] J. P. Wachs, M. Kolsch, H. Stern, and Y. Edan. Vision-based hand-
gesture applications. Commun. ACM, 54(2):60-71, Feb. 2011.

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016 153

	157684
	157684

