
Using Audio for Player Interaction in HTML5 Games
Jefferson Torres de Freitas∗ Ernesto Trajano de Lima† Artur de Oliveira da Rocha Franco‡

José Gilvan Rodrigues Maia§

Federal University of Ceará, Virtual University Institute, Brazil

ABSTRACT

Advances on computing hardware and software throughout the last
decades drastically molded the prospect of the entertainment indus-
try. Within this context, a prominent development was the emer-
gence of interactive computer-driven products. The introduction of
specialized game controllers established a paradigm in which the
player explores her hand skills for fast and flexible interaction with
games. Sophisticated interaction techniques supporting body ges-
tures and voice commands were introduced later. However, most
successful technologies in this field are typically bound to specific
hardware. With the advent of HTML5 and recent JavaScript perfor-
mance enhancements, most modern web browsers already provide
refined programmable components for audio processing that sup-
port sound analysis and synthesis in real-time. This paper presents
an investigation on how audio capture and processing can be used as
an input device for user interaction in web games. An API support-
ing programmable game interaction driven by audio for HTML5
was designed and implemented using JavaScript. An actual proto-
type game was developed using this API for evaluation purposes.
Keywords: Audio, Web games, Interaction.

1 INTRODUCTION

Entertainment became a central business in the last decades. Ac-
tually, numerous technological advances brought forth new inter-
action possibilities that emerged as a new kind of products that
changed the entertainment industry radically: digital games. As
gaming computers and consoles became more and more popular,
user input apparatus like joypads allowed people to use both hands
for relatively comfortable and fast interaction. Moreover, these de-
vices were proven effective for adapting to different games’ specific
needs by using clever programming techniques.

Other interaction devices were developed using new hardware
and efficient data analysis algorithms for real-time, reliable recog-
nition of landmark blobs that are prominent from the background
in infrared images due to specially crafted materials and controlled
lighting. Recent developments accounted for an even more so-
phisticated and more ”natural” interaction by identifying the hu-
man body and its parts, making it possible for the user to interact
by expressing a myriad of inputs coming from her eye gaze, hand
gestures and voice commands, for example. For example, in first,
karaokes were using simple techniques of audio processing [18], at
the turn of century twenty-first century like Kinect, Wiimote and
Oculus Rift which have a important applications like digital her-
itage [21].

∗e-mail: jeffersontorres.freitas@gmail.com
†e-mail: ernesto@virtual.ufc.br
‡e-mail: arturoliveira@virtual.ufc.br
§e-mail: gilvan@virtual.ufc.br

However, such interactive forms are bound to specific and usu-
ally expensive hardware. Moreover, most computer vision and im-
age sensing techniques resort to infrared illumination which may
damage the user’s retina due to prolonged exposure or when the de-
vice operates outside accessible and maximum permissible limits
due to malfunctioning.

Despite those drawbacks, using a subset of such interactive tech-
nologies is becoming feasible in recent computers as available pro-
cessing power increases and domain-specific languages evolve.

Modern web browsers already have improved, standardised au-
dio engines that allow for real time sound analysis and synthesis.
In this paper, we investigate usage of programmable HTML5 audio
interfaces for real time user interaction within the context of web
games by means of signal processing techniques applied to audio
captured continuously.

These are the main contributions of this paper:

• We investigate how real-time audio processing can provide
user inputs for web games.

• We present a an API specifically designed to support building
such games.

• We evaluate the effectiveness of this approach by carrying out
experimentation over a prototype web game developed using
the proposed API requiring well-timed inputs in real-time.

• This prototype game runs on both Desktop and Android plat-
forms, which corroborates that cross-platform web games can
benefit from player inputs provided via audio processing.

This work is organized in the following manner. Section 2
presents a preliminary discussion about audio, games and the web.
Audio processing definitions and subjacent mathematical models
are presented in Section 3 as well the APIs available within the con-
text of HTML5 development. Similar investigations are discussed
throughout Section 4. The proposed API, its design and implemen-
tation details are covered in Section 5. Experimental evaluation and
discussion about the results are the matter for Sections 6 , and 7, re-
spectively. Finally, conclusions about this work and future research
directions are pointed out in Section 8

2 GAMES, AUDIO AND THE WEB

Audio has been proved fundamental not only for digital games but
also for many other digital media. This perceptual stimulus is an
immersive agent that helps breaking the boundaries between users
and characters [1] [14] [21].

2.1 Audio in Games
The first popular games that had the audio as the main form of in-
teraction were in karaoke machines [7]. The processing techniques
were quite primitive in the early products, taking into account only
the energy of the signal for evaluating the singer’s performance and,
in some cases, no processing was available at all since scores were
assigned randomly in some systems [18].

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 118

In 2000, Nintento released Voice Recognition Unit (VRU) as
an accessory for the Nintendo 64 console. The VRU was as ca-
pable of comprehending human voice in a region-dependent fash-
ion and its calibration was set to cope better with children’s high-
pitched voices because they were the target audience of ”Hey You,
Pikachu!”, the mainstream game supporting the technology.

Other interaction forms such as the Wiimote R©, the Kinect R©,
and Oculus Rift R©and acquired substantial prominence despite
none of those being established permanently as a de facto standard
for interaction in games.

Games have used sound to indicate a number of different things.
Here is a brief overview about how audio is used in electronic
games:

• Simon was a hugely popular toy in the late 70’s that used col-
ored buttons corresponding to tones to challenge the player’s
memory. Basically, the player must memorize and reproduce
a sequence that increases at each interaction [4].

• Super Mario World by Nintendo (1990) played background
music faster when the protagonist is about to face death due
to a timeout.

• Silent Hill, released in 1999, used broken, mute piano keys
in an intriguing situation to challenge the player’s ability to
solve puzzles.

• Modern gaming consoles support voice command recogni-
tion. However, these are usually applied for interacting with
menus instead of proper games.

• More recently, A Blind Legend1 goes a level beyond. This is
considered by many as the first ”audio-only action/adventure
mobile video game” since it does not resort to a visual rep-
resentation. A huge sound design and programming effort is
necessary to bring correct feedback to the player that inter-
acts using standard the gesture recognition available on mo-
bile platforms.

On the other hand, other products assume that audio must be
used not only as a stimulus, but also as an user input form. There
are games tn the market where there player interacts through audio,
such as SingStar R©2 and Karaoke Revolution [18]. Such games
were inspired by the genre karaoke, which had its analog source,
whose creation is attributed to Daisuke Inoue [7].

2.2 Audio Processing for the Web
Nevertheless, despite the remarkable technological advances in
computing and the advent of alternative entries using cameras and
microphones specially developed to a high degree of complexity,
audio has been explored to a small extent as a source of user input.

Moreover, recent additions to the web software stack provide
new opportunities for interactive hypermedia, specially with the ad-
vent of the HTML5 standard [6] that has been incorporated into
modern browsers. As the HTML5 standard emerged, new opportu-
nities for the development of robust and efficient APIs that support
audio processing.

This powerful, widely adopted standard includes interactions
with different media, protocols and programming languages. An
HTML5 page can process video streams and audio captured di-
rectly from devices possibly available on the user’s hardware [10].
Moreover, WebGL represents a significative boost on both graphics
performance and visual programming flexibility with the introduc-
tion of programable visual effects via shaders that are coded in a

1http://www.ablindlegend.com/
2https://www.singstar.com/

high-level language and these interact with the web page by means
of scripts.

It is also worth noting that since WebGL closely resembles the
compact and efficient GL ES API widely incorporated into mo-
bile devices such as smartphones, tablets and smart TVs, HTML5-
compliant web pages can display interactive graphics that benefit
from hardware acceleration in those devices. On the other hand,
HTML5 also features the Canvas API [5] for programming two-
dimensional graphics based on immediate-mode drawing. Both
WebGL and the HTML5 Canvas are epitomes of flexibility and
performance necessary for developing minimally convincing web
games.

This possibility, combined with the evolution of JavaScript
(JS) technology enabled the mass production of content and also
domain-specific application programming interfaces (APIs), such
as Web Audio API4 3. Modern browsers make extensive use of
JavaScript as logical page control, which is becoming a popular al-
ternative since such implementations do not require any plug-ins
and other external programs. JS controls the many components
available for rendering graphics and sounds, as well as the repre-
sentation of the web page itself.

Some APIs, such as the Web Speech API, have complex built-in
algorithms such as the voice recognition available in the Chrome
browser. Such multimedia resources became more common even
other for Web standards, as used in CSS Aural 4, which is now
obsolete. However, this initiative has led to the proposition of a new
standard called CSS Speech 5 that is still undergoing development
at the time when this paper as written.

This paper focuses on audio decomposition methods applicable
to in-game interaction that benefit from audio processing API sup-
ported by browsers. As far as we could search, there are no specific
APIs for using real-time audio as input for web games. This can be
explained by considering that implementations of the HTML5 are
somewhat recent. From the developer’s perspective which aims to
offer innovative products, it is essential to research on possibilities
that can be explored in order to enable this new kind of interactions
in games. However, using these APIs requires standard-compliant
implementations that are not yet available widely.

3 THEORY

Our world is filled with sounds that most living beings perceive
and analyze in order to act in an environment. However, the term
sound is more generic than audio since sound can be provoked by
any source. Audio processing is a term widely employed by techni-
cians and researchers in the signal processing field since this word
refers to a special category of sounds originating from a recording,
transmission or electronic device.

Despite the numerous efforts made over the years in this field,
some challenges remain in existence since those were faced for the
first time by researchers and enthusiast practitioners, specially con-
sidering the general case when the application’s environment is un-
controlled [19] [17]. Examples of those are the extraction of sounds
of interest and noise suppression that hinder the effectiveness of au-
dio for a specific situation, such as trying to extract the human voice
from audio recorded at a beach [9].

Therefore it is necessary to bear in mind that obtaining a digital
audio processing implementation requires some background theo-
retical aspects regarding the nature of this task.

3.1 Physics
Sound may be defined as a biological perception of countless
mechanical waves that propagate from sound sources through a

3https://www.w3.org/TR/webaudio/
4http://www.w3schools.com/cssref/css ref aural.asp
5https://www.w3.org/TR/css3speech/

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 119

medium so that they finally arrive at the auditive apparatus. This
comprises an extremely complex process even assuming simplifica-
tions such as an ideal and uniform physical medium with constant,
medium-dependent speed [8].

Consequently, how the wave actually spreads through space is an
intricate physical process that varies in time and depends on both
the shape and the physical properties of virtually every single object
on a propagation environment.

Effective analysis of this phenomenon requires knowledge of
signal processing concepts, which can be divided into two cate-
gories according to the nature of the signal: analog signals and
digital signals [12]. This work is bound to consider only digital
discrete signals that are, in fact, a time series composed by sam-
ples represented by a sequence of values, each of them representing
a point in time. Moreover, samples are considered to be equally
spaced in time, i.e., the sampling rate is constant.

This means that audio has an intrinsic unidimensional nature,
i.e., an ideal processing mechanism must be endowed with the abil-
ity of deftly identify and separate the constituent features that make
up the time series as a whole.

The latter statement explains the difficulty in obtaining reliable
computational methods for digital audio processing in poorly con-
trolled environments, making this a highly challenging task when
compared to its biological counterpart. Hence, it becomes clear that
resorting to an alternative representation may better suit automatic
processing by computer algorithms.

3.2 Mathematical Models

Representing audio as a time series presents many drawbacks
that can be overcome by adopting a suitable mathematical model.
Fourier series represent signals as a sum of infinite terms, each of
them being a periodic function with a given frequency in terms of
sines and cosines. This representation is of utmost importance for
audio processing since the signal is observed as a decomposition
over a wide range of frequencies [15]. Moreover, pure tones are
modelled as periodic functions [8].

The Discrete Fourier Transform (DFT) is a simple procedure to
determine the contents of the sample frequency, but is inefficient
and costly to use a complex algorithm asymptotic O(n2), such n is
the number of samples. Although its polynomial complexity, the
required processing time grows very quickly as the number of sam-
ple points increase, having in mind that usually tens of thousands
samples are used per second to represent audio [14] [15].

This limitation is often avoided by adopting the Fast Fourier
Transform (FFT) described the technique proposed by Cooley-
Tukey [2]. The FFT is closely based on the definition of DFT, but
it becomes highly efficient in relation to its traditional counterpart
by presenting a series of optimizations which are applicable assum-
ing the number of samples is a power of 2 [12]. The algorithm for
calculation of the FFT is usually asymptotic complexity O (nlog
(n)), with significantly better performance than the DFT and it also
yields greater precision in many cases.

Moreover, real-world signals contain undesired sounds, also
known as noise. This spurious information needs to be suppressed
or diminished, which is usually performed by filtering the signal. It
is also important to consider that uncontrolled sound power levels
may injure the users’ hearing apparatus.. Taking the hearing thresh-
old as a reference, sounds under 50dB are not considered harmful to
hearing, while a normal conversation equates to 60dB. Sounds be-
tween 80dB and 100dB, in their turn, are considered troublesome
and stressful, thus being harmful to health. Sound intensities equal
to or greater than 120dB, known as the pain threshold, cause irre-
versible damage to the inner ear [8].

4 RELATED WORK

4.1 Audio as Input for Games
Tsai and Lee [18], in their experiments to automate the evaluation
of performance within karaoke systems, take into account charac-
teristics such as pitch, volume or sound intensity, and rhythm of
notes sung, as well the duration of each note in order to optimize
these systems. Starting from those characteristics, a comparison is
made between singer recordings and MIDI files in order to evaluate
sound harmony. In this case, harmony is defined by the sequence of
notes sung in a correct tone along with adequate duration of each
note.

Lima et al. [11] investigated using computer vision and voice
command recognition applied to interact with games 3D environ-
ments. They tackle voice recognition from a machine learning
approach using time-consuming baseline learning techniques K-
Nearest Neighbors [3] and Support Vector Machines [20]. How-
ever, evaluation as presented in their paper did not present enough
evidence supporting that an effective recognition was obtained.

Silva and Pozzer [16] applied voice commands for control-
ling interactive story generation by analyzing sentences emitted by
users. Sentences are represented as binary trees for syntactical that
correctly evaluates about 80% to 90% of the users’ requisitions us-
ing both conventional and Kinect microphones for audio capture.
This result can be classified as satisfactory since the system does
not recognize some words.

Antas et al. [13] propose an approach that is similar to the latter,
but considering typical point-and-click interaction for handicapped
players. These authors employed bootstrapping to improve recog-
nition performance, achieving an error rate inferior to 5%.

There Came an Echo6 is a real-time strategy game focusing on
the narrative released in February 2015. In this game, the player
uses her voice to issue commands for controlling military units on
the battlefield. The technology employed for speech recognition
in this game requires certain conditions to ensure an acceptable
functioning and implementation of an acoustic model suitable to
the user accent. Smooth and paused speaker diction are necessary
since the game requires real-time interaction without allowing in-
terruptions in combat situations. Some sophisticated audio equip-
ment seem incompatible with the technology for some mysterious
reason, such as speaking near the microphone or advanced capture
configurations.

4.2 Audio APIs for the Web
Web Audio API 7 is proposed for both the loading audio files via
AJAX and the handling of frequency ranges. This allows for more
advanced operations, such as sound synthesis, signal analysis, data
conversion, signal filtering, spatialization of the sound, etc. This
API also uses audiovisual elements of HTML5 for communication
with multimedia devices for real-time reproduction. The API is
composed by 33 programming interfaces, 2 of which are obsolete,
each one with a specific functionality, connected to define a based
routing graphs for general rendering of the sound. The most out-
standing interfaces are depicted by Figure 1.

Timbre.js 8 is a library that provide functional audio processing
and synthesis for web applications based in modern JavaScript tech-
nologies, such as JQuery and Node.js. By ”Functional” it is meant
that the API uses functional programming concepts for defining
processing elements and sound synthesis. The library is composed
of ”Timbre Objects”, referred to as ”T-Objects”, whose structure
is the same Web Audio API. According to the author, this archi-
tecture has been proposed to address the next generation of audio
processing technologies for web.

6http://www.playiridium.com/games
7https://www.w3.org/TR/webaudio/
8http://mohayonao.github.io/timbre.js/

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 120

Figure 1: Programmable audio interfaces from Web Audio API.

The most outstanding feature of Timbre.js is to provide means
to synthesize sounds with relative simplicity. Moreover, using this
API only requires the addition of a JS library to the page, which can
be done with just one line of code. Given these features, Timbre.js
also has considerable value for use as a teaching tool. However, the
programming interface available for audio processing is unintuitive
despite being quite powerful, since it is necessary to master a very
intricate functional notation when, on the other hand, the debugging
support processing is quite limited.

Web Speech API 9 is an API that enables the incorporation of
voice recognition on web pages. It allows developers to use speech
recognition how input generating textual outputs. The program-
ming model is little effective, because the own programmer must
select the words that interest you from a list reported by API
through a callback mechanism. In this way, the API fails on the
level of abstraction of this problem by the developer.

5 PROPOSED FRAMEWORK

In this section, it is presented the API model applied in modern web
browsers and code structure responsible for processing the data ob-
tained through the Web Audio re-utilized interfaces. The API uses
JavaScript, a language in which were developed the modules of
configuration, requisition and control of multimedia devices, data
analysis, statistical processing for making decisions of game status,
data clearance for audio context control, environment noise calibra-
tion, and audio loading.

5.1 Architectural Design
The proposed API in this paper is structured in modules. It was used
JavaScript to develop the API because the language is accepted in
virtually all modern browsers that follow HTML5. Also, recent ad-
vances in JavaScript translators had conferred better performance in
execution time, making possible to do tasks more computationally
intense, such as processing audio signals.

It was created a flowchart of the interfaces utilized on the Web
Audio specification present on the HTML5 standard (Figure 2).

5.1.1 Configuration Module
The basic settings for the API are encapsulated by this module, as
illustrated by Listing 1.

1 var _setup = function _setup(stream) {

2
3 _mediaSource = _audioCtx.createMediaStreamSource(stream);

4 _analyser.fftSize = 1024;

5 _analyser.smoothingTimeConstant = 0;

6 _fftArray = new Uint8Array(_analyser.frequencyBinCount);

7 _mediaSource.connect(_analyser);

8
9 }

Listing 1: Configuration script for setting most low-level processing
options.

9https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html

Figure 2: Proposed architecture and its modules for: (left, in green)
configuration, multimedia device requisition and liberation; (middle,
in yellow) analysis and statistics; (middle bottom, in red) callibration;
(top right, in gray) audio file loading; and (bottom right, in light blue)
utility functions. These modules are built on top of Web Audio API
interfaces.

The interface mediaSoruce is generated and it receives a stream
as a parameter. The stream is assigned on the moment that is
granted the use permission of the multimedia device. The param-
eters fftSize and smoothingTimeConstant define the FFT window’s
size and the delay of the time which the samples will be processed,
respectively. It is important to mention that from the various types
of windowing of Fourier transform, the Web Audio only uses the
Blackman window. The windows are useful to minimize the effects
of a phenomenon known as spectral leak. The spectral leak com-
monly occurs in truncated waves responsible for generating discon-
tinuities in the signal. These discontinuities appear in the FFT am-
plitudes as components of high frequencies that are not present in
the original signal. There are several different types of windows
provided with specific characteristics that may be applied to a sig-
nal. The Blackman window has its use widespread 10.

The object fftArray is the structure in which the audio samples
are stored, so that only half of them are considered to prevent mir-
roring property of the signal. At the end, a connection is made
with analyser interface, so that all the captured information is pro-
cessed.

5.1.2 Multimedia Device Requisition Module

The request for the user to use a multimedia device is performed
by the liveInput() method. In this case it is requested access to the
microphone. If so, the configuration module is called as a success
callback, as shown in Listing 2. Otherwise, an error message is
displayed. Additionally, this module is configured to match their
operation with major browsers at the time of this work, such as
Firefox, Chrome and Opera.

10http://www.ni.com/whitepaper/4844/en/

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 121

1 this.liveInput = function liveInput() {

2 var constrains = window.constrains = { audio: true, video: false };

3
4 navigator.mediaDevices.getUserMedia(constrains)

5 .then(function _onSuccess(stream) {

6
7 _setup(stream);

8
9 })

10 .catch(function _onError(error) {

11
12 console.log(error.name + ’: ’ + error.message);

13 });

14 }

Listing 2: The API gently asks for user confirmation in order to
behave correctly.

5.1.3 Liberation module
The Liberation Module is responsible for liberating the audio con-
text and its interfaces from the web browser. This module is neces-
sary to ensure a good functioning of the API in order to promptly
release resources that become idle, which helps to avoid harmful in-
terference with other multimedia applications that are perhaps com-
peting for the same resources. This approach is important to pro-
vide compatibility with mobile devices and it is depicted by Listing
3.

1 this.free = function free() {

2
3 if(navigator.getUserMedia)

4 navigator.getUserMedia = undefined;

5
6 if(_audioCtx != undefined) {

7 _analyser.disconnect();

8 _mediaSource.disconnect();

9 _audioCtx = undefined;

10
11 }

12
13 }

Listing 3: Audio context liberation avoids undesirable erratic states
after interaction.

5.1.4 Real-time Analysis and Processing Module
A Fast Fourier Transform is applied on this module to convert the
sampling in the time domain to the frequency domain. After that,
the structure fftArray is proved and returned with the newly pro-
cessed frequencies. This is shown in Listing 4

1 this.realTimeAnalysis = function realTimeAnalysis() {

2
3 _analyser.getByteFrequencyData(_fftArray);

4
5 return _fftArray;

6
7 }

Listing 4: Overview of the analysis and processing module. A call-
back function provides programmer-defined code with FFT data.

5.1.5 Statistical module
Module responsible for calculating representative values of the
samples on the frequency domain. Based on real-time processing, it
calculates the overall average of the samples. Moreover, this mod-
ule is built on top of the utils.js script, which provides prototype
properties and methods that are inherited from other instances, such
as the mean method described in Listing 5.

1 Uint8Array.prototype.mean = function mean() {

2
3 var result = 0;

4
5 for(var i = 0; i < this.length; i++)

6 result += this[i];

7
8 return (result / this.length);

9
10 }

11
12 this.getFrequencyAverage = function getFrequencyAverage() {

13
14 var array = this.realTimeAnalysis();

15
16 return array.mean();

17
18 }

Listing 5: Statistics are used for processing incoming signals in
order to detect salient features such loud sounds or distinctive fre-
quencies.

The mean method is responsible for compute the average of the
samples stored in an array of unsigned 8-bit integer. The getFre-
quencyAverage() method invokes the analysis module and real-time
processing and returns the average of the signal. This average is
considered as the loudness of signal set decibels.

5.1.6 Calibration Module
The Calibration Module also depends on the timer.js script that is
responsible for creating a countdown timer, which is defined in sec-
onds. Basically, with the use of other modules, the overall average
of ambient noise denoted by parameter noiseAverage is calculated
and the obtained result is measured in decibels. This result is then
stored as the parameter ambientNoise. This is depicted by the code
snippet in Listing 6.

1 this.calibrate = function calibrate() {

2
3 // avoids already calibrated state

4 if(this.isCalibrate)

5 return;

6
7 // starts a 5s countdown limiting the setup

8 if(!_timer.isStarted) {

9 _timer.start();

10 _timer.counter = setInterval(countdown, 1000);

11
12 _noiseAverage = 0;

13 }

14
15 if(_timer.timeRemaining > 0)

16 _noiseAverage += this.getFrequencyAverage();

17 else if(!this.isCalibrate) {

18 // restarts if needed

19 _timer = new Timer(5);

20 var time = _timer.countDown * FPS;

21 // computes the noise over time

22 this.ambientNoise = _noiseAverage / time;

23 // (...)

24 }

Listing 6: Callibration module’s logic uses timeouts for considering
a given time period which is usually set to 5 seconds.

Depending on the result, a new calibration can be done as the
user sees fit. The parameter isCalibrate indicates whether the cal-
ibration was done successfully. It is important to notice that the
estimated average is equal to the sound intensity.

5.1.7 Audio File loading Module
This module is responsible for loading temporal series represent-
ing audio clips. This process is performed in the following man-

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 122

ner, given an asynchronous xhr instance representing a standard
HTTP request that accesses underlying data. Several events are im-
plemented, including the main event called onload(), so that audio
file data contained in a ArrayBuffer is decoded asynchronously and
then these data are loaded from the response attribute defined by
the responseType. The decoded AudioBuffer is then re-sampled to
AudioContext’s sampling rate, which, by default, is set to 48kHz.
Finally, the result is assigned, by callback, to the buffer of a sound
source. This process is shown in Listing 7. It is important to note
that very large files can cause sluggishness, including errors in load-
ing.

1 this.loadSound = function loadSound(url) {

2
3 _xhr = new XMLHttpRequest();

4
5 //(...)

6
7 // Complete callback

8 _xhr.onload = function onload() {

9
10 var audio = _xhr.response;

11 //Decode the data

12 _audioCtx.decodeAudioData(audio, function(decodedAudio) {

13 _bufferSource.buffer = decodedAudio;

14 });

15 }

16
17 //(...)

18 }

Listing 7: Audio loading module implementation.

5.1.8 Audio Recording Module

This module is utterly useful for testing and experimentation pur-
poses. For example, it is possible to record audio from a user in-
teraction in order to reproduce any detected processing problems
and address them more effectively by inserting markers at the time-
line. This supports underlying developments which are necessary
to evolve the API and to fix eventual bugs. Code listing is omitted
for presentation purposes.

5.2 Measuring Noise

The noise measurement is a simple procedure that aims to esti-
mate the intensity of background sounds emitted in the environ-
ment. This is performed according to audio information captured
from the microphone during a given time interval. Once samples
are captured within a window for that time period, the module then
computes the mean loudness as the noise level perceived in that
environment.

5.3 Generating Events: Peak Detection

Peak Detection is an event-generating process. It checks amplitude
peaks in a frequency-domain signal. This event makes it possible to
take several decisions, since programmers can check a wide range
of discrepant amplitudes of any frequencies at the signal. This defi-
nition is used in interaction proposed by this work. The interaction
is described later. It is noteworthy that, in addition to the Peak De-
tection, it also exists other types of detection. For example, Beat
Detection that takes into account the rhythmic perception of beats,
among other types of detection.

5.4 Initialization

The API can be initialized in only one line of code by creating an
AudioController instance, as shown in Listing 8.

The target audio context is created when the API initializes. Al-
ternatively, an existing context can be reused. In addition, the API

Figure 3: Peak detection procedure.

1 var API = new AudioController();

2 // ... or ...

3 var API = new AudioController(audioContext);

Listing 8: API initialization requires a new AudioController object.

can be configured by changing parameters such as FFT size, mini-
mum and maximum decibels for feature detection. Otherwise, de-
fault values 1024, −90 and 0, respectively, are assigned to these
parameters.

5.5 Integrating the API into a Game
Integration between the proposed API and games is also a fairly
simple process, after it is initialized and the analysis and real-time
processing modules gets a vector filled with samples in the fre-
quency domain. With this structure programmers can set events
for their applications. In the game prototype presented in this pa-
per, events are generated based on the Peak Detection approach and
using the average amplitude of each sample as loudness estimate.
This event is fired whenever the resulting sound intensity by the
player is above a certain threshold.

6 EVALUATION

Next, we have a description of a “endless runner” game prototype,
with some screenshots and their relevant details. Such a game is
characterized by rapid and synchronized actions that steer a char-
acter undergoing constant movimentation through a scenario. This
genre was chosen because both attention and a considerable control
level over the mechanism used for interaction are demanded from
players.

Finally, it will be presented the results about our implementa-
tion and its actual behavior during tests. It is noteworthy that the
calibration and game prototype experiments are important not only
to validate the research line of this work, but also to foster future
works in the area and development of any nature applications like
this.

6.1 Developing a Prototype Game
The application, in general terms, consists of two phases. The first
comes down to audio calibration, which acquired a noise average in
the environment. This process starts at the time that guarantees the
permission microphone use the browser being finalized after five

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 123

seconds of continuous measurements. In this final step, the state
resulting noise in the environment is obtained, defined by param-
eter ambientNoise. After that is provided to the user, depending
on the intensity noise average value, performs a recalibration. The
following figures illustrate the states of noise.

Figure 4: Screenshots of calibration states.

The noise states are defined as: Excellent, Great, Caution and
Critical, classified according to the value of ambientNoise for deci-
bels intervals defined from 0 to 5, 6 to 10, 11 to 15, and 16 ahead,
respectively. Recalibration is not required when the state is Excel-
lent, however it is mandatory if the status is Critical. Recalibration
is optional in the other states.

After calibration, the application enters its second phase, the
game, in the infinite runner style. At this stage, the interaction is
done by audio input, the value of parameter ambientNoise is con-
sidered in the processing of getting the parameter freq points that
records the sound intensity associated with noise. This parameter
is defined by the average total samples obtained at run time, in the
following code snippet.

1 if(this.GAME_START && _timer.timeRemaining <= 0) {

2
3 this.freq_points = this.audio.getFrequencyAverage();

4 var total_freq = this.freq_points - this.audio.ambientNoise;

5 //(...)

6 }

Listing 9: The calibration step conveniently hides most of the
game’s initialization from users.

If the total freq parameter exceed a threshold of 20dB, an event
is triggered causing the character jump.

Moreover, the character has its inventory size items equal to
one and a Finite State Machine (FSM) that manages their lifecy-
cle. They are: Normal, Weak and Invincible. The damage that the
character takes on collision with the enemy is related to its current
state, in Normal mode is discounted a unit of life parameter, in In-
vincible so there are no discounts and the Weak mode is deducted
twice the normal damage.

The states of the character varies according to the item obtained
throughout the game where this item is stored in your inventory
until the timer parameter equal to 500 (processing cycles) is zero, ie,
similar to the concept of cooldown. Only then the inventory slot is
released to store another item. The points parameter is increased by
one when there is no collision with an enemy. In turn, one hundred

Figure 5: FSM managing the player’s avatar status.

points are scored when it acquires a coin. The following figures
report the states of character and existing items, respectively.

Figure 6: Sprites currently used as placeholders in the prototype
game. All characters are property of their respective owners. These
sprites and images are free.

Initial experiments and development adopted a PC with a i7-
4500U CPU@1.80Ghz, 16GB RAM running at a 64-bit operating
system. Audio was captured using the device’s built-in microphone.
A capture of the actual game running on a notebook is shown in Fig-
ure 7. The prototype game was also executed using a modest An-
droid cell phone, as shown in Figure 8. This device has a 1.3GHz
Dual Core processor, 457MB RAM, with Android 4.4 KitKat.

Figure 7: Prototype game executing on the PC.

6.2 Experiment I: Calibration
Calibration is an essential practice in applications that have the au-
dio has the main agent. The calibration is useful for optimization,
since the suppression of noise in the signal is partial or total, de-
pending on how it is implemented.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 124

Figure 8: Prototype game running on a modest Android cell phone
with a 1.3GHz Dual Core processor and 457MB RAM. Execution did
not require any modifications to the game’s resources or code except
adapting to the screen dimensions.

At first, the prototype did not use calibration and displayed many
problems, such as intermittent jumps and, sometimes, no event
jumps were detected at all. Calibration significantly increased ac-
curacy when triggering the jump event, and offers feedback to the
user about how well the environment is fit for audio processing ap-
plications.

6.3 Experiment II: Testing the Game

The game was run on both Desktop and Android platforms in an
ordinary room with no soundproofing. In fact, there were two air
conditioners functioning in the room plus eventual people walking
nearby the testing site.

A group of 5 players was invited to assess how well they could
perform the simple actions in the game. Moreover, they were given
total freedom to explore interaction. At first, two players were
screaming to make the character jump. Henceforth some users
started resorting to different alternatives to produce beats, such as
snapping fingers and hitting the table.

It must be observed that the game required users to focus on
strict timing. After a short adaptation period of less than a minute,
players could jump either to avoid obstacles or to collect potions.
Despite eventual loud sounds caused by external sources, the in-
teraction was considered eligible by the focal group evaluating the
product. In fact, this kind of interaction demands headphones for a
better experience because audio feedback is important for a greater
immersion.

7 DISCUSSION

The objective of this work, which proposed a study on real-time
audio processing and its application for gaming interaction on the
web has been achieved. We have also show that such technology fits
modern mobile devices such as smart phones and tablets, as game
execution did not require anything but an HTML5-compliant web
browser.

Due to technical limitations usually displayed by more sophisti-
cated processing methods, our main focus on this paper was apply-
ing baseline processing techniques in order to achieve real-time per-
formance. Moreover, if the sampling window is set to wider values,
there may be two reasons for sluggish frame rates: (a) the window
captures events shifted in time because samples represent a large
time period and (b) processing requires more computing time. We
observed that a sampling window about 1024 samples wide usually
provides both performance and a reliable interaction. Nevertheless,
interactive methods based on complex pattern recognition may re-
sort to larger sampling windows in order to cope with words and
sentences spoken in different rhythms.

Therefore we exert effort on carefully choosing a game genre
that suits our evaluation purposes. We adopted a simple game de-
sign requiring fast-paced real-time interaction instead of voice com-
mand recognition [11] [16] [13]. Player interaction was considered
eligible for real-time interaction on actual games: we corroborate
through experimentation that players can easily adapt to this inter-
action method in no time.

For practical reasons, an audio output should be applicable pref-
erentially when the player is using headsets. Moreover, the player
has to switch between the use of voice and other forms to produce
amplitude peaks, such as impacts, in order to avoid feeling tired.

8 CONCLUSION

As proven by practical experimentation we carried out, Web audio
API for browsers presented good efficiency even for mobile plat-
forms. Our prototype game developed using HTML5 Canvas shows
it is possible to build cross-platform applications and games for the
web with processed audio as input.

It is important to observe that more sophisticated mechanisms
based on recognition of complex patterns can experience several
operating restrictions. Therefore, we opted for a baseline analysis
using sound intensity and the manipulation of the respective signal
in frequency domain. By using our own API specially designed for
this task, peak detection was used to interact in real time in a typical
runner game: players managed to use jump obstacles, collect items
and also time their jumps to avoid undesired potions.

Other applications for digital games were discussed throughout
the development of this work process, which require a multidisci-
plinary development team and an improvement of the techniques
used to date.

There are several fronts of future development made possible
from this study. Here are some examples of research we believe
stood out for further investigation:

• Proper study about effective use of audio inputs in differ-
ent game genres and mechanics. This would enable to build
guidelines for development teams and their game designer for
using audio inputs.

• API extensions and adaptations for others platforms and pro-
gramming languages;

• Proposition, development and evaluation of other ways to ex-
tract useful information for user interaction from audio. This
possibly includes the proposal or adaptation of more sophisti-
cated techniques for speech recognition, timbres and specific
sounds recorded by the user;

• Computer-aided voice health care;

• Some audio applications, such as soundtracks and special ef-
fects, sensitize the spectator at specific times during the ap-
plication, for example, triggering fear or euphoria. The audio
processing in this way could be used as a parameter to direct
the production of automatic game content.

9 ACKNOWLEDGEMENTS

This work is supported by the TEJO-UFC research group and it was
partially developed at Bimo-UFC lab. We would also like to thank
João Ramos Filho for the artwork and his invaluable help, as well
the anonymous reviewers for their considerations.

REFERENCES

[1] K. Collins. Game sound: an introduction to the history, theory, and
practice of video game music and sound design. Mit Press, 2008.

[2] J. W. Cooley and J. W. Tukey. An algorithm for the machine calcula-
tion of complex fourier series. Math. Comput., 19:297–301, 1965.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 125

[3] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification.
Information Theory, IEEE Transactions on, 13(1):21–27, 1967.

[4] O. Edwards. Simonized: In 1978 a new electronic toy ushered in the
era of computer games. Smithsonian Magazine, 2006.

[5] S. Fulton and J. Fulton. HTML5 Canvas. O’Reilly Media, Incorpo-
rated, 2013.

[6] I. Hickson, R. Berjon, S. Faulkner, T. Leithead, E. D. Navara, and
S. O’Connor, E. an Pfeiffer. Html5 a vocabulary and associated apis
for html and xhtml. 2014.

[7] S. Hosokawa and T. Mitsui. Karaoke around the world: Global tech-
nology, local singing. Routledge, 2005.

[8] D. M. Howard and J. Angus. Acoustics and psychoacoustics. Taylor
& Francis, 2009.

[9] N. Kirch and N. Zhu. A discourse on the effectiveness of digital filters
at removing noise from audio. The Journal of the Acoustical Society
of America, 139(4):2225–2225, 2016.

[10] A. Kostiainen, I. Oksanen, and D. Hazaäl-Massieux. Html media cap-
ture. 2014.

[11] E. E. S. Lima, C. Ruby, C. T. Pozzer, and C. N. Silva. Visão computa-
cional e reconhecimento de comandos de voz aplicados na interação
com jogos e ambientes 3d. In Proceedings of SBGames 2010, vol-
ume 1, pages 350–353. SBC, Nov. 2010.

[12] R. G. Lyons. Understanding digital signal processing. Pearson Edu-
cation, 2010.

[13] R. A. M. Antas, G. Souto and R. Valentim. Interface adaptável para
jogos digitais: Jogando com a voz. In Proceedings of SBGames 2015,
volume 1, pages 248–251. SBC, Nov. 2015.

[14] M. K. Mandal. Multimedia signals and systems, volume 716. Springer
Science & Business Media, 2012.

[15] K. Pohlmann. Principles of digital audio. McGraw Hill Professional,
2010.

[16] L. J. S. Silva and C. T. Pozzer. Controle de geração de histórias inter-
ativas através de comandos de voz. In Proceedings of SBGames 2014,
volume 1, pages 1038–1041. SBC, Nov. 2014.

[17] A. Spanias. Advances in speech and audio processing and coding. In
Information, Intelligence, Systems and Applications (IISA), 2015 6th
International Conference on, pages 1–2. IEEE, 2015.

[18] W.-H. Tsai and H.-C. Lee. Automatic evaluation of karaoke singing
based on pitch, volume, and rhythm features. Audio, Speech, and
Language Processing, IEEE Transactions on, 20(4):1233–1243, 2012.

[19] V. Välimäki and J. D. Reiss. All about audio equalization: Solutions
and frontiers. Applied Sciences, 6(5):129, 2016.

[20] V. Vapnik. The nature of statical learning theory, 1995.
[21] S. Webel, M. Olbrich, T. Franke, and J. Keil. Immersive experience of

current and ancient reconstructed cultural attractions. Digital Heritage
International Congress (DigitalHeritage), 1:395–398, 2013.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 126

	157595
	157595

