
Optimizing tree distribution in virtual scenarios from vector data
Tiago Augusto Engel∗ Alex Frasson Cesar Tadeu Pozzer

Universidade Federal de Santa Maria, Brazil

Figure 1: A snapshot of the tree distribution generated by our system.

ABSTRACT

Tree distribution in virtual landscapes is a key feature on several ap-
plication fields, where automated tools face challenging problems
regarding performance and realism. It is common for this task to
rely on designers to manually place elements, but when it comes
to large scenarios, it becomes impracticable. Games and simu-
lation systems are often based on real world scenarios generated
using data from Geographic Information Systems (GIS). This pa-
per describes an optimized algorithm to populate forest represented
by polygon map in a virtual scenario. The solution is based on a
quadtree built from the GIS data, providing fast location queries
and enabling real time tree scattering.
Keywords: tree distribution, virtual scenarios, GIS, quadtree.

1 INTRODUCTION

Forests are fundamental part of natural landscapes. Methods to cap-
ture their features have been subject of study in several areas. In
this context, Geographic Information Systems (GISs) have become
a key tool, enabling the capture, storage and processing of large ge-
ographic databases. GISs provide important means for understand-
ing and dealing with nature events, thus allowing us to understand,
reason and predict environmental phenomenons such as flooding
and forest fires, or as a support tool for decision-making and public
administration.

The creation of virtual scenarios using GIS data has applications
ranging from public administration, tourism, games, science and
technology, to military simulation systems [12]. Various efforts
have been placed in order to automate the process and provide real-
istic aspects on the virtual world. However, these aspects still pose
serious challenges nowadays, as to do so usually requires process-
ing massive amounts of data [5].

Recreating forests in virtual environments still poses several
challenges regarding modeling, distribution and rendering. Sim-
ulation scenarios require special attention to realism, where natural
components such as rivers, vegetation and terrain play crucial role
on recreating an actual feel of presence. For instance, vegetation
areas may present camouflage and sources of food. Realism is also

∗e-mail: tengel@inf.ufsm.br

important regarding geographically accurate representation, where
real world features are properly placed.

Our primary goal is to allow real-time tree distribution and man-
agement. The tree management can be thought of as a polygon
fill task, where areas are populated with trees, while the actual tree
positions are defined by a distribution task. In this sense, defining
realistic tree positions relies on forest dynamics, which are complex
to simulate [1].

This paper describes an ongoing work towards providing realis-
tic tree distribution and management in a virtual scenario. The in-
put consists on a real world dataset containing the terrain heightmap
and a polygon map delineating the forest areas. We propose a poly-
gon fill algorithm based on a quadtree to distribute trees along the
area. Finally, we show how to associate other features such as roads
and rivers, preventing inconsistent cases. The paper is organized as
follows: section 2 provides background and related works on the
subject, in Sections 3 and 4 we propose an approach to the problem
and describe its implementation, respectively. Finally, in section 5
we evaluate and discuss current results.

2 RELATED WORKS

Forests have been subject of many works in Computer Graphics,
while tree distribution is a subject of forestry and environmental
sciences. Our primary concern is not rendering nor level of detail
for individual plants (see [2] for a survey on this subject). We also
assume the trees are already modeled and our main focus is ground
level visualization.

Polygon fill approaches. Populating a polygon with trees can be
thought of as a rasterization task, where algorithms such as scanline
and flood fill are used, with the difference that the samples are not
equally spaced. However, rasterization approaches test each sample
to determine whether it belongs to the primitive (usually triangles),
and while this approach works fine on primitive forms, it doesn’t
scale well for large polygons.

Point in Polygon algorithms. Determining whether a point is in-
side a polygon is a classic computational geometry problem. When
it comes to vegetation areas, there are degenerated cases that must
be taken into account. The polygons may contain holes (repre-
sent openings) and have any shape (concave or convex). Huang[7]
presents a full study on several point in polygon algorithms, from
where we chose to implement the Crossing Number (also known as
ray intersection) algorithm.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers 

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 198



The crossing number algorithm consists on tracing a ray from the
test point along an axis (x or y) and summing the number of times
the ray crosses a polygon boundary. If the number of crossings
is odd, then the point is inside the polygon, otherwise the point is
outside. The Figure 2 illustrates of the two cases. We chose this ap-
proach for its simplicity, compliance with the aforementioned con-
straints, the needless of pre-processing and the O(n) time complex-
ity.

Figure 2: Crossing number algorithm.

Polygon Map (PM) Quadtree. Quadtree is a hierarchical spa-
tial tree data structure that consists on the recursive decomposition
of space [9]. It has been used in the literature to describe vec-
tor data[11, 10, 3] due its properties that are specially suitable for
GIS data. Particularly, we are concerned on supporting polygon
maps, as this is the common format for forest GIS data. Samet [11]
presents an extensive study on PM quadtrees, where the authors dis-
cuss a full background on the matter and propose implementations
for point location, dynamic line insertion and map overlay.

Tree distribution in nature. The automated generation of real-
istic tree distributions is a complex task [1]. To synthesize such
level of dynamism, there is a number of factors to be taken into
account such as: biome, species, soil features, weather conditions
and age. Current studies are restricted to specific biomes or even
locations, limiting world scale applicability. Botkin [1] presents
a computer model to simulate forest growth in a mixed-species in
north america. Crowther [6] provides a global scale study on tree
density, showing biome specific statistics. Liu [13] presents a space
occupancy-based method using an octree to simulate tree groups,
enforcing relations such as: deviation, intersection, covering and
shelter. Lane [8] provides a multilevel model focusing on plant dis-
tribution using multiset L-systems to simulate self-thinning, suc-
cession and clustering.

3 METHODOLOGY

The polygon fill approaches mentioned on Section 2 present a cru-
cial issue: they need to test every sample to assure they belong to
the polygon. This means that the performance is bound to the num-
ber of samples and the polygon vertex count. We can consider the
polygon a static entity (no dynamic changes on shape), on the other
hand, the sample density should be flexible. For instance, we can
progressively increment the tree density according to the distance
from the camera. However, when having high density samples, per-
formance issues start to arise.

We aim to reduce the number of point in polygon operations, thus
diminishing the performance impact caused by higher densities. In
order to achieve that, we propose a PM quadtree structure to store
the polygon. Once discretized, we can access the quadtree nodes
and distribute the trees without needing point in polygon tests.

We propose the workflow presented on Figure 3. The solution
consists on 1) loading the polygon map from the appropriate GIS
vector format; 2) build the PM quadtree; 3) generate the forests by
traversing the quadtree; 4) verify intersection with other features
i.e. trees within rivers, roads; and 5) use the generated distribution
to place the tree models in the 3D world.

Figure 3: Solution workflow.

The forest polygon map may intersect with other vector features
such as rivers and roads. The algorithm must foresee such cases in
order to prevent inconsistent cases (e.g tree over a road or within a
large river). These cases require special attention and can be solved
either within the tree generator module or as a post-processing step
once the tree positions are already generated. The following sec-
tions describe with detail the implementation.

4 IMPLEMENTATION

4.1 PM Quadtree
Our implementation is slightly different than the ones proposed by
[11]. While their approach is based on a point space quadtree, fo-
cusing on the vertices, we are concerned with the edges as nodes
shape should resemble the original polygon. Once proper level of
detail is reached, we can use the quadtree to distribute trees instead
of using the original polygon. In order to build the quadtree, there
are three basic cases that need to be handled:

1. Node encloses the polygon. The node size is larger or equal
the polygon bounding box, thus the polygon is entirely en-
closed by the node.

2. Polygon does not intersect the node. The node is completely
inside (FULLYIN) or outside (FULLYOUT);

3. Node and polygon intersect. The node has one or more
edges intersecting the polygon.

The first case is the start setting, where the node size is the same
as the polygon bounding box. This case is handled by subdividing
the node in four. The second case is when the node is completely
inside the polygon – in this case the algorithm that the node does not
need to be split anymore, and the node can be tagged as FULLYIN
or FULLYOUT. Finally, the last case is when there are intersections
between the node edges and the polygon, handled by subdividing
the node and recursively calling the build function in the new chil-
dren. Figure 4 shows the three cases.

Figure 4: Quadtree generated from a large polygon. The red line seg-
ments represent FULLYOUT nodes, while the yellow and blue shows
PARTIAL and FULLYIN ones, respectively.

The stop conditions are two, namely: 1) when a small node size
is achieved (5x5 meters, for instance); and 2) the quadtree reached
a depth limit. In these cases, if the node still has intersections, it
is classified as partial (PARTIAL), which are those who have at
least one edge intersecting the polygon. Otherwise, the nodes that
intersect the polygon are further refined and classified.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers 

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 199



The Algorithm 1 presents the buildNode algorithm. We use
the crossing number algorithm to detect point in polygon while
building the tree, and line to line intersection to determine if any
polygon edge intersects quadtree nodes. While we still need to de-
tect if node corners are inside the polygon, the number of tests is
much smaller than we would have otherwise.

Input: node← current quadtree node
Input: depth← current tree depth
/* Test for stop conditions */
if
(depth > maxDepth or getNodeSize(node)≤ minNodeSize)
then

if
(polyIntersectNode(node) or nodeContainsPoly(node))
then

node.location← PART IAL;
end
else

node.location← getNodeLoc(node);
end
return

end
/* Subdivide the node and recursively

build child nodes */
if (polyIntersectNode(node) or nodeContainsPoly(node))

then
node.subdivide();
node.location← PART IAL;
buildNode(node.nw,depth+1);
buildNode(node.ne,depth+1);
buildNode(node.sw,depth+1);
buildNode(node.se,depth+1);

end
/* Determine final location. */
node.location← getNodeLoc(node);
return;
Algorithm 1: BUILDNODE recursively builds the quadtree

4.2 Quadtree traversal and tree distribution
In this step, the tree positions are created in the virtual world. Once
the quadtree is built, there is no need of point in polygon tests any-
more. In fact we can simply traverse the quadtree and fill the leaf
nodes that are inside the polygon with tree positions. This process
can be done in real time, as long as the distribution does not offer
major performance issues.

In order to test the distribution, we access each leaf and sample
it regularly, adding a random offset for each point (see results in
Figure 5). While this is a very simple solution, this was enough
to test our approach. In future developments we will be focusing
in the distribution itself. The algorithm to distribute trees is de-
scribed in Algorithm 2. It consists on traversing the quadtree and
filling the nodes that are fully inside the polygon. Depending on the
accuracy needed, nodes partially intersecting can be filled as well,
however point in polygon tests would be necessary in these cases.
The method distributeTrees can be implemented using sev-
eral approaches. For instance, Bruneton [4] presented an aperiodic
tiling based on point distribution patterns.

The tree positions generated must not intersect with other fea-
tures such as roads and rivers, therefore we need to remove trees
in these locations. Such features are normally represented by poly-
lines (sets of lines adjacent to each other). The algorithm to remove
trees uses the generated positions (can also be done at generation
time) and computes distance-to-line segment operations in order to
identify close trees.

Input: node← current quadtree node
Input: sampleSpacing← distance from each sample
/* Stop condition */
if (node == null) then

return
end
if (node.location == FULLY IN) then

distributeTrees(node.minBound,node.maxBound,sampleSpacing);
end
/* Call recursively to all children. */
genTrees(node.nw);
genTrees(node.ne);
genTrees(node.sw);
genTrees(node.se);
return;

Algorithm 2: GENTREES recursively distribute trees in the
quadtree nodes

Figure 5: Tree distribution result for minNodeSize=20 and
maxDepth=11. White dots represent tree positions. Trees closer
than 5m from the road (grey lines) were removed.

5 PRELIMINARY RESULTS AND DISCUSSION

Our quadtree nodes must be refined enough at the polygon edges
in order to assure smooth forest borders. This separates our ap-
proach from the ones such as Samet’s [11], and while our quadtree
approach demands a higher node count to account for edge detail,
it still offers good result in terms of performance.

We evaluated our solution using a medium size map with 3856
polygons covering a 25x55km area. Table 1 shows the details.
The real world location is not mentioned for secrecy reasons. The
dataset presents large polygons with, on average, 38.54 vertices per
entity (polygon), being a good benchmark test for our algorithm.

Table 1: Terrain Settings.

Name Entities Vertices Width(m) Height(m)

Alpha 3856 148626 25860 55600

We evaluated the performance using an Intel i7 870 CPU with
4GB RAM. The running times were evaluated and the average of
three runs was sampled. Results show that our approach is suitable
for high density fill, while the point in polygon algorithm behaves
better on sparse data. This is due the fact that the latter depends
heavily on the sample count. On the other hand, the needless of
any data structure makes the crossing number specially suitable for
small polygons.

The Figure 6 shows the sampled running times. We can see
that the quadtree approach maintains a stable running time – this

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers 

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 200



is caused by the quadtree construction, the most demanding pro-
cessing task. On the other hand, once the tree is built, the density
does not impose performance issues for the algorithm. Evaluation
showed an overall of 1.126s to distribute trees across the whole ter-
rain. It is also noticeable that the crossing number running times
are bound to the sample density, as for each testing sample, a linear
query is made in the polygon.

We observed a lower tree sum in the quadtree approach – fact
associated with the distribution algorithm where only FULLYIN
nodes are filled. The PARTIAL nodes belong to the border and
were ignored. Considering that forest generation does not demand
high precision placement, we can ignore the partial nodes. How-
ever, the crossing number can be used in the partial nodes in case
precision is a requirement, allowing to have precise fill along the
edges.

14 14 13 13 13
44 44 43 44 44

752

273

67
30 16

0

100

200

300

400

500

600

700

800

3 5 10 15 20

G
en

e
ra

ti
o

n
 T

im
e

 (
se

c)

Sample Spacing (m x m)

Performance Evaluation

QuadTree (10 threads) QuadTree PointInPolygon

Figure 6: Performance comparison between the polygon fill algo-
rithms when using different tree densities.

We identified that the performance is bound to the large poly-
gons, which limited the overall running time. The 10 largest poly-
gons have on average 3445 vertices each, while on the remaining
polygons the average is 29. In the first case, the quadtree presents
the most advantages as the large vertex count compensates the build
time, specially when working with high densities.

Since every polygon has its own quadtree and there are no de-
pendencies between them, we developed an alternative solution to
compute the large polygons. The approach consists on a parallel
version of the buildNode algorithm. The PM is sorted by size
(in terms of vertex count) and the n largest polygons are assigned
to a thread group, where each instance works on a polygon. While
the main program processes the small polygons, the large ones are
computed in separated threads. Figure 6 demonstrates the great
speedup obtained with the mixed approach over the previous so-
lution. Finally, the parallel removal of trees near river and roads
presented great performance speedup, we split the generated trees
across the threads so that there is no concurrency issues. Results
show an average of 6.9 speedup when using 10 threads over the
sequential version.

6 CONCLUSION

When building 3D scenarios, the task of distributing trees often
is made manually by designers. However this approach does not
scale for large terrains and world scale distributions. Furthermore,
games and (specially) simulation applications frequently recreate
real world scenarios, which are represented using GIS data.

We presented an optimized approach to generate forest distribu-
tion when its boundaries are described using polygon maps. The
solution is based on a quadtree built from the vector data. The data
structure is used to provide fast tree distribution across the polygon
area. Performance analysis shows that the solution provided great
speedup for high density areas, while the original point in polygon
solution outperformed in low density and small polygons.

We also developed a mixed approach, where largest polygons
are built in parallel. The alternative solution showed considerable

speedup over the sequential approach. The results show that our
approach is a viable solution to this problem, providing a solid base
for the tree distribution algorithms, where further studies are en-
couraged to develop a more realistic solution.

7 FUTURE WORKS

We presented an ongoing work that provides many work opportu-
nities. To name a few:

• Realistic tree distribution. In-depth study towards realistic
tree distribution in the terrain, taking into account nature pat-
terns, as shown in Section 2.

• Generalization for other vegetation types. Polygon maps
can describe other kinds of plants such as farm plantations,
which require specific patterns for generation.

ACKNOWLEDGEMENTS

We thank the Brazilian Army for the financial support through the
SIS-ASTROS project, developed in the context of the ASTROS
2020 strategic project.

REFERENCES

[1] D. B. Botkin, J. F. Janak, and J. R. Wallis. Some ecological conse-
quences of a computer model of forest growth. Journal of Ecology,
60(3):849–972, 1972.

[2] F. Boudon, A. Meyer, and C. Godin. Survey on Computer Representa-
tions of Trees for Realistic and Efficient Rendering. Research Report
2301, 2006.

[3] E. Bruneton and F. Neyret. Real-time rendering and editing of vector-
based terrains. Computer Graphics Forum, 27(2):311–320, 2008.

[4] E. Bruneton and F. Neyret. Real-time realistic rendering and lighting
of forests. Computer Graphics Forum, 31(2):373–382, 2012.

[5] P. Cozzi and K. Ring. 3D engine design for virtual globes. CRC Press,
2011.

[6] T. W. Crowther, H. B. Glick, K. R. Covey, C. Bettigole, D. S. May-
nard, S. M. Thomas, J. R. Smith, G. Hintler, M. C. Duguid, G. Am-
atulli, M. N. Tuanmu, W. Jetz, C. Salas, C. Stam, D. Piotto, R. Ta-
vani, S. Green, G. Bruce, S. J. Williams, S. K. Wiser, M. O. Huber,
G. M. Hengeveld, G. J. Nabuurs, E. Tikhonova, P. Borchardt, C. F.
Li, L. W. Powrie, M. Fischer, A. Hemp, J. Homeier, P. Cho, A. C.
Vibrans, P. M. Umunay, S. L. Piao, C. W. Rowe, M. S. Ashton, P. R.
Crane, and M. A. Bradford. Mapping tree density at a global scale.
Nature, 525(7568):201–205, 2015.

[7] C.-W. Huang and T.-Y. Shih. On the complexity of point-in-polygon
algorithms. Computers & Geosciences, 23(1):109–118, 1997.

[8] B. Lane and P. Prusinkiewicz. Generating Spatial Distributions for
Multilevel Models of Plant Communities. Interface, 2002:69–80,
2002.

[9] D. P. Mehta and S. Sahni. Handbook Of Data Structures And Ap-
plications (Chapman & Hall/Crc Computer and Information Science
Series.). Chapman & Hall/CRC, 2004.

[10] R. C. Nelson and H. Samet. A Consistent Hierarchical Representation
for Vector Data. SIGGRAPH Comput. Graph., 20(4):197–206, aug
1986.

[11] H. Samet and R. E. Webber. Storing a collection of polygons using
quadtrees. ACM Transactions on Graphics, 4(3):182–222, 1985.

[12] X. Wang. Integrating GIS, simulation models, and visualization in
traffic impact analysis. Computers, Environment and Urban Systems,
29(4):471–496, 2005.

[13] Z. Wang and F. Liu. Three-dimensional Modeling of Trees Group with
Spatial Characteristics and Its Space Subdivision Method. (2007):2–5,
2010.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers 

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 201


	157535
	157535




