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ABSTRACT

From a  software  architecture  point  of  view,  digital  games  are
interactive  systems  that  create  virtual  environments  with  the
illusion that everything is happening at the same time (i.e. in real-
time). This illusion is carried out through “game loop models” (or
architectures).  Although  this  illusion  is  a  key  feature  in  these
applications,  the  patterns  and  requirements  that  lead  to  its
implementation have been taken for granted in the literature. Even
though  there  are  works  about  specific  game  loop  model
architectures,  the  literature  lacks  solid  foundations  about
underlying  game  loop  principles  and  requirements.  This  paper
contributes to this area by presenting and classifying these issues,
considering homogeneous and heterogeneous hardware processing
requirements (e.g. multi-core CPUs and GPUs) that are available
for games and interactive applications
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1 INTRODUCTION

Digital games create interactive and dynamic virtual environments
where  events  seem  to  happen  according  to  our  everyday
perception of time – for example, continuous motion and instant
input feedback. This effect is an illusion (i.e. the game illusion)
that  the  game  application  creates  by  presenting  media  (e.g.
images, animations, audio, haptics feedback) in continuous cycles
(i.e. frames) at a high frequency. This presentation process follows
several other tasks (e.g. physics simulation, AI, game logic) that a
game processes  to  compute the current  “game state”  – a  static
snapshot of data and variables that describes the game at a given
moment.  The game illusion is a key component of the experience
that a game provides,  which also involves aspects such as fun,
immersion, learning, flow, engagement, and interactivity.

From  a  software  architecture  point  of  view,  the  model  that
computes the current game state can be regarded as a “game loop”
–  a  structure  that  defines  the  ordering  of  task  computations.
Although  game  loops  are  of  central  importance  in  game
development,  there  is  scarce  literature  about  game  loop
fundamentals  and  components  (e.g.  [1]–[3]).  There  are  few
academic  works that  describe specific  game loop architectures,
but usually this subject is taken for granted in game development.
In this paper, we propose a set of concepts  describing game loop
fundamentals,  which   we derived from studying several works
related to this subject. We also present a concurrency view about
game  loop  models  found  in  the  literature  considering  the
framework we describe in this paper.

In Section  2 we discuss game loop fundamentals considering
discrete  simulations,  game  tasks,  real-time  concepts,  and
interactivity.  In  Section  3 we  present  general  game  loop
properties. Section  4 presents task flow organizations (i.e. game
loop models) considering concurrency aspects – although game

loops have been around for a long time, the availability of multi-
core CPUs and GPUs for general processing require attention to
parallel programming issues in games. Finally, Section 5 presents
conclusions and future works.

2 GAME LOOP FUNDAMENTALS

This section explores the main concepts related to game loops:
discrete  simulations,  game  tasks,  time  flow  structures,  and
interactivity. 

2.1 Discrete simulations
The computer  game simulation usually  advances  in  time  using
discrete  a  time-stepped  mechanism,  although  there  are  event-
based approaches [2], which are not the focus of this paper.

In discrete simulations, the game application creates a virtual
environment  by  computing  discrete  game  states  sequentially
across time. In this context, there are three key concepts related to
time: wall-clock time, simulation time, and real-time.  Wall-clock
time corresponds to the passage of time as perceived by human
uses, being the time we see on everyday clocks.  Simulation time
is  the  time  represented  in  a  simulation  (or  game)  timeline.  In
simulations based on time  steps,  the timeline corresponds  to  a
collection of contiguous discrete time spots. Figure 1 illustrates a
game timeline based on time steps, where all time steps have the
same size. In practice, a game timeline may also have time steps
of different sizes, according to the time structure applied. Section
2.3 explores these issues.

Figure 1:  A sample timeline as a series of sequential time steps

The simulation  may advance time  in the  simulation  timeline
according to various paces. The simulation runs in real-time when
time advances occur according to wall-clock time pace.

In time-step based simulations, the game calculates a game state
(or frame) for the current time step and advances the simulation to
the next time step to compute the next game state. We define as
simulation sample rate as the number of time steps that exist in a
second of simulation. We define as  presentation sample rate the
number of  game states  that  the game presents  (as  images)  per
second. We use the term “FPS” (frames per second) as the unit to
express these sample rates. There are game loop approaches where
the simulation sample rate and the presentation sample rate are the
same, while there are approaches where these values are different.
Section  2.3 discusses  time  flow  structures  that  lead  to  these
approaches.
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The simulation that a game creates does not need to be highly
accurate (e.g. physics simulations). The simulated processes need
to  have  a  sample  rate  that  produces  “good  enough”  results  –
results  that  represent  sufficient  fidelity (Section  2.2.1).  If  the
simulation  runs  a  process  more  frequently  than  required,  the
simulated process will be  oversampled and the game will waste
computational  resources.  In  contrast,  “analytical  simulation”  is
another simulation structure  that has  different goals  from game
based simulations. For example, analytical simulations usually are
concerned  with  modeling  highly  accurate  processes  to  produce
data for quantitative analysis  [4]. So, analytical simulations need
to be very accurate and usually advance time as fast as possible,
not including human interaction [4]. In games, human interaction
is an intrinsic component and the simulation runs in real-time.

2.2 Game tasks
Digital games manage a variety of heterogeneous subsystems such
as  rendering,  input  acquisition,  audio  playing,  artificial
intelligence, network management, character animation, graphics
user  interface  management,  resource  management  (e.g.  I/O
systems and media loading),  scripting,  and physics simulations.
We define as a “game task” any processing or computation that a
game  must  perform  in  these  subsystems.  These  tasks  can  be
grouped into three general categories: input data acquisition, game
state  computing  (i.e.  simulation),  and  presentation.   Figure  2
illustrates  the  most  basic  game  loop  model,  which  runs  tasks
sequentially in a loop. This model is referred in this survey as the
“simple coupled model” [1].

Figure 2. Simple coupled model

The input  data acquisition category corresponds to tasks that
receive input from various devices. There are a multitude of input
devices that a game should be able to handle, such as keyboards,
joysticks, voice input, location sensors (e.g. GPS), motion sensors
(e.g. Kinect), orientation sensors (e.g. accelerometer, gyroscope),
and touch screens. 

The simulation category corresponds to tasks that compute the
current game state, by computing the game logic (i.e. game rules)
and computing several processes such as physics simulations and
artificial intelligence behavior.

The presentation category corresponds to tasks that present the
current game state to the players though several outputs, such as
images, audio, video, animation, and haptics feedback.

In a running simulation, the set of active game tasks is dynamic:
player interaction with  the game world and the enforcement of
game rules generate events in intermittent fashion. For example, a
player  character  may  collide  with  an  object,  generating  an
explosion  event.  The  explosion  event  may  generate  particles,
which require a particle system processing task and audio playing
to provide feedback to the player about the explosion. The game
runs these tasks, and when they are finished, the game removes
them from the set of active tasks. 

2.2.1 Task properties
We identify and define three properties for game tasks:  nature,
sample rate, and deadline.

The nature of a task relates to the kind of computation that the
task  needs  to  perform.  For  example,  game  tasks  may perform
functional calculations, state-based calculations, and data retrieval
[5].  Functional  calculations  transform  or  generate  data  (e.g.
solving mathematics calculations, computing physics simulations,
and manipulating data structures). State-based calculations refer to
operations that need to maintain and manipulate states across time
(e.g. game logic state, animations, and AI state machines). Data
retrieval tasks include loading media resources that are necessary
for game state presentation.

The sample rate property refers to the number of times a task is
processed per time unit  (e.g.  usually seconds).  This property is
usually expressed in FPS, although “frame” is a concept originally
used to refer to the resulting image that a game displays on the
screen at  the end of game loop processing.  Game tasks have a
minimal sample rate that is required for a task to produce results
of sufficient fidelity (“good enough results”). Different tasks have
different sample rate requirements.  For example,  a  hypothetical
physics simulation sampled 30 times per second may yield data
good enough to produce a smooth animation. If this sample rate is
higher than 30 FPS, the physics simulation will be more accurate
but the player may not  be able  to notice  any differences when
compared  to  less  accurate  version.  In  this  case,  the  physics
simulation will be oversampled. On the other hand, if the sample
rate is not large enough to provide results of sufficient fidelity, the
simulated process will be  undersampled.  Determining the ideal
(or optimal) sample rate for game tasks is a central problem in
game development  – different  tasks  have  different  sample  rate
requirements and hardware configurations vary.

The  deadline property  is  directly  related  to  the  sample  rate
property, being the time required for a task to finish processing in
the current time step: if a task sample rate is 30 FPS, the task must
be finished in 33ms. In practice, the actual deadline that a task has
will  be much lower,  subject  to the workload and the rendering
target sample rate. Usually, the target sample rate for rendering is
60 FPS (i.e. an approximate deadline of 16ms).

2.2.2 Task dependencies 
Task dependency means that a task depends on some external data
or  event  before  running.  El  Rhalibi  et  al.  [6] identified  some
categories  of  task  dependencies  such  as  flow  dependencies,
antidependencies,  output  dependencies,  I/O  dependencies,  and
control dependencies. Task dependencies in games generally takes
form as data dependencies, which means that a task requires data
produced by another task in order to proceed. In other words, a
task “A” must wait for some other tasks (e.g.  “B” and “C”) to
finish before receiving the required data. Otherwise, task “A” will
operate with incorrect data leading to incorrect and inconsistent
results. Some examples of task dependencies in games are:

1. The game is unable to evaluate game rules before receiving
player input;

2. Non-player  characters  are  unable  to  move  before  AI
processing is finished;

3. Rendering requires an entirely computed game state.

To ensure simulation consistency, the simulation must consider
all task dependencies and ensure to run tasks in the correct order.
In Figure 2 (the “simple coupled model”), the arrows express task
dependencies.  The  game loop  starts  with  reading  player  input,
feeding this information to the simulation stage, which computes
the current game state. Next, the rendering presents the game state
to the player, and the loop is restarted. 
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2.2.3 Game tasks and parallelism
In  game  development,  parallel  computing  usually  explore
functional  parallelism and/or  data  parallelism.  In functional  (or
task) parallelism there are several concurrent threads dedicated to
process a specific task or subsystem (such as AI and rendering), or
a group of tasks that have high interdependencies.  The threads
may run asynchronously and the rendering task presents the latest
game state that was completely computed. In data parallelism, the
system  distributes  data  in  separate  parallel  nodes,  where  each
node runs the same tasks or sequence of tasks. Data parallelism is
useful to process data that has little or no interdependencies, as
these would require  synchronization  points  that  could  diminish
performance gains.

The  performance  gains  of  paralleling  tasks  can  be  estimated
using the Amdhal’s law [7] and Gustafson’s law [8]. These laws
state  that  performance  gains  due  to  parallelizing  tasks  are
proportional to the number of parallel processors and limited by
the number of serial parts. Amdahl’s law considers that the entire
problem has  fixed  size  and  Gustafson’s  law considers  that  the
amount of parallel work varies linearly according to the number of
parallel processors.

Game tasks usually have several interdependencies that must be
addressed  to  ensure  consistency.  In  parallel  programming
environments this issue requires task synchronization, which may
be applied through semaphores, mutexes, and barriers.

An important  issue related  to  using  parallel  programming in
games regards the integration with third-party libraries and tools,
because  they  may  have  been  developed  without  considering
parallel programming and multi-thread environments. These tools
might  not  be  thread-safe  and  may  apply  internal  multi-thread
approaches  that  cannot  be  controlled  or  accessed  by  the  game
developer.

Another  important  concept  regarding  parallelism  is
heterogeneous  processing,  which  means  processing  tasks  in  a
system  composed  of  processors  with  different  architectures.
Heterogeneous processing in games is becoming more common as
GPUs are being used for non-rendering tasks.  GPUs have been
designed  to  solve  problems  that  are  modeled  as  stream-based
processes  with  massive  mathematical  calculations.  The  intense
GPU computing capability enables games to process tasks such as
linear algebra, artificial intelligence, and physics simulations.

When  designing  game  tasks  to  run  in  heterogeneous
environments,  it  is  important  to  consider  the  strengths  and
weakness  of  each  kind  of  processor.  For  example,  multi-core
CPUs (MIMD architecture) can manage hundreds of threads in
different  set  of  data.  On  the  other  hand,  GPUs  (SIMD
architecture) are able to manage thousands of threads, but these
threads  operate  on  the  same  set  of  data.  In  this  regard,  data
locality  is  crucial  for  GPGPU  performance  due  to  the  SIMD
architecture  of  GPUs  [9].  Another  issue  in  heterogeneous
environments  is  the  cost  related  to  communication  among
processors  that  have  different  architectures.   For  example,  in
GPGPU applications the GPUs are not able to process data while
CPUs are accessing the main RAM. Also, memory reading access
in GPUs is an operations that presents high latency in this type of
hardware [10]. 

2.3 Real-time and time flow structure
A game runs in real-time when the game simulation advances the
game  timeline  according  to  wall-clock  time  pace.  A computer
game  has  real-time  requirements  because  if  the  game  fails  to
advance the game simulation according to wall-clock time pace,
the user experience will be severely impaired, thus breaking the
“game illusion”. This failure can occur if (for example):

1. Being unable to process all tasks before the current time step
expires (i.e. the deadline); 

2. Processing all tasks too fast and not waiting for the next time
step. For example, if a game uses 33ms as the time step size
and the all task processing takes 10ms to complete, the game
needs to wait for 23ms before executing the next time step.
Otherwise, the game runs faster than wall-clock time, as in a
movie played fast-forward.

Computer  games  may  be  considered  as  “soft-real  time
applications”, which differs from a “hard real-time system”. The
latter has stricter time requirements because if these systems fail,
severe consequences may occur. Soft real-time systems may have
more tolerance to time delays and loss of wall-clock time pace.
For example, games may be able to recover from task delays and
keep the simulation running in real-time. However, if delays are
too high the game experience will be severely compromised.

Game  development  literature  commonly  regards  that  game
performance should stay in the 30-60 FPS range to keep the game
experience smooth, which includes the game presenting smooth
motion and responsive input.  Game developers usually target a
minimum presentation sample rate of 30 FPS as a “safe starting
point” to avoid jerkiness,  unresponsive input,  general slowness,
and  other  undesired  side-effects  of  low  frame  rates  in  games.
Another problem related to game frame rates is temporal aliasing.
Temporal aliasing appears as jittery and unnatural motion, which
occur when the simulation and/or presentation sample rates are
too low to represent fast moving objects adequately. Solutions to
handle temporal aliasing include applying motion blur techniques
to  the  resulting  images  [11] and  fine-tuning  simulation  and
presentation frame rates. 

Depending on the time flow structure that the game simulation
uses,  we  classify  the  simulation  into  two groups:  coupled  and
uncoupled simulations. Sections 2.3.1 and 2.3.2 discuss these two
groups.

2.3.1 Coupled time flow structures
In  coupled  simulations,  the  actual  simulation  sample  rate  is
variable and directly dependent on the presentation sample rate.
This means that the simulation time step size depends on the host
hardware  and  current  workload,  and  thus  may  vary  while  the
game is running. Consequently, players will perceive the game as
running faster than wall-clock time in more powerful machines,
and slower than wall-clock time in less powerful machines, which
means  lack  of  simulation  uniformity.  If  more  computational
resources are available these approaches are not able to improve
the  quality  of  the  game  experience,  which  means  lack  of
adaptability.  Consequently,  this leads to  wasting computational
resources  and  power,  which  are  aspects  that  become  crucially
important when the game runs on mobile devices equipped with
batteries  that  have  limited  autonomy.  As  a  result,  coupled
simulations  may fail  to  satisfy  real-time  requirements  in  many
situations. 

In this scenario, if game tasks start to take too long to complete,
the FPS rate will  drop with very noticeable  undesired effects  .
This  may lead  to  an  effect  known as  “frame rate  spike”  [12],
which happens when the game frame rate varies abruptly too fast,
undermining  the  game  experience.  Players  may  perceive  this
performance  degradation  as  unresponsive  input  and  sluggish
animations, for example. 

Another  important  issue  in  these  approaches  is  the  lack  of
simulation control, as explicit simulation time does not exist. This
means that the simulation is not repeatable – it is not possible to
reproduce the simulation given the same input data (i.e. simulation
becomes non-deterministic).  As all tasks have the same sample
rate, this situation possibly leads to oversampled tasks. Lack of
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simulation  control  hinders  the  implementation  of  certain  game
features  (as  gameplay  replays  and  networking  synchronization)
and  makes  game  development  harder  (e.g.  poor  debugging
capabilities)

These problems arise mainly because the simulation is coupled
with the frame rate  – the frequency of running the simulation is
regulated by the frame rate. In the past, using these approaches
were common because hardware was more uniform (e.g. games
for  video  game  consoles)  and  hardware  had  much  limited
capacities. Old arcade game machines are a nice example of such
kind of  hardware,  as  frequently the game machines  were  built
specifically for a particular game. 

2.3.2 Uncoupled time flow structures
Uncoupled simulations aim at satisfying real-time requirements by
having the simulation and presentation running with different (and
independent)  sample  rates.  Common  approaches  are:  1)  scale
calculations using elapsed time to have the simulation run in real-
time;  and  2).  Defining  a  fixed  sample  rate  for  the  simulation,
which gets rid of all elapsed time scaling. 

In the first approach, the simulation measures the time elapsed
of a complete processing cycle (i.e. input-simulation-presentation)
and feeds this value to the next game state computation, exploiting
frame coherency  – the assumption that consecutive game states
are very similar. For example, a game character position (p) would
be updated as  p = p + velocity*dt, where  dt is the time elapsed
measured in the previous processing cycle. The simulation runs as
fast as possible but the actual time step size depends on how fast
the game loop runs – the faster the game loop runs, the smaller the
time step size is. This affects directly the simulation sample rate.
The  simulation  time  step  size  is  variable  and  depends  on  the
current host hardware and current workload conditions.

 In faster machines, the simulation time step will be smaller and
the simulation sample rate will be higher. This measure makes it
possible  to  bring  uniformity to  the  simulation,  effectively
uncoupling the simulation and game loop sample rates. This also
may lead to more accurate and smooth task results,  which is a
simple  form  of  adaptability.  In  machines  with  more  limited
resources, the simulation and presentation will be less smooth but
it  will  have a chance to keep real-time requirements.  However,
this approach may lead to  oversampled tasks. In this case, these
extra  computations  waste  computational  resources  and  power.
When considering mobile game platforms, this issue may bring
undesired  power  consumption.  Although  the  simulation  has
uniformity,  it  remains  as  being  non-repeatable  and  non-
deterministic.  Approaches  based  on  elapsed  time  also  lack
simulation control.

Gregory  et  al.  [12] reminds  that  when  using  the  previous
elapsed  time  in  calculations  for  the  next  game  state,  these
approaches implicitly assume that the time it will take to compute
the next game state will be roughly the same as the previous one.
If this is not the case, the game will also experience the “frame
rate spike” [12]. Gregory et al. [12] mention that using a “running
average” (the average elapsed time of a number of past frames)
instead of just the previous elapsed time may lead to softening the
frame rate spike effect.

The second approach to  uncoupled time flow structures  uses
fixed sample rate loops, which creates an  explicit timeline – the
developer determines a target time step value and designs tasks to
use this  value.  An explicit  timeline enables  simulation control,
which makes it possible to pause, resume or run the simulation
irrespective of real-time if desired. In this case, a game developer
may run the game faster or slower than real-time for debugging
purposes.

For example, a developer may define a target sample rate of 30
FPS and calculate the new position (p) of a game character as  p =
p + velocity, where velocity (the increment) is determined a priori
based on the target sample rate. This approach turns the simulation
uniform,  repeatable,  and  deterministic. In fact, some tasks may
work  better  when  the  sample  rate  is  fixed,  such  as  numerical
integrators used in physics simulations [12].

In these approaches, the game loop runs all tasks and needs to
wait before advancing the simulation to the next time step. For
example, if the simulation sample rate is 30 FPS (i.e. time step is
33ms) and all task processing takes 10ms to complete, the game
loop needs to wait for 23ms before advancing the simulation to
the next time step. The extra available time make it possible to
implement simulation  adaptability, by using available extra time
to  improve  simulation  complexity  and  presentation  quality.  In
these examples, all tasks have the same sample rate. In practice,
the developer may determine different fixed sample rates for each
type of task. 

The simulation sample rate should be chosen carefully in order
to  avoid  aliasing  artifacts  in  the  simulation.  For  example,  a
physics simulation with inadequate sample rates (e.g. large time
step size) may appear to the player as being “jittery”, “jumpy” or
presenting unnatural behavior.

2.4 Interactivity
Interactivity is inherent to digital games, but it is a difficult term
to define due to its subjectivity. Kiousis [13] conducted a thorough
survey  on  several  approaches  to  interactivity,  leading  to  an
operative  definition  of  this  concept  based  on  three  groups  of
concepts: technological structure of the media used (speed, range,
timing  flexibility,  and  sensory  complexity),  communication
settings characteristics (third-order  dependency  and  social
presence),  and  individual’s perception (proximity,  perceived
speed, sensory activation, and telepresence). 

Kiousis’ definition [13] provides hints about important concepts
to consider in addressing interactive characteristic of a game loop.
As the underlying structure of game simulations, we understand
that the game loop is related to the  speed and  perceived speed
concepts.  The reason is  that  the game loop may affect directly
these properties because it is the underlying structure of a game
simulation. We understand that the other properties are dependent
on the particular application that is built upon a game loop. The
speed concept  (technological  structure  group)  refers  to  the
(objective) rate which information enters the interactive system.
For example, a mouse-based input system might be able to detect
at  most  15  clicks  per  second.  The  perceived  speed concept
(individual’s  perception  group)  refers  to  how  a  user  perceives
response times from the mediated environment. 

3 GAME LOOP PROPERTIES

This section presents important properties related to  simulation,
real-time,  and  interactivity (Section  2).  An adequate game loop
model should address these properties, summarized in Table 1.

3.1 Simulation
This section presents properties that are directly related to game
simulations.

3.1.1 Well-defined simulation model
A well-defined simulation model  means that:  1)  the simulation
defines  target sample rates for all  tasks.; and 2) the simulation
defines an explicit timeline, making the simulation repeatable and
deterministic. 

Game  loops  that  do  not  address  this  property  either  do  not
define simulation time or define it implicitly. (e.g. coupled time
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flow  structures  and  uncoupled  time  flow  structures  based  on
elapsed time). In both cases, the simulation runs as fast as possible
and becomes non-deterministic.

Simulation Real-time Interactivity

Well-defined 
simulation model

Uniformity Responsiveness

Consistency Resilience Registration speed

Adaptability Adequate use of 
physical resources

Energy management

Table 1.  Game loop properties

3.1.2 Consistency
Consistency  in  simulations  is  a  key  factor  to  keep  players
immersed  in  a  game  environment  [14],  which  contributes  to
maintain the game illusion. We consider the game simulation as
consistent if:

1. All  game  tasks  are  processed  considering  the  ordering
defined by task dependencies; and

2. The simulation does not produce artifacts that players may
perceive as incorrect or inconsistent with the virtual world.
This applies especially for physics simulations.

Coupled task flow organizations are able to produce consistent
simulations  as  the  task  flow  ordering  is  established  by  their
structure (a serial pipeline). This is also the case of uncoupled task
flow organizations that are single-threaded. However, in parallel
game loops (Section 4) some tasks may finish before than others,
and thus these task organizations require synchronization policies
to ensure that task dependencies are addressed.

Another  example  involving  consistency  relates  to  how some
tasks  operate.  For  example,  physics  simulations  in  game
environments may produce errors or inconsistent results if  they
are not modeled adequately. For example, players may perceive
game objects  as  penetrating each other  during game play.  This
might  happen  due  to  several  reasons,  such  as  inadequate  time
structure (e.g. inadequate step size, variable time step sizes, and
aliasing  artifacts)  and  problems  in  the  collision  detection
algorithm.

3.1.3 Adaptability
This  property  refers  to  the  capacity  of  a  game loop  to change
simulation complexity and presentation quality according to the
host hardware. For example, a game may be designed to provide a
default  game experience quality.  While running,  the game may
discover  that  the  host  hardware  exceeds  the  minimum  system
requirements to run the game. In this case, the game may improve
simulation  complexity  and  presentation  quality  by  taking
advantage  of  the  extra  computational  resources,  which  may
improve the game experience.

Adaptability also means the capacity of a game loop to change
simulation  complexity  and  presentation  quality  dynamically
according to task load, in order to keep the game running in real-
time.  For example,  if  the system experiences momentarily high
task load the game might reduce simulation complexity to keep
the  simulation  running  in  real-time.  This  is  different  from
adjusting  presentation  settings  before  the  runs  through
configuration interfaces. 

3.2 Real-time
This section presents properties that directly affect the real-time
property of a game simulation.

3.2.1 Uniformity
This  property  refers  to  the  capacity  of  a  game  to  keep  the
simulation running in real-time regardless of different hardware
configurations.  For  example,  when  two  machines  of  different
hardware configurations run the game side by side, the simulation
appears to be in the same pace (real-time) in both of them. When
this property is not addressed, the game may run faster than wall-
clock time in more powerful machines and slower than wall-clock
time in  machines  with  limited  capacity.  In  both  situations,  the
game does not run in real-time.  Game loop models that do not
address uniformity do not have a well-defined simulation model
(Section 3.1.1).

The coupling between the simulation and the frame rate results
in  coupled  game  loop  models  lacking  simulation  uniformity,
which means that  the simulation probably will  not run in real-
time,  unless  the  simulation is  carefully  designed for  a  specific
hardware. This was the case of games designed for video-game
consoles, which had fixed hardware configurations. 

3.2.2 Resilience
This  property refers  to  the capacity  of  a  game to maintain the
simulation running in real-time when there are task delays, which
may  result  in  performance  degradation.  Resilience  requires
detecting  problematic  issues  (e.g.  performance  degradation)
concerning  real-time  pace  and  applying  adaptability (Section
3.1.3) approaches. Players may perceive performance degradation
as glitches in presentation, unresponsive input, animations lacking
smoothness, and general slowness, among other effects. A game
loop can be considered resilient if it addresses these issues before
the  player  is  able  to  perceive  them or  if  it  is  able  to  recover
quickly from performance degradation. 

3.2.3 Adequate use of computational resources
This property relates to the fair use of computational resources.
For  example,  an  AI  character  may  require  10  time  steps  per
second  to  produce  adequate  results.  Processing  it  at  a  higher
sample rate will  not improve its behavior.  In this situation,  the
extra processing wastes computing resources.  Another example
are animations calculated and presented more than 60 times per
second,  as  players  probably  will  not  perceive  noticeable
improvements. The game should adequate task processing up to a
threshold that represents meaningful (and perceivable) results for
players.  Otherwise,  the extra computations waste computational
resources and energy. 

3.2.4 Energy management
A consequence of inadequate use of computational resources is
poor  energy  management.  Research  on  energy  management  in
games is under-explored – some works that explore this issue are
[15]–[20].  Energy  management  considerations  are  even  more
important  for  games  that  run  on  mobile  devices  (e.g.
smartphones),  which  operate  on  batteries  that  have  limited
autonomy.

3.3 Interactivity
When the simulation has low sample rate, players may experience
severe input delay, which affect responsiveness and  registration
speed. In practice, it is hard to foresee if a game loop is able to
address these properties because interactivity depends on factors
that  are  application-dependent,  such  as  the  size  of  the  virtual
environment and current task work load. However, the game loop
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may  apply  measures  to  minimize  issues  that  might  impact
interactivity,  such  as  employing  adaptability,   resilience,  and
defining an adequate simulation model. 

3.3.1 Responsiveness
A game loop is responsive if it provides feedback or responses to
players fast enough so that players do not perceive lags or delays
regarding  input.  The  notion  of  responsiveness  should  be
considered from the player point of view, not being an objective
measure. 

3.3.2 Registration speed
The  registration  speed  property  is  equivalent  to  the  notion  of
“speed”  that  Section  2.4 discusses.  Steuer  [21] defines  this
concept as “the rate at which input can be assimilated into the
mediated environment”, claiming that this property is an essential
factor that contributes to interactivity in virtual environments. 

Chen and Thropp [22] cite several factors that contribute to lags
in virtual environments when considering input,  Some of these
factors can be correlated to the registration speed property, such
as: 1) input device sampling rate,  2) the time it takes to transfer
the input information from a device to the computer, and 3) the
time required to process raw device data before delivering the data
to  the  application  – for  example,  filtering  sensor  data  (e.g.
accelerometers, Kinect).

3.4 Game loop properties and time flow structures
As coupled task flow organizations define the time flow structure
implicitly,  they  do  not  have  a  well-defined  simulation  model.
Coupled task flow organizations are  able  to  produce consistent
simulations as the ordering of game task flow is established by
their  structure,  which  takes  form as  a  task  pipeline.   In  these
organizations, the simulation simply runs as fast as possible, so
they do not address adaptability.

The coupling between the simulation and the frame rate results
in lacking simulation uniformity, which means that the simulation
probably  will  not  run  in  real-time,  unless  the  simulation  is
carefully designed for a specific hardware. This was the case of
games  designed  for  video-game  consoles,  which  had  fixed
hardware  configurations.  Running  the  simulation  as  fast  as
possible makes these models waste computational resources and
power,  failing  to  address  these  properties:  Adequate  use  of
computational  resources  and  energy  management.  Coupled
organizations are not resilient and are highly susceptible to frame
rate variations. Valente et al. [1] provide several examples of basic
coupled models.

Considering uncoupled task flow organizations (single-threaded
or multi-threaded), there are many variations that differ mainly by
implementation  and  parallelization  techniques.  Regarding  game
loop  properties  related  to  real-time,  uncoupled  task  flow
organizations generally address the uniformity property. However,
not all uncoupled task flow organizations address these properties:
adequate  use  of  computational  resources,  energy  management,
and  resilience.  Considering  game  loop  properties  related  to
simulation, some uncoupled task flow organizations have a well-
defined  simulation  model.  For  example,  there  are  task  flow
organizations  that  use  a  time  flow  structure  based  on  a  fixed
sample rate loop and there are task flow organizations that use an
event-based timeline. On the other hand, there are uncoupled task
flow organizations that address this property partially, such as the
ones that use time flow structures based on elapsed time. 

Valente et al.  [1] presents several uncoupled models based on
single-threaded approaches (“single-threaded uncoupled model”,
“fixed-frequency  uncoupled  model”)  and  multi-threaded
approaches  (“multi-threaded  uncoupled  model”,  “asynchronous

functional  parallel  model”,  “synchronous  function  parallel
model”).  This  latter  group  represents  simple  approaches  to
introduce concurrency in game loop models. Figure  3 illustrates
the “fixed-frequency uncoupled model” that contains a simulation
state that runs at fixed-frequency.

Figure 3. Fixed-frequency uncoupled model [1]

4 TASK FLOW ORGANIZATION: A CONCURRENCY VIEW

A task flow organization (i.e. game loop model) arranges game
tasks as a graph or closed loop,  which the simulation traverses
continually to run all tasks. According to the time flow structure
(Section  2.3),  these  task  flow  organizations  may  coupled
(essentially  single-threaded)  or  uncoupled  (single-threaded  or
multi-threaded). Task flow organizations based on single-threaded
approaches have been the norm in game development for many
years. This situation has changed as currently multi-core CPUs are
widespread in a variety of  game-capable devices,  such as PCs,
dedicated video-game consoles,  and mobile devices.  Also using
GPUs for non-rendering tasks has become commonplace. 
Hence,  this  section  explores  task  flow  organizations  based  on
heterogeneous and homogeneous processing, using a concurrency
view The homogeneous processing group corresponds to models
that implement  concurrency using multi-threaded approaches in
systems where  all  processing  hardware  are  identical  (i.e.,  they
have the same architecture).  An example is a system where all
game  processing  occurs  in  a  single  multi-core  CPU.  The
heterogeneous  processing  group  corresponds  to  task  flow
organizations where the game runs on heterogeneous hardware.
For example, in these approaches some tasks may run in a multi-
core CPU, while other tasks may run on a GPU (as GPGPU).

4.1 Homogeneous processing view
The  task  organizations  in  this  section  describe concurrency  in
multi-core CPUs as cyclic task-dependency graphs. Each node in
the graph  represents  a  computational  task  and the  graph edges
represent  task  dependencies  (flow  dependencies  or  data
dependencies).  In  these approaches,  there  are  dedicated worker
threads that run tasks in their own loop. These organizations have
an  entity  known as  the  “task  manager”  that  is  responsible  for
distributing tasks to these worker threads. The worker threads may
run any kind of game task and may be assigned to any CPU core.
It seems that all task organizations approaches that we present in
this  section use uncoupled time flow structures,  but  this  is  not
clear because the main focus in these research works is discussing
how to perform concurrent task management. However, using a
task  scheduler  may  help  in  addressing  adaptability,  as  the
scheduler  may  be  applied  to  improve  scalability  and  task
adaptation,  as  well  as  load  balancing.  Also,  these  approaches
emphasize  the  quest  for  trying  to  achieve  the  best  possible
performance  and  do  not  provide  further  details  on  the  game
simulation model.

El Rhalibi et al.  [6] presented an earlier framework to model
games as cyclic task-dependency graphs, using a scheduler to run
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game  tasks  in  multiprocessor  architectures.   The  model  by  El
Rhalibi et al. [6] uses three concurrent threads, where each thread
organizes  simulation  and  rendering  tasks  according  to  task
dependencies. El Rhalibi et al.  [6] argue that their model scales
well because it is able to allocate as many processing cores as they
are  available.  Performance  is  limited  by  the  amount  of  data
processing that can run in parallel. An important issue is how to
synchronize  communication  of  objects  running  in  different
threads. El Rhalibi et al.  state that the biggest drawback of this
model  is  the  need  to  have  components  designed  with  data
parallelism in mind.

Tulip et al. [23] presents a related approach based on an acyclic
tree service by a thread pool. The tasks that need to run in the
game are broken down in the tree, where each tree node represents
a single task. Each node in the tree has a number that represents
its  scheduling  order.  Some nodes  may  have  the  same  number,
which  means  that  these  nodes  may  be  processed  in  parallel.
During runtime, the game loop traverses the tree to extract tasks
that are ready to run, placing them on a queue serviced by a thread
pool. A task is not allowed to run until all tasks that have lower
ordering (in the same parent node) are finished. It seems that the
task tree is built statically – before the game loop runs. 

Best  et  al.  [24] propose  Cascade,  which  is  a  framework  for
parallel game programming. The central concepts in Cascade are
tasks,  instances,  task  graph,  and  the  task  manager.  The  task
computations  are  encapsulated  in  objects.  The  developer  is
responsible  for  instantiating  these  objects  and  specifying  tasks
dependencies using the Cascade API, which happens before the
game  application  is  run.  This  measure  creates  the  task  graph,
statically.

AlBahnassi  et  al.  [5] elaborate  the  idea  of  task  graphs  by
proposing a solution that creates the task graph dynamically, as
the Sayl design pattern. The Sayl design pattern is based on three
main concepts (tasks, task dependencies, and scheduling) and has
two  main  parts:  a  front-end  and  a  back-end.  Task  and  task
dependencies comprise the front end, while task scheduling is part
of  the  back  end.  The  front  end  follows  a  pattern  where  the
developer models task computations through method calling with
parameters.  The  developer  uses  the  parameters  to  model  task
(data) dependencies. The parameters can be evaluated in parallel
(by several threads), and when all parameters are ready, the task is
considered as ready for scheduling because the data dependencies
have  been  resolved.  The  back-end  has  a  task  scheduler  that
maintains a task queue and maps tasks to the various CPU cores
for execution. In Sayil, the task graph is built dynamically through
the evaluation of parameters and dispatching tasks.

AlBahnassi  et  al.  [5] state  that  their  dynamic  task  graph
approach  is  able  to  run  tasks  belonging  to  several  frames  in
parallel. In other words, the approach defined by Sayil makes it
possible to start computing the next game state before the current
game state is finished, which is not possible in approaches based
in static graphs such as the ones by [24], [23], and  [6]. The task
dependencies are enforced by the Sayil design.

When comparing these four approaches ([5], [6], [23], [24]), the
dynamic  task  graph  approach  seems  to  bring  opportunities  to
improve  resilience and  input  responsiveness in  games.  For
example,  the game might try starting computing the next game
state  in  advance  (if  possible)  to  address  these  properties.
Accomplishing  this  will  depend  on  the  current  workload  and
current  task  dependency  complexity.  The  dynamic  approach  is
more memory friendly than the static  approach as  the memory
required for the task graph is allocated dynamically, which is not
the case in  static  task graph approaches.  This  observation may
lead to better addressing adequate use of computational resources.

4.2 Heterogeneous processing view
In this view, the task organization distributes some tasks to CPUs
and some tasks to a GPU (as GPGPU). This section presents basic
task flow organizations using GPGPU in Section  4.2.1. In these
basic task flow organizations,  the tasks that run on the GPU are
pre-determined (“hard-coded”).  Section  4.2.2 presents task flow
organizations  that  implement  some  kind  of  task  distribution
among  processors  of  different  architectures.  In  these  task
organization flows, the same task may run either on a CPU or on a
GPU.  Section  4.2.3 presents  a  game  loop  architecture  that
implements resilience and adaptability.

4.2.1 Basic task flow organizations using GPGPU
Zamith  et  al.  [3] presented  a  game loop  model  that  integrated
GPGPU, named as “multi-thread uncoupled model with GPGPU”
(Figure 4). The GPU is used as an auxiliary math co-processor to
process part of physics simulations. The model has three threads:
one  for  input  acquisition  and  simulation,  one  for  rendering
(presentation), and one for GPGPU.  The multi-thread uncoupled
model  with GPGPU uses explicit  synchronization primitives  to
handle task dependencies. 

Figure 4. Multi-thread uncoupled model with GPGPU[3]

Joselli and Clua [25] proposed a task flow organization where
the  CPU  and  GPU  switch  roles  in  terms  of  main  processing
(Figure  5).  This  model  uses  an  uncoupled  time  flow structure
based  on  elapsed  time,  similar  to  the  basic  “multi-threaded
uncoupled model” [1].

The  GPU  is  responsible  for  processing  the  simulation  and
rendering stages. The simulation stage includes tasks such as AI,
physics processing, and game logic processing. The CPU is used
for gathering player input and running audio-related tasks. 

In this model, there is a dedicated thread to process AI and a
dedicated  thread  to  process  physics  simulations.  The
implementation does not use explicit  synchronization primitives
due to the nature of GPGPU processing as a SIMD architecture.
The  GPU signals  that  a  task  is  finishes  only  after  all  parallel
execution streams are finished. In other words, the task flow does
not proceed to the next task until all parallel streams of a tasks
finishes.

These  two  models  are  based  on  the  basic  “multi-threaded
uncoupled  model”  [1] and  therefore  present  the  same  issues
regarding  game  loop  properties  (Section  3.4).  The  model  by
Joselli  and  Clua  [25] uses  threads  dedicated  to  some  specific
tasks. A straightforward improvement would be determining fixed
sample rates for these tasks, which would define an explicit game
timeline (Section 3.1.1).
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Figure 5. Task flow organization by Joselli and Clua [25]

4.2.2 Tasks flow organizations with task distribution
This section presents task flow organizations where the game loop
is  able  to  map  task  execution  to  processors  of  different
architectures. This process may happen statically or dynamically.
In both alternatives, the developer needs to provide different task
implementations for each type of processor, since each hardware
requires its own executable code

In  terms  of  game  simulation,  the  task  distribution  approach
brings  flexibility  to  run  some game tasks.  For  example,  if  the
game discovers  at  run time that  it  is  possible  to  process  some
physics tasks on the GPU, it may take advantage of this resource
to process these tasks faster, and use the extra time to process or to
improve other game tasks. This may help in addressing game loop
properties such as adaptability, resilience, and responsiveness, as
well  as  lowering overall  task processing time in order  to  meet
real-time requirements.

An early effort to distribute task flows between CPU and GPU
took  form as  the  “adaptive  game  loop  architecture”  [26].  The
“adaptive game loop architecture” uses an uncoupled time flow
structure based on elapsed time and uses two parallel task flows
that run on separate threads. The first task flow runs tasks related
to input gathering, simulation, and rendering, which run only on
the CPU. The second task flow contains simulation tasks that may
run  on  CPU  and  the  GPU.  This  architecture  provides  a  task
manager that is responsible for mapping tasks to both processors.
The mapping policy is defined by a heuristic that the developer
determines through a script file, which makes it possible to use
different mapping strategies. Joselli et al.  [26] provided a simple
heuristics that compares the task running time on both processors
and chooses the fastest one to run the task for the next time steps.

Joselli  et  al.  [27] elaborated  on  the  previous  approach  by
creating  a  physics  engine  for  games  that  provides  alternative
distribution schemes and runs the physics stage at a fixed sample
rate (25ms) on its own thread.  In this approach,  the simulation
stage  comprises  only  the  physics  simulation  task.  Input  and
rendering tasks runs as fast as possible on a separate thread. This
approach  does  not  use  explicit  synchronization  primitives  to
coordinate tasks. Instead, the implementation provides two buffers
for the simulation to fill with data for rendering. The simulation
uses one buffer at  a time to output  data  for a  given time step.
While the simulation task is computing data, the rendering task
presents data contained in the buffer that the simulation task is not

using in that time step. The rendering task will keep on using the
same buffer until the physics tasks is over, when they switch the
buffers for the next frame. The approach by Joselli et al.  [27] do
not provide means to handle delays if the physics simulation takes
too long, which impairs the resilience property.

AlBahnassi et al. [28] presented a more sophisticated approach
to handle heterogeneous processors by using a scheduler to map
tasks to different processors to minimize overall execution time.
Their  scheduler  is  based  on  these  concepts:  homogeneous
processor  groups,  work  stealing  algorithm,  and  an  arbiter.  The
homogeneous  processor  groups  gather  processors  that  have
similar characteristics (as the cores of a CPU). The work stealing
is  the  policy  they  have  chosen  to  distribute  tasks  among
processors of the same homogeneous group. Finally,  the arbiter
decides which homogeneous group is best suitable to process a
given task, considering workload, execution times, data locality,
and data transfer rates. The tasks are organized as dynamic task
graphs (Section 4.1). 

Similar to other approaches for heterogeneous processors, the
developer needs to specify which processors are able to run the
task and needs to provide alternative implementation for all the
target  processors.  AlBahnassi  et  al.  [28] provide  a  set  of
experiments that use different hardware combinations, including
single-threaded,  CPU-only,  and  CPU+GPGPU.  Although  the
experimental results are interesting, it is not possible to determine
the simulation model used in these tests. 

4.2.3 Task flow organizations based on resilience
Zamith et al.  [29] presented a game loop architecture that adjusts
task  execution  according  to  hardware  characteristics  (CPU and
GPU), game task characteristics, and current workload. 

This  model  implements  resilience  by  applying  a  tardiness
policy. Zamith et al.  [29] define this policy as “a technique used
as a metric to calculate task delays or earliness given a target
time step,  helping applications to satisfy real-time requirements” .
This metric  is calculated as  t_e/t_p,  where  t_e is  the measured
total  task  processing  time  and  t_p is  the  predefined  target
processing  time  of  all  tasks  (i.e.  a  deadline for  the  entire
simulation step). This tardiness metric ranges from 0 to ∞. If this
calculated metric is less than 1,  it means that all tasks finished
before the deadline and there is extra processing time available. In
this situation the game may improve task quality to harness this
extra time. On the other hand, if this metric is greater than 1, it
means that task processing time was longer than the deadline, and
therefore tasks need to reduce their processing requirements. In
both situations, the architecture applies an adaptability approach.

To implement the adaptability, the architecture classifies game
tasks into two types: divisible and indivisible tasks. The former
represents that can be broken down in sub-tasks to be executed in
consecutive time steps.  The latter represents tasks that must be
computed  entirely  on  a  single  time  step  (due  to  hardware
restrictions, they cannot be broken down in smaller parts).

5 CONCLUSIONS

The game loop is a term we use to describe the dynamics related
to  task  execution  and  task  flow  organization  in  games.  We
conducted an investigation to understand the inner workings of
game simulations through a literature review on game loops, game
simulations,  and our  own experience on game development.  In
this  investigation,  we  identified  properties  related  the  main
characteristics of game loops, considering that game simulations
must  be  discrete,  real-time,  and  interactive.  As  discrete
simulations,  a  game  loop  is  concerned  with  well-defined
simulation model,  consistency,  and  adaptability.  As  real-time
simulations, a game loop is concerned with uniformity, resilience,
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adequate  use  of computational resources,  and  energy
management. As interactive simulations, a game loop is concerned
with responsiveness and registration speed.  

Game development traditionally has been characterized by the
quest for ultimate computational performance. This quest started a
long time ago because earlier games ran on hardware with very
limited capabilities (when compared to current hardware) where
rendering was a very costly operation, placing a huge bottleneck
in game development. This issue has led to the first (and simplest)
game loops that use implicit time flow structures. This quest still
exists nowadays, but blindly trying to fulfill it does not help in
improving games. For example, when achieving the best possible
performance, a game might apply adaptability policies to improve
simulation  quality  when  there  is  extra  time  available  (e.g.
increasing  complexity  of  AI  behavior  physics  modeling).
Otherwise,  if  game processing is too heavy,  a game may apply
adaptability to reduce simulation complexity, which would benefit
responsiveness and  registration speed. These measures may help
in implementing resilience policies, which would help the game to
tolerate task delays. When a game simply runs as fast as possible,
as a result of aiming at the best possible performance, the game
may  waste  computational  resources and  increase  energy
consumption.  Also  if  the  game  does  not  have  a  well-defined
simulation model, it probably will not run in real-time. We also
notice  that  there  are  few  publications  that  address  energy
management  in  games.  This  research  field  remains  open  and
under-explored.

The  first  multi-threaded  game  loops  applied  straightforward
parallelism concepts such as functional and data parallelism by
dedicating threads to process specific types of tasks in the first
case or entire sets of related data in the second case. However,
during our investigation we noticed a trend consisting of new task
flow  organizations  that  consider  dynamic  task  graphs  (built
according to task dependencies) and task schedulers. These task
schedulers take advantage of multi-core CPUs in order to have
tasks  running  in  parallel.  A related  trend  is  running  games  in
heterogeneous environments consisting of multi-core  CPUs and
GPUs for general-purpose processing (GPGPU).

With  parallel  hardware  (in  form  of  multi-core  CPUS  and
GPGPU) becoming increasingly common, we believe that in the
near  future  a  greater  interaction  among  the  areas  of  parallel
computing and game development will emerge. Considering the
new scenario,  future  works  on game loops may explore  topics
such as:

▪ New game loop models based on parallelism;

▪ Task load balancing techniques;

▪ Simulations  models  with  fixed  sample  rate  that  consider
multiple processors;

▪ Simulation models focusing on heterogeneous environments;

▪ Task flow implementations that implement policies to tolerate
task delays;

▪ Methods  to  allow  processing  more  than  one  frame
simultaneously,  when  it  is  possible.  For  example,  a  task
organization  might  start  processing  in  advance  some tasks
belong to the next frame if there is free time available, which
could  help  in  tolerating  task  delays  and  implementing
resilience policies;

▪ Adaptability policies.
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