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ABSTRACT

One of the biggest challenges in developing an autonomous rac-
ing pilot is planning ahead during a race. The pilot may have
knowledge of the track beforehand, but understanding this infor-
mation and choosing the best action for each situation in real-time
is a very complex problem. To deal with such problem, machine
learning methods such as artificial neural networks (ANNs) have
been applied to learn from simulation data and generalize during
a race making correct decisions to drive the vehicle. ANNs are
usually trained with the classical backpropagation technique, but
here we investigate other optimization methods. Our proposed hy-
brid of Particle Swarm Optimization (PSO) with the local optimizer
called BFGS, resulting in what is usually called a Memetic algo-
rithm, is compared in two versions to a well-known gradient de-
scent based training technique (Resilient Propagation, RPROP), the
regular PSO, and the BFGS. The objective here is not yet to drive
the car, but to predict its future speed on the track, which can be
useful for mapping and planning trajectories. Experiments were
performed on data generated by a popular car racing simulator, and
the results show that the hybrid is a promising approach for the in-
vestigated problem. The hybrid optimization method outperformed
both PSO and BFGS and is able to compete with RPROP, yielding
high-quality results.

Keywords: Car driving, neural network, global numerical opti-
mization, evolutionary algorithm, meta-heuristic

1 INTRODUCTION

Complex problems, such as pattern recognition and non-linear re-
gression, can be solved by various techniques; one such technique
is neurocomputing. Specifically, since the introduction of the Per-
ceptron model [41] and, later on, the adoption of the Multilayer Per-
ceptron model (MLP) [2] thanks to the discovery of the backprop-
agation training method [42], Artificial Neural Networks (ANN5)
have been in the spotlight both as a solution to various challenges
and as a challenge themselves, given the complexity of parameter
tuning of the training procedure (including the network structure),
which is proportional to the complexity of the network. It is easy
to find research papers proposing and testing diverse techniques for
solving these problems, including hybrid methods. While classical
training methods can be efficient local optimizers and reasonable
explorers, hybrid methods are supposed to be better at finding a
global optimum region and then applying the local optimizer for
fine tuning the neurons’ weights.

Usually, training methods comparisons are made against the
classical backpropagation (BP) method which is employed for his-
torical reasons but known to be inefficient [45, 13]. In this work, we
make comparisons with the Resilient Propagation [40] (RPROP),
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a direct adaptive and fast learning method shown to outperform
BP [13]. In fact, our work also evaluates other three methods: a
successful general numerical local optimizer called BEGS [4, 14,
15, 44] (Broyden-Fletcher-Goldfarb-Shanno), a widely-employed
metaheuristic called Particle Swarm Optimization [12] (PSO), and
a PSO and BFGS hybrid implemented for this work. We created the
hybrid as a proof-of-concept from the canonical PSO, even though
there are many different variations [48, 19, 3, 36]; therefore, many
future works can be done.

Contextualizing, the problem to be solved by the ANN in this
paper is the approximation of a small part of the physics model
used in a racing simulation game (SCRC, [25]) known for its
use in academic competitions® already held at WCCI [26], CEC,
CIG, and GECCO. This simulator has been used in works such as
[39, 35, 6, 34, 10] and may lead to new discoveries in robotics,
specially in mapping and navigation. The discovered model can be
used to help the creation of automatic pilots capable of better adapt-
ing to the conditions of each track by predicting the car speed at the
X and Y axes. The prediction is useful to plan the car’s trajectory
and calculate its absolute position as only the relative position is
available in-game. The model creation should be performed with-
out having to drive several laps collecting data and testing potential
solutions. For that reason, a high-quality model must be obtained
through fast training with a small sample size (in terms of laps).
Thus, in this contribution we evaluate how the methods perform on
such task. The main contributions of this paper are summarized
below:

e For the best of our knowledge, this is the first attempt of using
such specific hybrid combination for training ANNSs;

e Correctly predicting a car speed in a simulator can help the pi-
lot take better decisions, reducing risks and mistakes; as far as
we know, there is no research on such topic for the simulator
investigated in this work;

e A comparison of five training methods, including a memetic
one that presents competitive results with RPROP.

The remaining of the paper is organized as follows. In the next
section, we present a preliminary research on techniques and prob-
lems related to this context; in Section 4 we detail the problem, the
methodology, present and discuss the experiment. Finally, the work
is concluded with critical notes and future proposals.

2 BACKGROUND AND RELATED WORK
This section presents basic concepts needed to understand the prob-
lem and the proposed experiments.

2.1 Neural Networks

The term “neural networks” refers to a broad class of computa-
tional intelligence approaches used to solve complex problems.
In general, all present artificial neuron models interconnected by
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weighted synapses that react to input patterns and produce some
output. One such approach, arguably the most common one, is
the feedforward multilayer Perceptron (MLP) network, based on
the Perceptron model [41]. Such networks are usually presented
in a layered model, with distinct input units, hidden neurons and
output neurons [20]. Throughout the years since the creation of
error backpropagation (BP) training [42], many researchers have
proposed and tested increasingly complex problems, discussing the
capabilities of the general technique [2].

One such class of problems is regression, where the network
must represent a model of an unknown function. Since a multilayer
neural network is able to solve non-linearly separable problems, it
should, in theory, be able to adequately model very complex func-
tions. Harder problems unfortunately require not only more data
but also better training approaches, since some simpler ones might
take an unfeasible time to converge, converge into local minima, or
even not converge at all. Therefore, researchers have also proposed
new training techniques to improve or replace the traditional BP.

2.1.1 Training

The most traditional MLP training algorithm, BP [42, 9], is a su-
pervised learning approach, i.e., the network uses desired output
(labeled) data to check if it is predicting them correctly and, if not,
calculate how much it must change its weights. In each iteration,
it passes the training data forward, activating the neurons and col-
lecting the generated output; then it compares these values to the
labeled data and calculates an output error. This error is then passed
backwards through the network, when the algorithm calculates an
error for each unit and changes their weights accordingly. This is
done in a way that, with time, reduces the output errors, i.e., the
network outputs values become sufficiently close to the expected
results.

BP is a gradient-descent algorithm, which means it may yield
low-quality results when applied to problems with error surfaces
that present discontinuities or many local minima. Many improve-
ments have been proposed, such as the use of momentum and adap-
tive learning rates for escaping local minima [32], but one learn-
ing scheme stands out: the resilient propagation (RPROP) [40]. In
this technique, each synapse has an individual update-value, used
to determine by how much that weight will be increased or de-
creased. Basically, if the partial derivative of the weight changes
signs (meaning the last update was too big and the current solu-
tion has “jumped” over a minimum), the update-value is decreased;
inversely, if the partial derivative keeps its current sign after an up-
date (suggesting it is in the correct direction), the update-value is
increased. This value is then used to increase or decrease the actual
weight, according to the error derivative sign. Finally, if a weight
update changes the error derivative sign, it means once again that
solution has skipped a minimum; to correct this, the algorithm re-
verts the last weight update, in a process called weight backtrack-
ing.

As well as improving upon the gradient descent approach, new
learning techniques have been proposed and tested throughout the
years, such as Levenberg-Marquardt [18] and evolutionary algo-
rithms [37, 22]. Swarm Intelligence, although a relatively new re-
search area, presents some opportunities as well.

2.2 Particle Swarm Optimization

Bio-inspired computing is a research topic of Computational Intelli-
gence that covers approaches inspired by biology capable of solving
a variety of complex problems. Besides neural networks, which are
inspired by the topology and functioning of the brain, one can find
in the spotlight subareas such as evolutionary computation, based
on Darwin’s Theory of Evolution such as Genetic Algorithms, and
swarm intelligence (SI) based on the social behavior of individuals.
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One SI approach is Particle Swarm Optimization [12], an algo-
rithm based on flock behavior, i.e., how birds fly, communicate and
self-organize when searching for food. Each particle (an individual,
based on a bird) in the population has a position vector (represent-
ing a potential solution to the optimization problem) and a velocity
vector in the search space. The optimization occurs by changing the
position of a particle; it “flies” through the search space according
to its individual velocity vector, effectively exploring the problem
and eventually converging into a minimum - hopefully, global. At
each epoch, traditionally, the only operators applied are the veloc-
ity update function and the position update function. While the new
position is simply an element-wise sum of the current position and
the recently calculated velocity vectors, the velocity update is the
important step in this approach.

Each particle also stores its personal best, i.e., the position where
the objective function value using the particle’s position as input is
the best found so far. At each epoch, this information is updated as
needed. The population also stores a historical best, the global best.
These two vectors are key components in the velocity update func-
tion, defined as Equation 1, where w represents the inertia weight
(how much the current velocity affects the new velocity), rand()
are random uniform numbers between 0 and 1, ¢ is the cognitive
coefficient, ¢; is the social coefficient, /Best is the personal best
and gBest is the global best. ¢ and c¢; are defined by the user but
commonly set as 2.04.

v(t+1) =wxv(t) +rand() * ¢ *xBest + rand () * cy x gBest (1)

The cognitive and social coefficients are responsible for making
the algorithm focus more on exploration (by increasing the cogni-
tive coefficient) or on exploitation (by increasing the social coef-
ficient). Also, the inertia weight can be dynamically adjusted so
the algorithm initially performs a global search (with a high iner-
tia weight) and, with time, lowers such weight to perform a local
search.

Even though PSO is able to perform some kind of local search,
it is still considered a global search method; it slows down consid-
erably when approaching a local minimum but may not be able to
actually reach it. Therefore, a hybrid approach, mixing PSO with
a different, gradient-based local-search technique might yield inter-
esting results.

As PSO is a general optimization algorithm, it can be used to
train and/or evolve a neural network including its structure, as
shown in [31, 21, 30, 8, 43, 49, 16, 48]. Most work compared
tuned PSO algorithms versus the canonical BP showing that PSO
can achieve better prediction accuracy but usually taking a longer
training time. Few used RPROP in the comparison [7], and in
these cases RPROP was the best method, not significantly improv-
ing PSO in the hybrid versions. Therefore, similar results could be
expected here.

A pseudocode of PSO for training an MLP neural network is
shown in Algorithm 1. This pseudocode has a small improvement:
after a pre-specified number of epochs without reaching a better
validation error, the entire population is purged and randomly reini-
tialized (a restart procedure), while keeping the global best infor-
mation. New populations, with random positions and velocities,
can search for other promising regions that can be better than the
gBest’s region.

2.3 Hybridization

Hybridization is, basically, the use of two or more distinct methods
that present orthogonal characteristics in tandem in order to solve
some kind of problem. A successful hybrid approach should of-
fer better results than its separate parts, in exchange for its higher
complexity. Some works propose a mixture of techniques aiming
to overcome their downsides, like a PSO-EA hybrid [5] and a PSO-
SQP hybrid [46].
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Algorithm 1 Particle Swarm Optimization applied to neural net-
work training.

1: Input: data set, number of units in each layer, stopping criteria (minimum er-
ror threshold and maximum number of iterations), population size, number of
iterations to wait until population purging

2: Output: trained network (the network weights array is the Global Best position,
the position with lowest historical validation error)

3:

4: - Initialize PSO parameters: search space boundaries, velocity boundaries, learn-
ing rates and inertial weight boundaries

. - Create base network

: - Generate initial population with random positions and velocities

. while stopping criteria are not met do
Update inertia weight

> Population update procedure
10: for each particle € [1,2,. .., populationSize] do

11: Update velocity of particle according to Equation 1
12: Apply box constraints to velocity
13: positionpamm = position,,,m,-,[f + velocit.\'pa,,,-de
14: Apply box constraints to position
15: fitnessparicie = network training error with positionpapicie as weights
16: if fitnessparsicle < local BestFitness papicie then
17: Local Best position and fitness are replaced by current position

and fitness
18: end if
19: if fitnessparicie < globalBestFitness then
20: Global Best position and fitness are replaced by current position

and fitness
21: end if
22: end for

> Purging check
23: if the best validation error has not improved in the last purgelterations with-
out purging then

24: Generate new random population while keeping the global best
25: end if

26: end while

In the current context of adjusting the weights of an ANN, a
hybrid may be used to reach better results and/or converge faster
than a standalone method. Several works employed hybridiza-
tion to improve the training process, achieving high-quality re-
sults [29, 1, 47, 50, 27]. Memetic Algorithms [33] are one kind
of hybrid approaches, where a population-based method is com-
bined with a local search method. Petalas et al. [38] conclude that a
memetic approach, inspired by Dawkins’ definition of memes [11],
is viable when one such implementation is compared to a regular
global optimizer.

PSO is a very popular metaheuristic and memetic versions have
been used before for solving several combinatorial and numerical
problems [23, 24, 46]. However, we are not aware of the memetic
version proposed here for solving the same task investigated in this
contribution.

3 THE PROPOSED METHOD

The hybrid implementation proposed in this work is based on that
presented in Algorithm 1. Here we propose two approaches:

e MPSO: a PSO followed by a local search method, configur-
ing a simple version of a memetic PSO; after PSO finishes, the
search is taken over by another method - in this case, BFGS.
This behavior can be seen in Algorithm 2. Basically, the ob-
jective of the hybridization is to let PSO do multiple searches
for promising regions of the search space while BFGS, which
is a more efficient method, handles the local optimization pro-
cess. Since it does so by searching specifically at the best
promising region found by PSO, it is only executed after the
global search is over.

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

Computing Track — Full Papers

e MPSOR: a PSO alternating with a local search method, to
compare with the previously presented simple version; after
a specific number of iterations, the algorithm pauses the PSO
method and uses BFGS for a small number of iterations on
the current gBest. PSO, then, returns to its normal behavior
using the new gBest. This process is repeated as long as there
are iterations available or the result is not satisfactory. This
process can be reproduced by placing line 6 from Algorithm
2 inside the if block starting in line 23 in Algorithm 1.

BFGS is a quasi-Newton method, i.e., it is a mathematical opti-
mizer that only needs the first derivative to minimize problems;
such derivative can be estimated by finite-difference of sampled
data. Because of this, however, its performance on non-convex sur-
faces may be lackluster. Therefore, in theory, the hybrid approach
can apply both methods where they excel.

Algorithm 2 Hybrid approach.

1: Input: data set, number of units in each layer, stopping criteria (minimum error
threshold, maximum number of PSO iterations and maximum number of BFGS
iterations), population size, number of iterations to wait until population purging

2: Output: trained network

4: - Initialization and PSO execution occur as in Algorithm 1
> Switch from PSO to BFGS
5: if the best validation error is higher than threshold then
6: Start BFGS optimization with the best solution found by PSO. Stop after
max_BF GS_iter iterations or when the error is lower than the pre-specified thresh-
old
7: end if
8: Network weights = position with lowest historical validation error

4 EXPERIMENTS

This section presents the experiments, results, and discussion.

4.1 Simulation data

The data set was extracted from the Simulated Car Racing Champi-
onship (SCRC) game through a framework? developed in Python
for the creation of new autonomous pilots. The code using the
framework parses the raw data from the simulator (sim) into
an easy-to-use Python object containing all sensorial information
available. The sim offers dozens of sensors and information about
the vehicle. However, as the goal of this work is to approximate the
vehicle physics only, any information regarding external data such
as track and obstacle positioning is discarded.

Two tracks were used here: a simple tarmac track, cgspeedwayl,
seen in Figure 1, and a complex dirt track, Dirt 3, seen in Figure 2,
both available in SCRC. The autonomous pilot chosen for this work
shows a good performance in the first, easy track; the second one
is harder, having the pilot struggling to deal with the terrain and the
various jump sections. Among the large selection of tracks avail-
able, the first one was chosen for yielding easier data, while the
second is an intermediate dirt track that, with the struggling pilot,
offers data that should be harder to approximate.

The goal of this work is to have a model that correctly predicts
the X and Y speeds (both axes) for time # 4 1, only; extended predic-
tions are yet to be investigated. As the data is polled from the simu-
lator at 50Hz, the difference between speeds in subsequent samples
is small. Thus, it has been decided to subsample the data, using one
instance every 10 instances, effectively reducing the polling rate to
S5Hz.

Five variables available from the simulator were selected as in-
put for the model: current speed along the X and Y axes of the

2SnakeOil: http:/xed.ch/project/snakeoil/index.html
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Figure 1: cgspeedway1 track.

Figure 2: Dirt 3 track.

vehicle, throttle value, brake value, and steering amount. Two in-
put variables were created to reduce the correlation between current
and future speeds, storing the difference between the speed in times
t and r — 1 for both axes.

For the preliminary results presented in this work, the stock
SnakeOil pilot developed for that Python framework 3 was set to
run three laps in the two selected tracks. A restriction set by the
competition model is that the pilot may only access the current track
in a race in order to collect data; as such, it must use the same track
for training and testing the model, since a new model is created for
each race.

4.2 Development

The tests were executed on a stock quad-core Core i5-2400 at
3.1GHz with 8GB DDR3 RAM running Python version 3.5.0 and
R version 3.2.2 on Windows 10 64-bit. Except for the pilot and
the simulator, the code was implemented in R programming lan-
guage, using the neuralnet package [17] as the basis for creating
the structure of the neural network, training it with RPROP, and
testing the other training algorithms. The package already has an
easy-to-use training function which supports both BP and RPROP;
for these experiments, RPROP with weight backtracking was used.
PSO, PSOr, MPSO and MPSOR were coded from scratch by the
researchers, except for the BFGS function - its implementation is in
the R function optim.

While the RPROP approach is handled entirely by the neural-
net package and the output is simply the trained network, the other
optimization methods tested here must iterate directly over the
weights matrix; this matrix is extracted from a network generated
by the package and replicated with random weights for each par-
ticle. Therefore, each PSO particle is an array of weights, which
must be properly reshaped to be evaluated by the neural network.

As for the data, the race log is loaded, randomly split into 10-
fold, and then separated into training and validation (each training
fold), and test sets. The columns of each subset are scaled inde-
pendently by their standard deviation. Training, validation, and
test results are evaluated by sum of squared errors (SSE) and mean
squared errors (MSE), where the final value is the sum of the X and
Y errors.

3SCRC’15: http://cs.adelaide.edu.au/~optlog/SCR2015/awards.html

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

Computing Track — Full Papers

4.3 Preliminary investigation

The algorithms are compared directly both on computational cost
(time to finish training) and on result quality (difference between
the predicted and the expected outputs). A challenge presented
by this proposal is how to directly compare algorithms, so a grid-
search was performed to tune RPROP.

The feedforward network has two output neurons (for X and Y
speeds), logistic activation functions for the hidden nodes, and lin-
ear outputs. It was initially configured with various numbers of
hidden neurons and trained by RPROP with different error deriva-
tive thresholds. For each result, we calculated the validation er-
ror - this offers both a way to determine a stopping criterion for
the other approaches and a way to compare all algorithms. Each
combination was run 10 independent times on data obtained from
the cgspeedwayl track, and the mean results are shown in Tables 1
and 2 (errors, in this case, are calculated by SSE). This helps com-
paring their effectiveness, but their efficiency is harder to measure,
since each technique needs a different number of objective function
calculations (in this case, applying a set of weights to the network
and running all data sets). Also, for the current application, the real
elapsed training time is more important than the actual number of
objective function calculations; thus, real time in seconds is used as
the cost measure.

The best results were obtained with two hidden neurons with a
threshold of 0.005, but the average training time is too high when
compared to the second best average result (threshold of 0.01).
Therefore, all subsequent tests were executed with two hidden neu-
rons and a threshold of 0.01 (interestingly, the default threshold
in neuralnet is 0.01), meaning a sacrifice of precision over perfor-
mance. For each following test case, RPROP was run in these con-
ditions and its minimum validation error was set as stopping crite-
rion for PSO, BFGS, and the hybrid. Again, using such criterion
one wants to evaluate processing time.

4.4 Configuration of the multiple comparison

Two tracks were used in this experiment: cgspeedwayl and Dirt
3. While the pilot’s performance was good in the first track, in the
second one it crashed the car a few times; therefore, it is expected
that the data may be harder to process because velocity suddenly
changed from many km/h to almost zero.

For each data set (comprising sensor and actuator information
at 200ms - SHz - steps for three laps), RPROP was executed 30
independent times with different seeds to train the network. The
best validation error was, then, used as a stopping criterion for
BFGS, PSO, PSOr (PSO with restart), and the two memetic ver-
sions - MPSO and MPSOR, each also run 30 independent times.
As convergence is not guaranteed, these techniques also had itera-
tion limits: BFGS was limited to 1000, pure PSO to 5000, MPSO to
500 in the first phase and 1000 in the second phase and MPSOR to
500 PSO iterations and 100 BFGS iterations every 50 consecutive
PSO iterations without improvement. Each run uses a new random
split of the data set.

PSO has other parameters, set as: ¢; = ¢3 = 2.04, maxW = 0.9,
minW = 0.05 and wy| = wy — ((maxW — minW) /maxlter), where
w is the inertia weight, linearly updated at each iteration. PSO,
PSOr, and the two memetic variations use 20 particles. PSOr and
the memetic versions purge their populations after 50 iterations
without improvement, while PSO has no purging procedure. A
grid-search could also be done to identify better configurations as
the current one was chosen arbitrarily after running the methods a
few times. All techniques were used to train a network with one
hidden layer composed of two neurons, using a logistic activation
function for hidden units, and linear outputs for the output layer.
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Table 1: RPROP SSE validation errors to determine the stopping criterion and best network topology.

Hidden Neurons

1 2 3 4 5 10 20 50
= 1 79.3982 | 2.3649 | 2.1524 | 2.2295 | 2.8064 | 3.1403 | 4.8589 | 9.4516
E 0.5 78.8612 | 1.5109 | 1.3140 | 1.3202 | 1.3662 | 1.6922 | 2.6316 | 6.4228
2 0.1 78.4171 | 0.6606 | 0.6144 | 0.5587 | 0.5838 | 0.7542 | 1.2853 | 3.4431
£ 0.05 [ 783627 | 0.5389 | 0.5041 | 0.4913 | 0.4868 | 0.6777 | 1.0473 | 3.1155
5 0.01 [ 782965 | 0.3994 | 0.4367 | 0.4704 | 0.5070 | 0.7843 | 1.1128 | 2.2247
[5 0.005 | 78.2882 | 0.3773 | 0.4812 | 0.4959 | 0.4931 | 0.8753 | 1.0733 | 3.2844
0.002 | 89.5168 | 0.4294 | 0.6196 | 0.6029 | 0.5334 | 0.7891 | 1.7260 | 4.2075
Table 2: RPROP training times (in seconds)
Hidden Neurons
1 3 4 5 10 20 50
- 1 0.101 0.178 0.127 0.116 0.085 0.092 0.194 0.374
E 0.5 0.198 0.348 0.302 0.211 0.183 0.195 0.232 0.683
2 0.1 LL.I11 2.022 2.004 1.132 0.825 0.641 0.991 2.961
£ 005 2.358 4214 4.106 2.331 2.15 1.828 2.386 49170
5 001 16.029 | 38.285 45.449 60.87 44.565 15.801 16.455 28.564
5 0.005 | 32.255 90.71 176.197 | 148.277 | 80.637 43.004 52.315 85.508
0.002 | 80.589 | 250.944 | 420.631 | 485.008 | 349.947 | 153.393 | 224.402 | 261.509
4.5 Results Table 5: Test errors in Dirt 3.
A summary of the MSE results can be found in Tables 3, 4, 5,
and 6. Pairwise comparisons using Wilcoxon’s rank sum test Averase (}1&1}&1; 0%57(;123 5 35;(5)48 015;7(;18 01\(/)[(:)3%(2)7 (1)\’111(’)%(1)21;
(single-sided) on the test set errors are shown in Tables 7 and 8, St Dev. 0003257 [ 0329420 | 0.032478 | 0029737 | 0.002423 | 02712
while comparisons of the training times are in Tables 9 and 10; all Median [ 0.002779 | 0.288398 | 0.120994 | 0.017652 | 0.003061 | 0.002431
p-values< 0.05 mean that the row method presented lower times
than the column method - otherwise, no conclusion can be made.
Figures 3 and 4 have plots comparing the observed values with the Table 6: Training times (in seconds) in Dirt 3.
predicted values; perfect fits are perfect diagonal lines.
In both tests, MPSO achieved the lowest average error, followed RPROP BFGS PSO PSOr MPSO MPSOR
by RPROP; regarding median error, the two memetic approaches Average | 119.68 [ 180.62 [ 458.54 | 467.56 | 15248 | 130.55
won by a small margin (the MPSOR has its average worsened by Sl\[/(lié(fi):r? 160037028 11866.74?3 429(72 428320 125504524 1?2‘_7782

runs stuck in local optima in Dirt 3). However, the hypothesis tests
found no statistical evidence of difference between them (see Ta-
bles 7 and 8).

The best (lowest) times were achieved by RPROP, with the two
memetic versions coming in second. The hypothesis tests confirm
this, as no technique is statistically faster than RPROP and the two
memetic algorithms are statistically faster than the remaining tech-
niques.

Table 3: Test errors in cgspeedway1. PSO with restart (PSOr),
Memetic PSO (MPSO), and Memetic PSO with Return (MPSOR).

RPROP BFGS PSO PSOr MPSO MPSOR

Average [ 0.003996 | 0.263675 | 0.110572 | 0.023097 | 0.003845 | 0.003951
Std. Dev. | 0.000764 | 0.319624 | 0.054253 | 0.021826 | 0.000823 | 0.000662
Median | 0.004071 | 0.255030 | 0.094894 | 0.012584 | 0.003704 | 0.003856

Table 4: Training times (in seconds) in cgspeedway1.

RPROP BFGS PSO PSOr MPSO MPSOR
Average 32.69 110.15 | 310.46 | 306.75 | 92.31 90.41
Std. Dev. 7.98 19.69 3.53 4.95 16.97 25.66
Median 33.57 119.93 | 311.20 | 308.1 90.60 94.03
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Table 7: Table of p-values for a pairwise comparison using Wilcoxon’s
rank sum test for cgspeedway1 test errors. All p-values< 0.05 mean
that the row method presented lower errors than the column method.

RPROP BFGS PSO PSOr MPSO
BFGS 1 - - - -
PSO 1 5.57e-01 - - -
PSOr 1 1.33e-01 | 2.98e-13 - -
MPSO | 8.78¢-01 | 1.53e-07 | 1.27e-16 | 1.27e-16 -
MPSOR 1 8.90e-06 | 1.77e-10 | 1.77e-10 1

Table 8: Table of p-values for a pairwise comparison using Wilcoxon’s
rank sum test for Dirt 3.

RPROP BFGS PSO PSOr MPSO
BFGS 1 - - - -
PSO 1 4.01e-02 - - -
PSOr 1 1.17e-03 | 3.15e-12 - -
MPSO 1 6.55e-09 | 1.27e-16 | 5.33e-15 -
MPSOR 1 1.97e-04 | 9.02e-05 | 1.89e-04 1

BFGS, the second slowest algorithm, was also the less accurate
and presented by far the most dispersed plot. It may be related
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Table 9: Table of p-values for a pairwise comparison using Wilcoxon’s
rank sum test for cgspeedway1 training times. All p-values< 0.05
mean that the row method presented lower times than the column
method.

RPROP  BFGS PSO PSOr MPSO

BFGS 1 - - - -
PSO 1 1 - - -
PSOr 1 1 1.33e-02 - -
MPSO 1 2.32e-04 | 1.27e-16 | 2.06e-10 -
MPSOR 1 1.87e-03 | 2.06e-10 | 2.06e-10 1

Table 10: Table of p-values for a pairwise comparison using
Wilcoxon’s rank sum test for Dirt 3 training times. All p-values< 0.05
mean that the row method presented lower times than the column
method.

RPROP  BFGS PSO PSOr MPSO
BFGS 1 - - - -
PSO 1 1 - - -
PSOr 1 1 1 - -
MPSO 1 2.29e-05 | 1.27e-16 | 1.96e-10 -
MPSOR 1 3.32e-06 | 1.27e-16 | 1.96e-10 | 6.22¢-01

to the default configuration used in the experiment; thus, a grid-
search could also be helpful. This may also be caused by its higher
difficulty of correctly converging in non-convex surfaces [28].

As for PSO and PSOr, their results were worse than RPROP’s
and the memetic techniques’, but consistent across the board; on the
other hand, the purging/restart process appears to largely improve’
performance; this can be observed not only in the direct compari-
son of Tables 3 and 5, but confirmed in the hypothesis tests. Such
behavior may be due to the technique’s difficulty in actually con-
verging after finding a promising region; even more likely, PSOr is
exploring more than PSO. Another interesting fact is that the train-
ing times did not present significant changes throughout many tests,
because they never actually reached their main stopping criterion
and were ended instead by the maximum number of iterations.

Considering these issues, MPSO appears to be able to adequately
find a high-quality solution and improve it with the local search
method, that is, from a promising region found by PSO it can better
use BFGS to actually converge to the local optimum, expecting to
quickly reach the global optimum.

One may see in Figures 3 and 4 that the plots show very small
dispersion along the reference line, meaning that predictions were
accurate for X-speed but less accurate for Y-speed. We are still
investigating these results to understand such difference and try to
improve the prediction. A possible reason for such difference be-
tween axes is that, while the X-speed represents the actual speed of
the vehicle, the Y-speed represents its lateral movement; therefore,
it changes more drastically and changes signal very often, leading
to more difficult predictions.

Some prediction issues can be observed in the plots, but we still
have no final explanation for them. For instance, BFGS finds clus-
ters of predictions close to values -1 and 1 for X-speed, and 0.5 for
Y speed. It also appears for MPSOR for Dirt 3. We suppose that
this is because of a large amount of observations (expected values)
with such values.

Another interesting characteristic is the curvilinear plots shown
for PSO and PSOr, where it seems that for some runs these methods
could not find weights able to reach the expected values, resulting
in a limited maximum output.

The last characteristic is what looks like vertical lines. For them,
we suppose that the input weights are close to 0.0 and only the
bias weights are substantially different. Such behavior was mostly
observed for BEGS and MPSOR.
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Figure 3: Plots of expected values (vertical axis) and predicted values
(horizontal axis) for both speed variables in cgspeedway1. The closer
the points are to the line expected = predicted, the better the prediction
is.

115



SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259

Expected

o - nN
Expected

N o

ES

)

-2 2 -6

-1 0 1 -4 -2 2
X-Speed Predicted by RPROP Y-Speed Predicted by RPROP

N

Expected
N

Expected
- o

N

-2 -1 0 1 2 -6 -4 -2 0 2
X-Speed Predicted by BFGS Y-Speed Predicted by BFGS

Expected

- o
Expected

N

-2 -1 0 1 2 -4 -2 0 2
X-Speed Predicted by PSO Y-Speed Predicted by PSO

[N}

o

Expected
. o

Expected
; S

ES

&

-2 2 -6

-1 0 1 -4 -2 0
X-Speed Predicted by PSOr Y-Speed Predicted by PSOr

o o
2 2
5 5
2 3 -
80 g2
3 3
] i

-1 0 2
X-Speed Predicted by MPSO

-2 -6 2

4 2 0
Y-Speed Predicted by MPSO

v o N

Expected
- o
Expected

A

&

2 -6 4 2 0 2

2 - B
Y-Speed Predicted by MPSOR

-1 0 1
X-Speed Predicted by MPSOR

Figure 4: Plots of expected values (vertical axis) and predicted values
(horizontal axis) for both speed variables in Dirt 3. The closer the
points are to the line expected = predicted, the better the prediction is.
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5 CONCLUSIONS

This paper investigated five methods for training a Multilayer Per-
ceptron artificial neural network for predicting the speed of a car in
a race using a racing simulator. This paper had two initial goals:
to demonstrate the applicability of artificial neural networks for
physics modeling based on recovered simulated data, and the ca-
pability of memetic/hybrid approaches in training such networks.
As far as we know, this is the first time such application was inves-
tigated for such racing simulator.

As expected from the extensive works available in literature, a
traditional feedforward artificial neural network was able to approx-
imate a complex function representing the physics behavior of a
virtual vehicle. It was able to predict, with an acceptable precision,
the axes speeds according to different actuator values, such as ac-
celeration, braking, and steering, among other information.

For training the network, the proposed memetic PSO-BFGS hy-
brid algorithms managed to exploit the advantages of each tech-
nique and were capable of competing with the well-established
RPROP algorithm, achieving statistically comparable prediction er-
rors even though being usually slower. The hybrid versions were
much more efficient than its parts, and the purge/restart mechanism
improved the performance of PSO; the regular PSO got stuck in
local optima and presented much higher errors.

Future work will focus on improving both global and local ap-
proaches by using more efficient versions of PSO and other lo-
cal search methods. Also, it is important to code in a faster pro-
gramming language, such as C, and comparing with other methods.
More racing tracks will be used, adding diverse contexts with vary-
ing complexity and data set sizes for testing.

Finally, we intend to use such models in the development of an
autonomous pilot for the racing simulator.
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