
Game loop model properties and characteristics on multi-core CPU and
GPU games

*Marcelo Zamith1 Luis Valente2 Bruno Feijo3 Esteban Clua2

Universidade Federal Rural do Rio de Janeiro, Computer Science Department, Multidisciplinary Institute, Brazil1

Universidade Federal Fluminense, Institute of Computing, Brazil2

Pontifícia Universidade Católica do Rio de Janeiro, Department of Informatics,VisionLab/PUC-Rio, Brazil3

ABSTRACT

From a software architecture point of view, digital games are
interactive systems that create virtual environments with the
illusion that everything is happening at the same time (i.e. in real-
time). This illusion is carried out through “game loop models” (or
architectures). Although this illusion is a key feature in these
applications, the patterns and requirements that lead to its
implementation have been taken for granted in the literature. Even
though there are works about specific game loop model
architectures, the literature lacks solid foundations about
underlying game loop principles and requirements. This paper
contributes to this area by presenting and classifying these issues,
considering homogeneous and heterogeneous hardware processing
requirements (e.g. multi-core CPUs and GPUs) that are available
for games and interactive applications

Keywords: game architectures, game loop, game task flow

1 INTRODUCTION

Digital games create interactive and dynamic virtual environments
where events seem to happen according to our everyday
perception of time – for example, continuous motion and instant
input feedback. This effect is an illusion (i.e. the game illusion)
that the game application creates by presenting media (e.g.
images, animations, audio, haptics feedback) in continuous cycles
(i.e. frames) at a high frequency. This presentation process follows
several other tasks (e.g. physics simulation, AI, game logic) that a
game processes to compute the current “game state” – a static
snapshot of data and variables that describes the game at a given
moment. The game illusion is a key component of the experience
that a game provides, which also involves aspects such as fun,
immersion, learning, flow, engagement, and interactivity.

From a software architecture point of view, the model that
computes the current game state can be regarded as a “game loop”
– a structure that defines the ordering of task computations.
Although game loops are of central importance in game
development, there is scarce literature about game loop
fundamentals and components (e.g. [1]–[3]). There are few
academic works that describe specific game loop architectures,
but usually this subject is taken for granted in game development.
In this paper, we propose a set of concepts describing game loop
fundamentals, which we derived from studying several works
related to this subject. We also present a concurrency view about
game loop models found in the literature considering the
framework we describe in this paper.

In Section 2 we discuss game loop fundamentals considering
discrete simulations, game tasks, real-time concepts, and
interactivity. In Section 3 we present general game loop
properties. Section 4 presents task flow organizations (i.e. game
loop models) considering concurrency aspects – although game

loops have been around for a long time, the availability of multi-
core CPUs and GPUs for general processing require attention to
parallel programming issues in games. Finally, Section 5 presents
conclusions and future works.

2 GAME LOOP FUNDAMENTALS

This section explores the main concepts related to game loops:
discrete simulations, game tasks, time flow structures, and
interactivity.

2.1 Discrete simulations
The computer game simulation usually advances in time using
discrete a time-stepped mechanism, although there are event-
based approaches [2], which are not the focus of this paper.

In discrete simulations, the game application creates a virtual
environment by computing discrete game states sequentially
across time. In this context, there are three key concepts related to
time: wall-clock time, simulation time, and real-time. Wall-clock
time corresponds to the passage of time as perceived by human
uses, being the time we see on everyday clocks. Simulation time
is the time represented in a simulation (or game) timeline. In
simulations based on time steps, the timeline corresponds to a
collection of contiguous discrete time spots. Figure 1 illustrates a
game timeline based on time steps, where all time steps have the
same size. In practice, a game timeline may also have time steps
of different sizes, according to the time structure applied. Section
2.3 explores these issues.

Figure 1: A sample timeline as a series of sequential time steps

The simulation may advance time in the simulation timeline
according to various paces. The simulation runs in real-time when
time advances occur according to wall-clock time pace.

In time-step based simulations, the game calculates a game state
(or frame) for the current time step and advances the simulation to
the next time step to compute the next game state. We define as
simulation sample rate as the number of time steps that exist in a
second of simulation. We define as presentation sample rate the
number of game states that the game presents (as images) per
second. We use the term “FPS” (frames per second) as the unit to
express these sample rates. There are game loop approaches where
the simulation sample rate and the presentation sample rate are the
same, while there are approaches where these values are different.
Section 2.3 discusses time flow structures that lead to these
approaches.

1email: mzamith@ufrrj.br

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 100

The simulation that a game creates does not need to be highly
accurate (e.g. physics simulations). The simulated processes need
to have a sample rate that produces “good enough” results –
results that represent sufficient fidelity (Section 2.2.1). If the
simulation runs a process more frequently than required, the
simulated process will be oversampled and the game will waste
computational resources. In contrast, “analytical simulation” is
another simulation structure that has different goals from game
based simulations. For example, analytical simulations usually are
concerned with modeling highly accurate processes to produce
data for quantitative analysis [4]. So, analytical simulations need
to be very accurate and usually advance time as fast as possible,
not including human interaction [4]. In games, human interaction
is an intrinsic component and the simulation runs in real-time.

2.2 Game tasks
Digital games manage a variety of heterogeneous subsystems such
as rendering, input acquisition, audio playing, artificial
intelligence, network management, character animation, graphics
user interface management, resource management (e.g. I/O
systems and media loading), scripting, and physics simulations.
We define as a “game task” any processing or computation that a
game must perform in these subsystems. These tasks can be
grouped into three general categories: input data acquisition, game
state computing (i.e. simulation), and presentation. Figure 2
illustrates the most basic game loop model, which runs tasks
sequentially in a loop. This model is referred in this survey as the
“simple coupled model” [1].

Figure 2. Simple coupled model

The input data acquisition category corresponds to tasks that
receive input from various devices. There are a multitude of input
devices that a game should be able to handle, such as keyboards,
joysticks, voice input, location sensors (e.g. GPS), motion sensors
(e.g. Kinect), orientation sensors (e.g. accelerometer, gyroscope),
and touch screens.

The simulation category corresponds to tasks that compute the
current game state, by computing the game logic (i.e. game rules)
and computing several processes such as physics simulations and
artificial intelligence behavior.

The presentation category corresponds to tasks that present the
current game state to the players though several outputs, such as
images, audio, video, animation, and haptics feedback.

In a running simulation, the set of active game tasks is dynamic:
player interaction with the game world and the enforcement of
game rules generate events in intermittent fashion. For example, a
player character may collide with an object, generating an
explosion event. The explosion event may generate particles,
which require a particle system processing task and audio playing
to provide feedback to the player about the explosion. The game
runs these tasks, and when they are finished, the game removes
them from the set of active tasks.

2.2.1 Task properties
We identify and define three properties for game tasks: nature,
sample rate, and deadline.

The nature of a task relates to the kind of computation that the
task needs to perform. For example, game tasks may perform
functional calculations, state-based calculations, and data retrieval
[5]. Functional calculations transform or generate data (e.g.
solving mathematics calculations, computing physics simulations,
and manipulating data structures). State-based calculations refer to
operations that need to maintain and manipulate states across time
(e.g. game logic state, animations, and AI state machines). Data
retrieval tasks include loading media resources that are necessary
for game state presentation.

The sample rate property refers to the number of times a task is
processed per time unit (e.g. usually seconds). This property is
usually expressed in FPS, although “frame” is a concept originally
used to refer to the resulting image that a game displays on the
screen at the end of game loop processing. Game tasks have a
minimal sample rate that is required for a task to produce results
of sufficient fidelity (“good enough results”). Different tasks have
different sample rate requirements. For example, a hypothetical
physics simulation sampled 30 times per second may yield data
good enough to produce a smooth animation. If this sample rate is
higher than 30 FPS, the physics simulation will be more accurate
but the player may not be able to notice any differences when
compared to less accurate version. In this case, the physics
simulation will be oversampled. On the other hand, if the sample
rate is not large enough to provide results of sufficient fidelity, the
simulated process will be undersampled. Determining the ideal
(or optimal) sample rate for game tasks is a central problem in
game development – different tasks have different sample rate
requirements and hardware configurations vary.

The deadline property is directly related to the sample rate
property, being the time required for a task to finish processing in
the current time step: if a task sample rate is 30 FPS, the task must
be finished in 33ms. In practice, the actual deadline that a task has
will be much lower, subject to the workload and the rendering
target sample rate. Usually, the target sample rate for rendering is
60 FPS (i.e. an approximate deadline of 16ms).

2.2.2 Task dependencies
Task dependency means that a task depends on some external data
or event before running. El Rhalibi et al. [6] identified some
categories of task dependencies such as flow dependencies,
antidependencies, output dependencies, I/O dependencies, and
control dependencies. Task dependencies in games generally takes
form as data dependencies, which means that a task requires data
produced by another task in order to proceed. In other words, a
task “A” must wait for some other tasks (e.g. “B” and “C”) to
finish before receiving the required data. Otherwise, task “A” will
operate with incorrect data leading to incorrect and inconsistent
results. Some examples of task dependencies in games are:

1. The game is unable to evaluate game rules before receiving
player input;

2. Non-player characters are unable to move before AI
processing is finished;

3. Rendering requires an entirely computed game state.

To ensure simulation consistency, the simulation must consider
all task dependencies and ensure to run tasks in the correct order.
In Figure 2 (the “simple coupled model”), the arrows express task
dependencies. The game loop starts with reading player input,
feeding this information to the simulation stage, which computes
the current game state. Next, the rendering presents the game state
to the player, and the loop is restarted.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 101

2.2.3 Game tasks and parallelism
In game development, parallel computing usually explore
functional parallelism and/or data parallelism. In functional (or
task) parallelism there are several concurrent threads dedicated to
process a specific task or subsystem (such as AI and rendering), or
a group of tasks that have high interdependencies. The threads
may run asynchronously and the rendering task presents the latest
game state that was completely computed. In data parallelism, the
system distributes data in separate parallel nodes, where each
node runs the same tasks or sequence of tasks. Data parallelism is
useful to process data that has little or no interdependencies, as
these would require synchronization points that could diminish
performance gains.

The performance gains of paralleling tasks can be estimated
using the Amdhal’s law [7] and Gustafson’s law [8]. These laws
state that performance gains due to parallelizing tasks are
proportional to the number of parallel processors and limited by
the number of serial parts. Amdahl’s law considers that the entire
problem has fixed size and Gustafson’s law considers that the
amount of parallel work varies linearly according to the number of
parallel processors.

Game tasks usually have several interdependencies that must be
addressed to ensure consistency. In parallel programming
environments this issue requires task synchronization, which may
be applied through semaphores, mutexes, and barriers.

An important issue related to using parallel programming in
games regards the integration with third-party libraries and tools,
because they may have been developed without considering
parallel programming and multi-thread environments. These tools
might not be thread-safe and may apply internal multi-thread
approaches that cannot be controlled or accessed by the game
developer.

Another important concept regarding parallelism is
heterogeneous processing, which means processing tasks in a
system composed of processors with different architectures.
Heterogeneous processing in games is becoming more common as
GPUs are being used for non-rendering tasks. GPUs have been
designed to solve problems that are modeled as stream-based
processes with massive mathematical calculations. The intense
GPU computing capability enables games to process tasks such as
linear algebra, artificial intelligence, and physics simulations.

When designing game tasks to run in heterogeneous
environments, it is important to consider the strengths and
weakness of each kind of processor. For example, multi-core
CPUs (MIMD architecture) can manage hundreds of threads in
different set of data. On the other hand, GPUs (SIMD
architecture) are able to manage thousands of threads, but these
threads operate on the same set of data. In this regard, data
locality is crucial for GPGPU performance due to the SIMD
architecture of GPUs [9]. Another issue in heterogeneous
environments is the cost related to communication among
processors that have different architectures. For example, in
GPGPU applications the GPUs are not able to process data while
CPUs are accessing the main RAM. Also, memory reading access
in GPUs is an operations that presents high latency in this type of
hardware [10].

2.3 Real-time and time flow structure
A game runs in real-time when the game simulation advances the
game timeline according to wall-clock time pace. A computer
game has real-time requirements because if the game fails to
advance the game simulation according to wall-clock time pace,
the user experience will be severely impaired, thus breaking the
“game illusion”. This failure can occur if (for example):

1. Being unable to process all tasks before the current time step
expires (i.e. the deadline);

2. Processing all tasks too fast and not waiting for the next time
step. For example, if a game uses 33ms as the time step size
and the all task processing takes 10ms to complete, the game
needs to wait for 23ms before executing the next time step.
Otherwise, the game runs faster than wall-clock time, as in a
movie played fast-forward.

Computer games may be considered as “soft-real time
applications”, which differs from a “hard real-time system”. The
latter has stricter time requirements because if these systems fail,
severe consequences may occur. Soft real-time systems may have
more tolerance to time delays and loss of wall-clock time pace.
For example, games may be able to recover from task delays and
keep the simulation running in real-time. However, if delays are
too high the game experience will be severely compromised.

Game development literature commonly regards that game
performance should stay in the 30-60 FPS range to keep the game
experience smooth, which includes the game presenting smooth
motion and responsive input. Game developers usually target a
minimum presentation sample rate of 30 FPS as a “safe starting
point” to avoid jerkiness, unresponsive input, general slowness,
and other undesired side-effects of low frame rates in games.
Another problem related to game frame rates is temporal aliasing.
Temporal aliasing appears as jittery and unnatural motion, which
occur when the simulation and/or presentation sample rates are
too low to represent fast moving objects adequately. Solutions to
handle temporal aliasing include applying motion blur techniques
to the resulting images [11] and fine-tuning simulation and
presentation frame rates.

Depending on the time flow structure that the game simulation
uses, we classify the simulation into two groups: coupled and
uncoupled simulations. Sections 2.3.1 and 2.3.2 discuss these two
groups.

2.3.1 Coupled time flow structures
In coupled simulations, the actual simulation sample rate is
variable and directly dependent on the presentation sample rate.
This means that the simulation time step size depends on the host
hardware and current workload, and thus may vary while the
game is running. Consequently, players will perceive the game as
running faster than wall-clock time in more powerful machines,
and slower than wall-clock time in less powerful machines, which
means lack of simulation uniformity. If more computational
resources are available these approaches are not able to improve
the quality of the game experience, which means lack of
adaptability. Consequently, this leads to wasting computational
resources and power, which are aspects that become crucially
important when the game runs on mobile devices equipped with
batteries that have limited autonomy. As a result, coupled
simulations may fail to satisfy real-time requirements in many
situations.

In this scenario, if game tasks start to take too long to complete,
the FPS rate will drop with very noticeable undesired effects .
This may lead to an effect known as “frame rate spike” [12],
which happens when the game frame rate varies abruptly too fast,
undermining the game experience. Players may perceive this
performance degradation as unresponsive input and sluggish
animations, for example.

Another important issue in these approaches is the lack of
simulation control, as explicit simulation time does not exist. This
means that the simulation is not repeatable – it is not possible to
reproduce the simulation given the same input data (i.e. simulation
becomes non-deterministic). As all tasks have the same sample
rate, this situation possibly leads to oversampled tasks. Lack of

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 102

simulation control hinders the implementation of certain game
features (as gameplay replays and networking synchronization)
and makes game development harder (e.g. poor debugging
capabilities)

These problems arise mainly because the simulation is coupled
with the frame rate – the frequency of running the simulation is
regulated by the frame rate. In the past, using these approaches
were common because hardware was more uniform (e.g. games
for video game consoles) and hardware had much limited
capacities. Old arcade game machines are a nice example of such
kind of hardware, as frequently the game machines were built
specifically for a particular game.

2.3.2 Uncoupled time flow structures
Uncoupled simulations aim at satisfying real-time requirements by
having the simulation and presentation running with different (and
independent) sample rates. Common approaches are: 1) scale
calculations using elapsed time to have the simulation run in real-
time; and 2). Defining a fixed sample rate for the simulation,
which gets rid of all elapsed time scaling.

In the first approach, the simulation measures the time elapsed
of a complete processing cycle (i.e. input-simulation-presentation)
and feeds this value to the next game state computation, exploiting
frame coherency – the assumption that consecutive game states
are very similar. For example, a game character position (p) would
be updated as p = p + velocity*dt, where dt is the time elapsed
measured in the previous processing cycle. The simulation runs as
fast as possible but the actual time step size depends on how fast
the game loop runs – the faster the game loop runs, the smaller the
time step size is. This affects directly the simulation sample rate.
The simulation time step size is variable and depends on the
current host hardware and current workload conditions.

 In faster machines, the simulation time step will be smaller and
the simulation sample rate will be higher. This measure makes it
possible to bring uniformity to the simulation, effectively
uncoupling the simulation and game loop sample rates. This also
may lead to more accurate and smooth task results, which is a
simple form of adaptability. In machines with more limited
resources, the simulation and presentation will be less smooth but
it will have a chance to keep real-time requirements. However,
this approach may lead to oversampled tasks. In this case, these
extra computations waste computational resources and power.
When considering mobile game platforms, this issue may bring
undesired power consumption. Although the simulation has
uniformity, it remains as being non-repeatable and non-
deterministic. Approaches based on elapsed time also lack
simulation control.

Gregory et al. [12] reminds that when using the previous
elapsed time in calculations for the next game state, these
approaches implicitly assume that the time it will take to compute
the next game state will be roughly the same as the previous one.
If this is not the case, the game will also experience the “frame
rate spike” [12]. Gregory et al. [12] mention that using a “running
average” (the average elapsed time of a number of past frames)
instead of just the previous elapsed time may lead to softening the
frame rate spike effect.

The second approach to uncoupled time flow structures uses
fixed sample rate loops, which creates an explicit timeline – the
developer determines a target time step value and designs tasks to
use this value. An explicit timeline enables simulation control,
which makes it possible to pause, resume or run the simulation
irrespective of real-time if desired. In this case, a game developer
may run the game faster or slower than real-time for debugging
purposes.

For example, a developer may define a target sample rate of 30
FPS and calculate the new position (p) of a game character as p =
p + velocity, where velocity (the increment) is determined a priori
based on the target sample rate. This approach turns the simulation
uniform, repeatable, and deterministic. In fact, some tasks may
work better when the sample rate is fixed, such as numerical
integrators used in physics simulations [12].

In these approaches, the game loop runs all tasks and needs to
wait before advancing the simulation to the next time step. For
example, if the simulation sample rate is 30 FPS (i.e. time step is
33ms) and all task processing takes 10ms to complete, the game
loop needs to wait for 23ms before advancing the simulation to
the next time step. The extra available time make it possible to
implement simulation adaptability, by using available extra time
to improve simulation complexity and presentation quality. In
these examples, all tasks have the same sample rate. In practice,
the developer may determine different fixed sample rates for each
type of task.

The simulation sample rate should be chosen carefully in order
to avoid aliasing artifacts in the simulation. For example, a
physics simulation with inadequate sample rates (e.g. large time
step size) may appear to the player as being “jittery”, “jumpy” or
presenting unnatural behavior.

2.4 Interactivity
Interactivity is inherent to digital games, but it is a difficult term
to define due to its subjectivity. Kiousis [13] conducted a thorough
survey on several approaches to interactivity, leading to an
operative definition of this concept based on three groups of
concepts: technological structure of the media used (speed, range,
timing flexibility, and sensory complexity), communication
settings characteristics (third-order dependency and social
presence), and individual’s perception (proximity, perceived
speed, sensory activation, and telepresence).

Kiousis’ definition [13] provides hints about important concepts
to consider in addressing interactive characteristic of a game loop.
As the underlying structure of game simulations, we understand
that the game loop is related to the speed and perceived speed
concepts. The reason is that the game loop may affect directly
these properties because it is the underlying structure of a game
simulation. We understand that the other properties are dependent
on the particular application that is built upon a game loop. The
speed concept (technological structure group) refers to the
(objective) rate which information enters the interactive system.
For example, a mouse-based input system might be able to detect
at most 15 clicks per second. The perceived speed concept
(individual’s perception group) refers to how a user perceives
response times from the mediated environment.

3 GAME LOOP PROPERTIES

This section presents important properties related to simulation,
real-time, and interactivity (Section 2). An adequate game loop
model should address these properties, summarized in Table 1.

3.1 Simulation
This section presents properties that are directly related to game
simulations.

3.1.1 Well-defined simulation model
A well-defined simulation model means that: 1) the simulation
defines target sample rates for all tasks.; and 2) the simulation
defines an explicit timeline, making the simulation repeatable and
deterministic.

Game loops that do not address this property either do not
define simulation time or define it implicitly. (e.g. coupled time

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 103

flow structures and uncoupled time flow structures based on
elapsed time). In both cases, the simulation runs as fast as possible
and becomes non-deterministic.

Simulation Real-time Interactivity

Well-defined
simulation model

Uniformity Responsiveness

Consistency Resilience Registration speed

Adaptability Adequate use of
physical resources

Energy management

Table 1. Game loop properties

3.1.2 Consistency
Consistency in simulations is a key factor to keep players
immersed in a game environment [14], which contributes to
maintain the game illusion. We consider the game simulation as
consistent if:

1. All game tasks are processed considering the ordering
defined by task dependencies; and

2. The simulation does not produce artifacts that players may
perceive as incorrect or inconsistent with the virtual world.
This applies especially for physics simulations.

Coupled task flow organizations are able to produce consistent
simulations as the task flow ordering is established by their
structure (a serial pipeline). This is also the case of uncoupled task
flow organizations that are single-threaded. However, in parallel
game loops (Section 4) some tasks may finish before than others,
and thus these task organizations require synchronization policies
to ensure that task dependencies are addressed.

Another example involving consistency relates to how some
tasks operate. For example, physics simulations in game
environments may produce errors or inconsistent results if they
are not modeled adequately. For example, players may perceive
game objects as penetrating each other during game play. This
might happen due to several reasons, such as inadequate time
structure (e.g. inadequate step size, variable time step sizes, and
aliasing artifacts) and problems in the collision detection
algorithm.

3.1.3 Adaptability
This property refers to the capacity of a game loop to change
simulation complexity and presentation quality according to the
host hardware. For example, a game may be designed to provide a
default game experience quality. While running, the game may
discover that the host hardware exceeds the minimum system
requirements to run the game. In this case, the game may improve
simulation complexity and presentation quality by taking
advantage of the extra computational resources, which may
improve the game experience.

Adaptability also means the capacity of a game loop to change
simulation complexity and presentation quality dynamically
according to task load, in order to keep the game running in real-
time. For example, if the system experiences momentarily high
task load the game might reduce simulation complexity to keep
the simulation running in real-time. This is different from
adjusting presentation settings before the runs through
configuration interfaces.

3.2 Real-time
This section presents properties that directly affect the real-time
property of a game simulation.

3.2.1 Uniformity
This property refers to the capacity of a game to keep the
simulation running in real-time regardless of different hardware
configurations. For example, when two machines of different
hardware configurations run the game side by side, the simulation
appears to be in the same pace (real-time) in both of them. When
this property is not addressed, the game may run faster than wall-
clock time in more powerful machines and slower than wall-clock
time in machines with limited capacity. In both situations, the
game does not run in real-time. Game loop models that do not
address uniformity do not have a well-defined simulation model
(Section 3.1.1).

The coupling between the simulation and the frame rate results
in coupled game loop models lacking simulation uniformity,
which means that the simulation probably will not run in real-
time, unless the simulation is carefully designed for a specific
hardware. This was the case of games designed for video-game
consoles, which had fixed hardware configurations.

3.2.2 Resilience
This property refers to the capacity of a game to maintain the
simulation running in real-time when there are task delays, which
may result in performance degradation. Resilience requires
detecting problematic issues (e.g. performance degradation)
concerning real-time pace and applying adaptability (Section
3.1.3) approaches. Players may perceive performance degradation
as glitches in presentation, unresponsive input, animations lacking
smoothness, and general slowness, among other effects. A game
loop can be considered resilient if it addresses these issues before
the player is able to perceive them or if it is able to recover
quickly from performance degradation.

3.2.3 Adequate use of computational resources
This property relates to the fair use of computational resources.
For example, an AI character may require 10 time steps per
second to produce adequate results. Processing it at a higher
sample rate will not improve its behavior. In this situation, the
extra processing wastes computing resources. Another example
are animations calculated and presented more than 60 times per
second, as players probably will not perceive noticeable
improvements. The game should adequate task processing up to a
threshold that represents meaningful (and perceivable) results for
players. Otherwise, the extra computations waste computational
resources and energy.

3.2.4 Energy management
A consequence of inadequate use of computational resources is
poor energy management. Research on energy management in
games is under-explored – some works that explore this issue are
[15]–[20]. Energy management considerations are even more
important for games that run on mobile devices (e.g.
smartphones), which operate on batteries that have limited
autonomy.

3.3 Interactivity
When the simulation has low sample rate, players may experience
severe input delay, which affect responsiveness and registration
speed. In practice, it is hard to foresee if a game loop is able to
address these properties because interactivity depends on factors
that are application-dependent, such as the size of the virtual
environment and current task work load. However, the game loop

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 104

may apply measures to minimize issues that might impact
interactivity, such as employing adaptability, resilience, and
defining an adequate simulation model.

3.3.1 Responsiveness
A game loop is responsive if it provides feedback or responses to
players fast enough so that players do not perceive lags or delays
regarding input. The notion of responsiveness should be
considered from the player point of view, not being an objective
measure.

3.3.2 Registration speed
The registration speed property is equivalent to the notion of
“speed” that Section 2.4 discusses. Steuer [21] defines this
concept as “the rate at which input can be assimilated into the
mediated environment”, claiming that this property is an essential
factor that contributes to interactivity in virtual environments.

Chen and Thropp [22] cite several factors that contribute to lags
in virtual environments when considering input, Some of these
factors can be correlated to the registration speed property, such
as: 1) input device sampling rate, 2) the time it takes to transfer
the input information from a device to the computer, and 3) the
time required to process raw device data before delivering the data
to the application – for example, filtering sensor data (e.g.
accelerometers, Kinect).

3.4 Game loop properties and time flow structures
As coupled task flow organizations define the time flow structure
implicitly, they do not have a well-defined simulation model.
Coupled task flow organizations are able to produce consistent
simulations as the ordering of game task flow is established by
their structure, which takes form as a task pipeline. In these
organizations, the simulation simply runs as fast as possible, so
they do not address adaptability.

The coupling between the simulation and the frame rate results
in lacking simulation uniformity, which means that the simulation
probably will not run in real-time, unless the simulation is
carefully designed for a specific hardware. This was the case of
games designed for video-game consoles, which had fixed
hardware configurations. Running the simulation as fast as
possible makes these models waste computational resources and
power, failing to address these properties: Adequate use of
computational resources and energy management. Coupled
organizations are not resilient and are highly susceptible to frame
rate variations. Valente et al. [1] provide several examples of basic
coupled models.

Considering uncoupled task flow organizations (single-threaded
or multi-threaded), there are many variations that differ mainly by
implementation and parallelization techniques. Regarding game
loop properties related to real-time, uncoupled task flow
organizations generally address the uniformity property. However,
not all uncoupled task flow organizations address these properties:
adequate use of computational resources, energy management,
and resilience. Considering game loop properties related to
simulation, some uncoupled task flow organizations have a well-
defined simulation model. For example, there are task flow
organizations that use a time flow structure based on a fixed
sample rate loop and there are task flow organizations that use an
event-based timeline. On the other hand, there are uncoupled task
flow organizations that address this property partially, such as the
ones that use time flow structures based on elapsed time.

Valente et al. [1] presents several uncoupled models based on
single-threaded approaches (“single-threaded uncoupled model”,
“fixed-frequency uncoupled model”) and multi-threaded
approaches (“multi-threaded uncoupled model”, “asynchronous

functional parallel model”, “synchronous function parallel
model”). This latter group represents simple approaches to
introduce concurrency in game loop models. Figure 3 illustrates
the “fixed-frequency uncoupled model” that contains a simulation
state that runs at fixed-frequency.

Figure 3. Fixed-frequency uncoupled model [1]

4 TASK FLOW ORGANIZATION: A CONCURRENCY VIEW

A task flow organization (i.e. game loop model) arranges game
tasks as a graph or closed loop, which the simulation traverses
continually to run all tasks. According to the time flow structure
(Section 2.3), these task flow organizations may coupled
(essentially single-threaded) or uncoupled (single-threaded or
multi-threaded). Task flow organizations based on single-threaded
approaches have been the norm in game development for many
years. This situation has changed as currently multi-core CPUs are
widespread in a variety of game-capable devices, such as PCs,
dedicated video-game consoles, and mobile devices. Also using
GPUs for non-rendering tasks has become commonplace.
Hence, this section explores task flow organizations based on
heterogeneous and homogeneous processing, using a concurrency
view The homogeneous processing group corresponds to models
that implement concurrency using multi-threaded approaches in
systems where all processing hardware are identical (i.e., they
have the same architecture). An example is a system where all
game processing occurs in a single multi-core CPU. The
heterogeneous processing group corresponds to task flow
organizations where the game runs on heterogeneous hardware.
For example, in these approaches some tasks may run in a multi-
core CPU, while other tasks may run on a GPU (as GPGPU).

4.1 Homogeneous processing view
The task organizations in this section describe concurrency in
multi-core CPUs as cyclic task-dependency graphs. Each node in
the graph represents a computational task and the graph edges
represent task dependencies (flow dependencies or data
dependencies). In these approaches, there are dedicated worker
threads that run tasks in their own loop. These organizations have
an entity known as the “task manager” that is responsible for
distributing tasks to these worker threads. The worker threads may
run any kind of game task and may be assigned to any CPU core.
It seems that all task organizations approaches that we present in
this section use uncoupled time flow structures, but this is not
clear because the main focus in these research works is discussing
how to perform concurrent task management. However, using a
task scheduler may help in addressing adaptability, as the
scheduler may be applied to improve scalability and task
adaptation, as well as load balancing. Also, these approaches
emphasize the quest for trying to achieve the best possible
performance and do not provide further details on the game
simulation model.

El Rhalibi et al. [6] presented an earlier framework to model
games as cyclic task-dependency graphs, using a scheduler to run

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 105

game tasks in multiprocessor architectures. The model by El
Rhalibi et al. [6] uses three concurrent threads, where each thread
organizes simulation and rendering tasks according to task
dependencies. El Rhalibi et al. [6] argue that their model scales
well because it is able to allocate as many processing cores as they
are available. Performance is limited by the amount of data
processing that can run in parallel. An important issue is how to
synchronize communication of objects running in different
threads. El Rhalibi et al. state that the biggest drawback of this
model is the need to have components designed with data
parallelism in mind.

Tulip et al. [23] presents a related approach based on an acyclic
tree service by a thread pool. The tasks that need to run in the
game are broken down in the tree, where each tree node represents
a single task. Each node in the tree has a number that represents
its scheduling order. Some nodes may have the same number,
which means that these nodes may be processed in parallel.
During runtime, the game loop traverses the tree to extract tasks
that are ready to run, placing them on a queue serviced by a thread
pool. A task is not allowed to run until all tasks that have lower
ordering (in the same parent node) are finished. It seems that the
task tree is built statically – before the game loop runs.

Best et al. [24] propose Cascade, which is a framework for
parallel game programming. The central concepts in Cascade are
tasks, instances, task graph, and the task manager. The task
computations are encapsulated in objects. The developer is
responsible for instantiating these objects and specifying tasks
dependencies using the Cascade API, which happens before the
game application is run. This measure creates the task graph,
statically.

AlBahnassi et al. [5] elaborate the idea of task graphs by
proposing a solution that creates the task graph dynamically, as
the Sayl design pattern. The Sayl design pattern is based on three
main concepts (tasks, task dependencies, and scheduling) and has
two main parts: a front-end and a back-end. Task and task
dependencies comprise the front end, while task scheduling is part
of the back end. The front end follows a pattern where the
developer models task computations through method calling with
parameters. The developer uses the parameters to model task
(data) dependencies. The parameters can be evaluated in parallel
(by several threads), and when all parameters are ready, the task is
considered as ready for scheduling because the data dependencies
have been resolved. The back-end has a task scheduler that
maintains a task queue and maps tasks to the various CPU cores
for execution. In Sayil, the task graph is built dynamically through
the evaluation of parameters and dispatching tasks.

AlBahnassi et al. [5] state that their dynamic task graph
approach is able to run tasks belonging to several frames in
parallel. In other words, the approach defined by Sayil makes it
possible to start computing the next game state before the current
game state is finished, which is not possible in approaches based
in static graphs such as the ones by [24], [23], and [6]. The task
dependencies are enforced by the Sayil design.

When comparing these four approaches ([5], [6], [23], [24]), the
dynamic task graph approach seems to bring opportunities to
improve resilience and input responsiveness in games. For
example, the game might try starting computing the next game
state in advance (if possible) to address these properties.
Accomplishing this will depend on the current workload and
current task dependency complexity. The dynamic approach is
more memory friendly than the static approach as the memory
required for the task graph is allocated dynamically, which is not
the case in static task graph approaches. This observation may
lead to better addressing adequate use of computational resources.

4.2 Heterogeneous processing view
In this view, the task organization distributes some tasks to CPUs
and some tasks to a GPU (as GPGPU). This section presents basic
task flow organizations using GPGPU in Section 4.2.1. In these
basic task flow organizations, the tasks that run on the GPU are
pre-determined (“hard-coded”). Section 4.2.2 presents task flow
organizations that implement some kind of task distribution
among processors of different architectures. In these task
organization flows, the same task may run either on a CPU or on a
GPU. Section 4.2.3 presents a game loop architecture that
implements resilience and adaptability.

4.2.1 Basic task flow organizations using GPGPU
Zamith et al. [3] presented a game loop model that integrated
GPGPU, named as “multi-thread uncoupled model with GPGPU”
(Figure 4). The GPU is used as an auxiliary math co-processor to
process part of physics simulations. The model has three threads:
one for input acquisition and simulation, one for rendering
(presentation), and one for GPGPU. The multi-thread uncoupled
model with GPGPU uses explicit synchronization primitives to
handle task dependencies.

Figure 4. Multi-thread uncoupled model with GPGPU[3]

Joselli and Clua [25] proposed a task flow organization where
the CPU and GPU switch roles in terms of main processing
(Figure 5). This model uses an uncoupled time flow structure
based on elapsed time, similar to the basic “multi-threaded
uncoupled model” [1].

The GPU is responsible for processing the simulation and
rendering stages. The simulation stage includes tasks such as AI,
physics processing, and game logic processing. The CPU is used
for gathering player input and running audio-related tasks.

In this model, there is a dedicated thread to process AI and a
dedicated thread to process physics simulations. The
implementation does not use explicit synchronization primitives
due to the nature of GPGPU processing as a SIMD architecture.
The GPU signals that a task is finishes only after all parallel
execution streams are finished. In other words, the task flow does
not proceed to the next task until all parallel streams of a tasks
finishes.

These two models are based on the basic “multi-threaded
uncoupled model” [1] and therefore present the same issues
regarding game loop properties (Section 3.4). The model by
Joselli and Clua [25] uses threads dedicated to some specific
tasks. A straightforward improvement would be determining fixed
sample rates for these tasks, which would define an explicit game
timeline (Section 3.1.1).

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 106

Figure 5. Task flow organization by Joselli and Clua [25]

4.2.2 Tasks flow organizations with task distribution
This section presents task flow organizations where the game loop
is able to map task execution to processors of different
architectures. This process may happen statically or dynamically.
In both alternatives, the developer needs to provide different task
implementations for each type of processor, since each hardware
requires its own executable code

In terms of game simulation, the task distribution approach
brings flexibility to run some game tasks. For example, if the
game discovers at run time that it is possible to process some
physics tasks on the GPU, it may take advantage of this resource
to process these tasks faster, and use the extra time to process or to
improve other game tasks. This may help in addressing game loop
properties such as adaptability, resilience, and responsiveness, as
well as lowering overall task processing time in order to meet
real-time requirements.

An early effort to distribute task flows between CPU and GPU
took form as the “adaptive game loop architecture” [26]. The
“adaptive game loop architecture” uses an uncoupled time flow
structure based on elapsed time and uses two parallel task flows
that run on separate threads. The first task flow runs tasks related
to input gathering, simulation, and rendering, which run only on
the CPU. The second task flow contains simulation tasks that may
run on CPU and the GPU. This architecture provides a task
manager that is responsible for mapping tasks to both processors.
The mapping policy is defined by a heuristic that the developer
determines through a script file, which makes it possible to use
different mapping strategies. Joselli et al. [26] provided a simple
heuristics that compares the task running time on both processors
and chooses the fastest one to run the task for the next time steps.

Joselli et al. [27] elaborated on the previous approach by
creating a physics engine for games that provides alternative
distribution schemes and runs the physics stage at a fixed sample
rate (25ms) on its own thread. In this approach, the simulation
stage comprises only the physics simulation task. Input and
rendering tasks runs as fast as possible on a separate thread. This
approach does not use explicit synchronization primitives to
coordinate tasks. Instead, the implementation provides two buffers
for the simulation to fill with data for rendering. The simulation
uses one buffer at a time to output data for a given time step.
While the simulation task is computing data, the rendering task
presents data contained in the buffer that the simulation task is not

using in that time step. The rendering task will keep on using the
same buffer until the physics tasks is over, when they switch the
buffers for the next frame. The approach by Joselli et al. [27] do
not provide means to handle delays if the physics simulation takes
too long, which impairs the resilience property.

AlBahnassi et al. [28] presented a more sophisticated approach
to handle heterogeneous processors by using a scheduler to map
tasks to different processors to minimize overall execution time.
Their scheduler is based on these concepts: homogeneous
processor groups, work stealing algorithm, and an arbiter. The
homogeneous processor groups gather processors that have
similar characteristics (as the cores of a CPU). The work stealing
is the policy they have chosen to distribute tasks among
processors of the same homogeneous group. Finally, the arbiter
decides which homogeneous group is best suitable to process a
given task, considering workload, execution times, data locality,
and data transfer rates. The tasks are organized as dynamic task
graphs (Section 4.1).

Similar to other approaches for heterogeneous processors, the
developer needs to specify which processors are able to run the
task and needs to provide alternative implementation for all the
target processors. AlBahnassi et al. [28] provide a set of
experiments that use different hardware combinations, including
single-threaded, CPU-only, and CPU+GPGPU. Although the
experimental results are interesting, it is not possible to determine
the simulation model used in these tests.

4.2.3 Task flow organizations based on resilience
Zamith et al. [29] presented a game loop architecture that adjusts
task execution according to hardware characteristics (CPU and
GPU), game task characteristics, and current workload.

This model implements resilience by applying a tardiness
policy. Zamith et al. [29] define this policy as “a technique used
as a metric to calculate task delays or earliness given a target
time step, helping applications to satisfy real-time requirements” .
This metric is calculated as t_e/t_p, where t_e is the measured
total task processing time and t_p is the predefined target
processing time of all tasks (i.e. a deadline for the entire
simulation step). This tardiness metric ranges from 0 to ∞. If this
calculated metric is less than 1, it means that all tasks finished
before the deadline and there is extra processing time available. In
this situation the game may improve task quality to harness this
extra time. On the other hand, if this metric is greater than 1, it
means that task processing time was longer than the deadline, and
therefore tasks need to reduce their processing requirements. In
both situations, the architecture applies an adaptability approach.

To implement the adaptability, the architecture classifies game
tasks into two types: divisible and indivisible tasks. The former
represents that can be broken down in sub-tasks to be executed in
consecutive time steps. The latter represents tasks that must be
computed entirely on a single time step (due to hardware
restrictions, they cannot be broken down in smaller parts).

5 CONCLUSIONS

The game loop is a term we use to describe the dynamics related
to task execution and task flow organization in games. We
conducted an investigation to understand the inner workings of
game simulations through a literature review on game loops, game
simulations, and our own experience on game development. In
this investigation, we identified properties related the main
characteristics of game loops, considering that game simulations
must be discrete, real-time, and interactive. As discrete
simulations, a game loop is concerned with well-defined
simulation model, consistency, and adaptability. As real-time
simulations, a game loop is concerned with uniformity, resilience,

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 107

adequate use of computational resources, and energy
management. As interactive simulations, a game loop is concerned
with responsiveness and registration speed.

Game development traditionally has been characterized by the
quest for ultimate computational performance. This quest started a
long time ago because earlier games ran on hardware with very
limited capabilities (when compared to current hardware) where
rendering was a very costly operation, placing a huge bottleneck
in game development. This issue has led to the first (and simplest)
game loops that use implicit time flow structures. This quest still
exists nowadays, but blindly trying to fulfill it does not help in
improving games. For example, when achieving the best possible
performance, a game might apply adaptability policies to improve
simulation quality when there is extra time available (e.g.
increasing complexity of AI behavior physics modeling).
Otherwise, if game processing is too heavy, a game may apply
adaptability to reduce simulation complexity, which would benefit
responsiveness and registration speed. These measures may help
in implementing resilience policies, which would help the game to
tolerate task delays. When a game simply runs as fast as possible,
as a result of aiming at the best possible performance, the game
may waste computational resources and increase energy
consumption. Also if the game does not have a well-defined
simulation model, it probably will not run in real-time. We also
notice that there are few publications that address energy
management in games. This research field remains open and
under-explored.

The first multi-threaded game loops applied straightforward
parallelism concepts such as functional and data parallelism by
dedicating threads to process specific types of tasks in the first
case or entire sets of related data in the second case. However,
during our investigation we noticed a trend consisting of new task
flow organizations that consider dynamic task graphs (built
according to task dependencies) and task schedulers. These task
schedulers take advantage of multi-core CPUs in order to have
tasks running in parallel. A related trend is running games in
heterogeneous environments consisting of multi-core CPUs and
GPUs for general-purpose processing (GPGPU).

With parallel hardware (in form of multi-core CPUS and
GPGPU) becoming increasingly common, we believe that in the
near future a greater interaction among the areas of parallel
computing and game development will emerge. Considering the
new scenario, future works on game loops may explore topics
such as:

▪ New game loop models based on parallelism;

▪ Task load balancing techniques;

▪ Simulations models with fixed sample rate that consider
multiple processors;

▪ Simulation models focusing on heterogeneous environments;

▪ Task flow implementations that implement policies to tolerate
task delays;

▪ Methods to allow processing more than one frame
simultaneously, when it is possible. For example, a task
organization might start processing in advance some tasks
belong to the next frame if there is free time available, which
could help in tolerating task delays and implementing
resilience policies;

▪ Adaptability policies.

ACKNOWLEDGMENTS

We would like to thank CAPES, CNPq, FINEP, and NVIDIA for
the financial support to this research paper.

REFERENCES

[1] L. Valente, A. Conci, and B. Feijó, “Real time game loop models
for single-player computer games,” in Proceedings of the IV
Brazilian Symposium on Computer Games and Digital
Entertainment, 2005, pp. 89–99.

[2] I. García and R. Mollá, “Videogames decoupled discrete event
simulation,” Computers & Graphics, vol. 29, no. 2, pp. 195–202,
Apr. 2005.

[3] M. Zamith, E. Clua, A. Conci, A. Montenegro, P. Pagliosa, and L.
Valente, “Parallel processing between GPU and CPU: Concepts in
a game architecture,” in Computer Graphics, Imaging and
Visualisation, 2007. CGIV ’07, 2007, pp. 115–120.

[4] R. M. Fujimoto, Parallel and Distributed Simulation Systems, 1
edition. New York: Wiley-Interscience, 2000.

[5] W. AlBahnassi, S. P. Mudur, and D. Goswami, “A Design Pattern
for Parallel Programming of Games,” in 14th International
Conference on High Performance Computing and Communication,
2012, pp. 1007–1014.

[6] A. El Rhalibi, D. England, and S. Costa, “Game Engineering for a
Multiprocessor Architecture,” in Changing Views: Worlds in Play,
2005.

[7] G. M. Amdahl, “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities,” in Proceedings
of the April 18-20, 1967, Spring Joint Computer Conference, New
York, NY, USA, 1967, pp. 483–485.

[8] J. L. Gustafson, “Reevaluating Amdahl’s Law,” Communications
of the ACM, vol. 31, pp. 532–533, 1988.

[9] S. Cook, CUDA Programming: A Developer’s Guide to Parallel
Computing with GPUs, 1 edition. Amsterdam ; Boston: Morgan
Kaufmann, 2012.

[10] D. B. Kirk and W. W. Hwu, Programming Massively Parallel
Processors, Second Edition: A Hands-on Approach, 2 edition.
Amsterdam; Boston; Waltham, Mass.: Morgan Kaufmann, 2012.

[11] R. Parent, Computer Animation, Third Edition: Algorithms and
Techniques, 3rd ed. Amsterdam: Morgan Kaufmann, 2012.

[12] J. Gregory, J. Lander, and M. Whiting, Game Engine Architecture.
Wellesley, Mass: A K Peters/CRC Press, 2009.

[13] S. Kiousis, “Interactivity: a concept explication,” New Media
Society, vol. 4, no. 3, pp. 355–383, Sep. 2002.

[14] C. Hecker, “Physics in Computer Games,” Commun. ACM, vol.
43, no. 7, pp. 34–39, Jul. 2000.

[15] Y. Gu and S. Chakraborty, “Power Management of Interactive 3D
Games Using Frame Structures,” in 21st International Conference
on VLSI Design, 2008. VLSID 2008, 2008, pp. 679–684.

[16] S. Chakraborty and Y. Wang, “Multimedia Power Management on
a Platter: From Audio to Video & Games,” in Proceedings of the
16th ACM International Conference on Multimedia, New York,
NY, USA, 2008, pp. 1165–1166.

[17] B. Anand, K. Thirugnanam, L. T. Long, D.-D. Pham, A. L.
Ananda, R. K. Balan, and M. C. Chan, “ARIVU: Power-aware
Middleware for Multiplayer Mobile Games,” in Proceedings of
the 9th Annual Workshop on Network and Systems Support for
Games, Piscataway, NJ, USA, 2010, pp. 3:1–3:6.

[18] B. Anand, K. Thirugnanam, J. Sebastian, P. G. Kannan, A. L.
Ananda, M. C. Chan, and R. K. Balan, “Adaptive Display Power
Management for Mobile Games,” in Proceedings of the 9th
International Conference on Mobile Systems, Applications, and
Services, New York, NY, USA, 2011, pp. 57–70.

[19] A. Bhojan, Z. Qiang, and A. L. Akkihebbal, “Energy Efficient
Multi-player Smartphone Gaming Using 3D Spatial
Subdivisioning and Pvs Techniques,” in Proceedings of the 3rd
ACM International Workshop on Interactive Multimedia on
Mobile & Portable Devices, New York, NY, USA, 2013, pp. 37–
42.

[20] M. Zamith, L. Valente, M. Joselli, J. R. Silva Junior, E. Clua, and
B. Feijó, “A Game Architecture Based on Multiple GPUs With
Energy Management,” in Proceedings of SBGames 2013, São
Paulo, 2013, pp. 54–63.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 108

[21] J. Steuer, “Defining Virtual Reality: Dimensions Determining
Telepresence,” Journal of Communication, vol. 42, no. 4, pp. 73–
93, Dec. 1992.

[22] J. Y. C. Chen and J. E. Thropp, “Review of Low Frame Rate
Effects on Human Performance,” IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans, vol. 37, no. 6,
pp. 1063–1076, Nov. 2007.

[23] J. Tulip, J. Bekkema, and K. Nesbitt, “Multi-threaded Game
Engine Design,” in Proceedings of the 3rd Australasian
Conference on Interactive Entertainment, Murdoch University,
Australia, Australia, 2006, pp. 9–14.

[24] M. J. Best, A. Fedorova, R. Dickie, A. Tagliasacchi, A. Couture-
Beil, C. Mustard, S. Mottishaw, A. Brown, Z. F. Huang, X. Xu, N.
Ghazali, and A. Brownsword, “Searching for Concurrent Design
Patterns in Video Games,” in Euro-Par 2009 Parallel Processing,
H. Sips, D. Epema, and H.-X. Lin, Eds. Springer Berlin
Heidelberg, 2009, pp. 912–923.

[25] M. Joselli and E. Clua, “GpuWars: Design and Implementation of
a GPGPU Game,” in 2009 VIII Brazilian Symposium on Games
and Digital Entertainment (SBGAMES), 2009, pp. 132–140.

[26] M. Joselli, M. Zamith, E. Clua, A. Montenegro, R. Leal-Toledo, A.
Conci, P. Pagliosa, L. Valente, and B. Feijó, “An adaptative game
loop architecture with automatic distribution of tasks between
CPU and GPU,” in Proceedings of SBGames’08: Computing
Track - Full Papers, Belo Horizonte, 2008, pp. 115–120.

[27] M. Joselli, E. Clua, A. Montenegro, A. Conci, and P. Pagliosa, “A
New Physics Engine with Automatic Process Distribution Between
CPU-GPU,” in Proceedings of the 2008 ACM SIGGRAPH
Symposium on Video Games, New York, NY, USA, 2008, pp. 149–
156.

[28] W. AlBahnassi, D. Goswami, and S. P. Mudur, “Arbiter Work
Stealing for Parallelizing Games on Heterogeneous Computing
Environments,” in Proceedings of the High Performance
Computing Symposium, San Diego, CA, USA, 2013, pp. 16:1–
16:9.

[29] M. Zamith, L. Valente, B. Feijó, M. Joselli, and E. Clua,
“Exploring parallel game architectures with tardiness policy,” in
Proceedings of SBGames 2015, Teresina, 2015, pp. 94–103.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 109

	157539
	157539

