
Shape2River: a tool to generate river networks from vector data
Tiago Augusto Engel∗ Cesar Tadeu Pozzer

Universidade Federal de Santa Maria, Brazil

Figure 1: River network generated by our system.

ABSTRACT

This paper presents a tool to recreate hydrographic networks for 3D
virtual scenarios using Geographic Information System (GIS) data.
A vector description of the hydrography and a raster description of
the terrain are used as input. The vector data is subdivided using
a spatial hashing technique and the river data structure is modeled
as a graph from where the water surface mesh is generated. The
geometry is sent to GPU from where footprint textures and associ-
ated shaders are employed to enable terrain shape modification and
texture mapping, producing various river feature elements. The so-
lution is primarily targeted for simulation systems, but the concepts
can be applied on 3D games or virtual environments in general.
Results show a simple yet efficient process that provides quality
visuals.

Keywords: river rendering, GIS, virtual scenarios, spatial hashing.

1 INTRODUCTION

Geographic Information Systems (GISs) have become increasingly
popular nowadays due their wide application range[14]. Further-
more, the growing computing power of current computers has en-
abled the capture, storage and processing of large databases. GISs
provide important means for understanding and dealing with na-
ture events, thus allowing us to understand, reason and predict en-
vironmental phenomenon such as flooding and forest fires, or as a
support tool for decision-making and public administration.

In this context, several initiatives emerged to provide free access
for GIS data, as well as tools for processing them. However, these
tools normally provide only a 2D view of the scenario or are very
expensive. This has motivated a growing development area focus-
ing on the generation of three dimension scenarios. Various efforts
have been placed in order to automate the process and provide re-
alistic aspects on the virtual world. However, it still imposes seri-
ous challenges nowadays, as it usually requires processing massive
amounts of data [4].

Simulation scenarios require special attention to realism, where
natural components such as rivers, vegetation and terrain play a cru-
cial role on recreating an actual feel of presence. For instance, a

∗e-mail: tengel@inf.ufsm.br

river may represent obstacles that must be avoided or can be tres-
passed depending on the depth. Realism is also important when
considering geographically accurate data to locate and reference
entities in the virtual world, as if it was in the real one.

This work describes an automated process to recreate hydro-
graphic networks using GIS data. By matching the vector data con-
taining the river network information and a digital elevation model
of the terrain, we aim to recreate a real world scenario. The solu-
tion is primarily targeted for simulation systems, but the concepts
can be applied on 3D games and virtual environments in general.

2 RELATED WORKS

As our purpose is to add features into the terrain, we need to find
ways of matching vector and elevation data together. Level of detail
(LOD) has to be considered in order to produce the features, as us-
ing different LODs implies that the constituent triangles’ positions
may change at any frame, requiring the features to adapt accord-
ingly. There are generally three approaches to render such features
on the terrain [3]:

• Overlay-geometry based: this approach renders geometry
on top of the terrain [15, 1, 11]. The method is susceptible
to problems on LOD switching, as the objects have to be kept
above the terrain. Furthermore, two coplanar surfaces are a
common source of z-buffer artefacts (Z-fighting) [1].

• Geometry based: this approach consists on embedding the
vector data into the terrain mesh itself [5]. This is achievable
by evaluating the mesh locally and adding new triangles in
order to represent the desired feature.

• Texture based: consists on rendering the vector features
into textures, which are mapped onto the terrain [7, 12, 3].
Texture-based techniques have drawbacks related to long pre-
processing time and the resolution cannot be changed without
remapping the vector data [7]. Furthermore, the texture reso-
lution is directly related to the occurrence of aliasing artefacts.

Our rendering approach is based on Bruneton’s [3], which
presents a texture based approach, where a data structure com-
bines terrain elevation, appearance and vector data of different fea-
tures (e.g. rivers and roads). The quadtree data structure holds
the clipped vector data for each quad, and rasterize it when a new
quad is visible. The output texture (called footprint) is sent to the

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 214

GPU where, among other operations, the texture is blended with
the height map, thus creating a footprint effect.

In order to subdivide the vector data and speedup graph building
time, we implemented a spatial hashing. The technique is an
efficient approach to speed up proximity queries, commonly found
on simulations composed by a large number of entities [9]. The
hash function receives a 2D point and, based on the number of cells
(or buckets) wanted, calculates the cell it belongs to. We use this
approach as graph edges are determined by proximity, thus we can
substantially reduce the time to access neighbours. We adapted the
solution proposed by Pozzer [10], which allows us to build he hash
table on O(n) complexity.

3 METHODOLOGY

We propose the following workflow for the river generation process
(according to Figure 2): 1) load the vector data using an appropriate
library, 2) apply a subdivision structure for the dataset in order to
speed up proximity queries, 3) build the river network graph using
the subdivided data, 4) generate the river surface mesh using the
graph, and 5) render the geometry using the latest resources on the
OpenGL pipeline.

Figure 2: Development workflow.

Our goal is to render two types of river features: the river bed and
surface. The First represents the channel bottom which physically
confines the water flow, while the latter is the actual surface water
layer. Figure 3 illustrates the goal features.

Figure 3: Goal summary. Figure adapted from [13]

In order to create the river bed, we use multi-resolution foot-
print textures, which are dynamically generated based on the cam-
era position by rasterizing the river mesh at a proper resolution.
They are generated on the fly directly on GPU, thus eliminating
pre-processing steps. More details will be discussed on the next
session. This approach is based on Bruneton’s [3] and can also be
applied for road generation.

The geometry is composed by the river surface mesh and the ter-
rain. GPU also receives three textures: the elevation texture which
is used to make the terrain height displacement, footprint texture to
generate the riverbed feature and the appearance texture that repre-
sents the terrain surface color. Figure 4 shows the overall organiza-
tion of our system.

Using this data, each stage of the rendering pipeline is employed
in order to render the scene. The following sections discuss in detail
the workflow implementation.

Figure 4: Overall System Organization. The workload is shared be-
tween CPU and GPU. We are working with two LOD levels for the
footprint texture: one for close distance (LOD0) and another for far
distance in relation to the camera (LOD1). Each stage has its inputs
and outputs according to its role.

4 IMPLEMENTATION

This section describes the data structure adopted to represent the
river network, and the methods used to render it.

4.1 River data structure

A river network can be represented as a set of polylines (also known
as entities), which represent a set of connected vertices. Figure 5
shows an example of vertices and entities. We are using the ESRI
ShapeFile[6] format, that is one of the most commonly used for
vector data.

The river data structure must allow the representation of hierar-
chy and connections between different affluent and the main river
course. Furthermore, it must be traversable to search within the
dataset in order to find where the springs and river mouths are, as
well as to understand the topography. Such features can be rep-
resented as a directed graph G = {V ,E }, where nodes are repre-
sented by polylines and edges the connections between them.

The polylines are stored in an unordered way, thus we can’t
assume any ordering or hierarchy between them. The only
assumption we can make is that, within a polyline, the points
are ordered. Another important feature is that when intersections
occur, the point is replicated (one for each intersecting polyline).
Therefore, in order to find adjacencies we need to loop through all
points within the dataset (regardless polyline) and check whether
each point intersects with other point(s) within the dataset. If so,
we assign an edge from the the current polyline to the one we are
testing with. Algorithm 1 shows the execution workflow.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 215

Figure 5: ShapeFile representation. Line segments of the same
colour represent polylines.

Input: vertices← all vertices within the dataset
Input: n← the number of vertices
for i← 0 to n do

for j← 0 to n do
if distance(point[i], point[j])≤ DIST T RESHOLD)

then
G ←{polylineId(i), polylineId(j)}

end
end

end
Algorithm 1: FINDEDGES finds all edges within the graph

The Algorithm 1 shows a naive approach to find the edges be-
tween polylines. It obviously is not suited for large datasets, thus
we need to optimize the process, or performance becomes a major
drawback. In order to speed up the algorithm, we propose the use of
a spatial subdivision structure called spatial hashing. The algorithm
was chosen due its simplicity and performance over traditional sub-
division structures such as quadtrees. We implemented the spatial
hashing algorithm proposed by Pozzer [10], which builds the hash
table with O(n) complexity. The data structure is built once, and
kept in memory for queries.

4.2 Rendering process

The river mesh is generated from the graph by extruding the poly-
line. Additionally, we generate two footprint textures using a
render-to-texture approach, where LOD0 is a high resolution tex-
ture around the camera as it moves in the space and LOD1 is a low
resolution from the whole terrain. The first texture is periodically
updated based on the camera position.

The footprint textures are used to carve the riverbed into the ter-
rain mesh. The process consists on sampling the footprint texture
and subtracting the terrain height using the Equation 1, applied for
each triangle vertex. Once the river mesh and textures are gener-
ated, our approach relies on shader programs to generate river bed
directly in GPU.

vertex.y−= evaluate(f oot pTex, texCoord)∗ riverDepth (1)

Current public heightmap databases offer maps from the whole
world for free. However, they have mostly 30-90m resolution, pos-
ing serious issues. Indeed, consider if we want to represent a 5m
wide river on a 30m resolution terrain, the result would be a spiky
silhouette with undesirable appearance. There are two ways to com-
pensate this issue: the first is to refine the acquired data as a pre-
processing step, and the second is to generate more triangles di-
rectly in GPU using the state-of-the-art tessellation shaders. We
chose the last one as the first requires pre-processing and results on
large databases. Additionally, tessellation can provide small scale
details on the fly.

Once the riverbed is prepared in the terrain, we can render the
river surface mesh using a water shader. Note that the river location
correspondence with the terrain comes from the vector data, which
is normally precise.

5 RESULTS AND DISCUSSION

We evaluated our solution using a dataset with the features shown
on Table 1. The vector data is at 1:50000 scale, while the eleva-
tion is made of a 90m resolution SRTM (Shuttle Radar Topography
Mission) image and was acquired from an open database at Earth
Explorer. The exact position on real world is not mentioned for se-
crecy reasons. The footprint textures have 4096x4096 pixels, while
the LOD0 and LOD1 textures represent, respectively, 1x1 km and
27x27 km areas.

Even though performance wasn’t a prior concern, it is an im-
portant tool to guide future developments, specially considering
the role it plays in this subject area. We performed tests with
the data described on table 1 and derived Table 2 from the aver-
age of 5 rounds. Our development suite is based on C++ and the
OpenGL Shading Language (GLSL) [8] version 4.5 on Windows
10. The host machine has an Intel core i7 870, with 8GB RAM and
a GEFORCE GTX 660Ti video card (with v-synch enabled).

Table 1: Terrain Settings.

Name Entities Vertices Width Height Resolution

Alpha 1760 10308 27777m 27777m 2048

The dataset contains a medium size terrain, where the average
edge length for triangles is 13m. However, with this resolution it
is impossible to represent rivers narrower than 26m, otherwise the
riverbed would be sharp as a ‘V’ form due vertex distance. Further-
more, since the riverbed would not be properly generated, terrain
and river mesh can become close enough to be source of z-fighting.
Tessellation plays a crucial role in this case, providing the small
scale detail necessary for quality visualization. Figure 6 shows the
contrast between the original triangles (left figure) and after the tes-
sellation is applied (right figure). The river with all features imple-
mented by our system is shown in Figure 1.

The texture update policy is distance-based, according to the
camera offset, in this case we use 50m. Depending on the applica-
tion, time-based approaches can be used as well. The approach al-
lows fly-through as the texture update is simply a render-to-texture,
there is no need to update any data structure.

Table 2 shows a drastic reduction in the execution times when
using the spatial hashing approach. The cell size plays an impor-
tant role on the query time, when using 100x100 subdivisions we
have on average 1.0308 elements per cell, which provides on aver-
age O(1) access cost. Furthermore, the hash building time does not
add any significant overhead on the computation. The performance

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 216

Figure 6: Terrain tessellation impact. The left figure shows original
terrain, while right one uses edge-length based tessellation.

speed up over the naive approach is massive, demonstrating the im-
portance and potential of this technique for neighborhood search.

Table 2: Performance statistics
Subject Time(Seconds)
Graph build - naive approach 26.0733
Graph build - hash (10x10 subdivisions) 2.79302
Graph build - hash (100x100 subdivisions) 0.223884
Hash build time 0.00818755
Graphics performance FPS
Average terrain resolution 2048x2048 42
Average terrain resolution 1024x1024 60

On the GPU side, it is noticeable that currently the system does
not handle large terrains, specially because there is no LOD system,
as it wasn’t our focus. The terrain tessellation provides small scale
detail, but it doesn’t remove vertices. Furthermore, current solution
does not provide culling for the river mesh, which may cause vertex
data to consume large amount of GPU memory, a solution will be
addressed in future works.

A brief performance evaluation indicates that there is an over-
head on the geometry shader (GS), which has been reported as
source of performance issues[2]. We perform texture fetching and
Gaussian filtering to smooth river banks within this stage. Testing
the GS without the filter provided an increase of 6 FPS over the
previous solution. These evidences point against the GS, however
in depth studies are necessary to determine the exact sources of per-
formance issues.

6 CONCLUSION

We presented a process to generate a virtual scenario with river net-
works from vector and elevation data. The paper provides a full
background that supports the approaches taken, providing detailed
information for researches in the field.

The graph building procedure is a key part when working with
polyline vector data, as it is originally presented in an unorganized
way. In this sense, this paper shows a powerful method to quickly
establishing neighborhood relations trough a graph. Even though
we use this structure only to build the river mesh, the approach
is applicable for road data, where the graph can be used for path
finding tasks, for instance.

We took advantage of the latest resources on the OpenGL ren-
dering pipeline to refine terrain mesh directly in GPU, avoiding pre-
processing steps that incur in time and storage allocation. Further-
more, tessellation is used to provide small-scale detail and natural
constructs in the riverbed.

Finally, we present a solid process that allows quality river ren-
dering. Results show that the approach has potential, and future
works are encouraged in order to create a more realistic and opti-
mized solution.

7 FUTURE WORKS

We presented an ongoing work that provides many work opportu-
nities. To name a few:

• Quadtree for resource management. Quadtree is a promis-
ing approach to provide vector data and texture management,
allowing more resolution levels for the textures and culling
distant rivers.

• River mesh triangulation. The study of triangulation tech-
niques to provide quality mesh and robustness for river junc-
tions.

• River water simulation. Realistic water simulation. May
involve the river graph for flow direction and intensity.

• Generalization for other vector data types. The process
can be generalized to accommodate polygons, which is how
normally large bodies of water (e.g. lakes) are modelled.

• Hydraulic erosion. Hydraulic erosion models can be applied
to enhance terrain features on river areas, making more natural
landscapes.

ACKNOWLEDGEMENTS

We thank the Brazilian Army for the financial support through the
SIS-ASTROS project, developed in the context of the ASTROS
2020 Strategic Project.

REFERENCES

[1] A. Agrawal, M. Radhakrishna, and R. C. Joshi. Geometry-based map-
ping and rendering of vector data over LOD phototextured 3D terrain
models. 2006.

[2] J. Barczak. Why Geometry Shaders Are Slow (Unless you’re Intel),
2015.

[3] E. Bruneton and F. Neyret. Real-time rendering and editing of vector-
based terrains. Computer Graphics Forum, 27(2):311–320, 2008.

[4] P. Cozzi and K. Ring. 3D engine design for virtual globes. CRC Press,
2011.

[5] B. Deng and D. Xu. Visualization of Vector Data on Global Scale
Terrain. (Iccsee):85–88, 2013.

[6] A. Esri and W. Paper. ESRI Shapefile Technical Description. Compu-
tational Statistics, 16(July):370–371, 1998.

[7] O. Kersting and J. Döllner. Interactive 3D visualization of vector data
in GIS. Proceedings of the 10th ACM international symposium on
Advances in geographic information systems, pages 107–112, 2002.

[8] Khronos Group Inc. OpenGL (Open Graphics Library), 2015.
[9] S. Lefebvre and H. Hoppe. Perfect Spatial Hashing. In ACM SIG-

GRAPH 2006 Papers, SIGGRAPH ’06, pages 579–588, New York,
NY, USA, 2006. ACM.

[10] C. T. Pozzer, C. A. de Lara Pahins, and I. Heldal. A Hash Table Con-
struction Algorithm for Spatial Hashing Based on Linear Memory. In
Proceedings of the 11th Conference on Advances in Computer Enter-
tainment Technology, ACE ’14, pages 35:1—-35:4, New York, NY,
USA, 2014. ACM.

[11] M. Schneider and R. Klein. Efficient and accurate rendering of vector
data on virtual landscapes. 2007.

[12] A. Szofran. Global terrain technology for flight simulation, 2006.
[13] The USGS Water Science School. Earth’s water: Rivers and streams,

2015.
[14] X. Wang. Integrating GIS, simulation models, and visualization in

traffic impact analysis. Computers, Environment and Urban Systems,
29(4):471–496, 2005.

[15] Z. Wartell, E. Kang, T. Wasilewski, W. Ribarsky, and N. Faust.
Rendering Vector Data over Global , Multi-resolution 3D Terrain.
Proceedings of the symposium on Data visualisation, (February
2002):213–222, 2003.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 217

	157674
	157674

