
gameBITS Framework : A procedural content generation framework for
digital games

Marcus Vinı́cius da Silva∗ Fernando Marson Vinı́cius Cassol

Universidade do Vale do Rio dos Sinos - UNISINOS, Jogos Digitais, Brazil

Figure 1: Applications built with the gameBITS Framework.

ABSTRACT

The use of procedural generation techniques has emerged as a
growing trend in the field of digital games due to the numerous
applicability in content generation, as this has been shown as the
main bottleneck in high-quality commercial titles production pro-
cess, affecting mainly small developers with limited budget. Faced
with this problem, this paper presents a general purpose procedural
content generation framework for digital games, called gameBITS
Framework, relying on a modular and hierarchical architecture for
use in different environments and purposes. The objective of this
work is to provide a simple, robust and extensible solution for small
developers of digital games in low and medium complexity appli-
cations, and through this ensure cost reduction and production time.
For this purpose, a review of studies in the field of procedural gen-
eration is presented to clarify the distinction between the various
types of content and techniques applicable in this context as well as
other existing architecture proposals that corroborate for the propo-
sition process of the new architecture. The effectiveness of the ap-
proach adopted for the architecture is demonstrated by three ap-
plications built based on the proposed framework, highlighting the
performance in the context of a game, and the code reusability po-
tential.

Keywords: procedural modeling, content generation, digital
games.

1 INTRODUCTION

The techniques of procedural generation has been presented as a
solution to many problems in the field of digital games, due to the
numerous applicability in generating content. One of the main rea-
sons perceived for its application, in general, is due to the fact that
the game industry has faced in recent years a major challenge gen-
erated by the increase in costs for the production of content for their
products [13], which depends essentially on the manual creation of
the game elements, thus limiting the scope of the projects and direct
impact on the user experience quality. This scenario is observed

∗e-mail: mav.jed@gmail.com

mainly in small companies or independent developers, since they
do not have vast financial resources to afford large teams or more
development time. As stated by Hendrikx et al. [5], the content
production has become a bottleneck in the development process of
high quality commercial titles.

Faced with this problem, this work presents itself as a contri-
bution to the solutions of dynamic content generation, proposing a
general purpose procedural content generation framework for dig-
ital games applications, called gameBITS Framework, based on a
modular and hierarchical architecture. The solution introduces a
level of generalization that allows its use in a wide range of content
generation applications, providing reusability of features between
different applications that share similar demands, and exposing a
set of simple, robust and extensible resources for use by small de-
velopers in low and medium complexity applications, and aimed at
reducing costs and production time.

This paper introduces the studies in the field of procedural gen-
eration that helped in the elucidation of the differentiation between
distinct types of content and techniques applicable in this con-
text, as well as other existing proposals that corroborated for the
gameBITS Framework architecture proposition, followed by the
presentation of some applications built on top of the framework,
aiming to demonstrate the efficacy of the approach adopted in terms
of performance, versatility and reusability of features. The paper
is organized as follows. Section 2 presents the theoretical basis
required to support the discussion around procedural content gen-
eration in digital games. Section 3 presents existing solutions in
the field of procedural generation, pondering on these in relation
to the proposed solution. Section 4 presents the framework archi-
tecture proposed by this work. Section 5 exposes the applications
developed on top of the framework. Section 6 discusses the results
obtained. Section 7 concludes the paper.

2 THEORETICAL BASIS

As well synthesized by Parberry [18], the process of procedural
generation has three main features, the first being the rapid, com-
putationally feasible and efficient generation of outputs, the second
one is characterized by the ability to dynamically generate content
while maintaining certain quality standards, and lastly to provide a
comprehensive and friendly configuration interface. Based on these
statements, there has been the need to understand the basics of pro-
cedural generation, as well as the techniques applied in the frame-

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 90

work structuring process.

2.1 Procedural content generation in digital games
Procedural content generation applied to the context of digital
games can be described as a set of techniques that aims to gener-
ate different types of game elements through the use of specifically
shaped algorithms to control various parameters, which jointly de-
termine the dynamics of the composition of these elements. The
main purpose of the application of content generation by procedu-
ral methods is to eliminate or at least reduce the need to produce all
artifacts manually, in order to reduce the development time of this
or even the reduction of labor costs at the same time as it provides
an abundance of elements with pseudo-infinite variations.

The artifacts that comprise what is called content refers to all
elements capable of affecting the gameplay of a game, with the ex-
ception of the NPC’s behavior, non-player character and the game
engine itself [23]. Based on this assumption, it can be characterized
as content elements such as terrain, maps, levels, story, dialogue,
quests, characters, set rules, music, items, among others.

Hendrikx et al. [5] proposes a hierarchical structure which com-
prises the various possible types of content that can be generated
procedurally, which exposes several layers, being the lower level
composed by what he calls Game Bits, that consists of basic fea-
tures such as sounds and textures that may or may not be used by
upper layers for composing elements that result in final form, while
the upper layers adopts higher-level concepts, and are character-
ized according to the type definition of the elements that composes
it. Figure 2 presents this proposed taxonomy.

One of the first games to use procedural content generation tech-
niques is the game Rogue1, where the player controls an adven-
turer through dungeons generated dynamically by an algorithm of
procedural generation, so every time a new game starts the adven-
ture is a new experience different from the previous one. More
recently, the game Minecraft2 made use of procedural generation
to build entire worlds made of 3D blocks, with the presence of var-
ious biomes, each with varieties of flora and fauna [12]. The game
No Man’s Sky3 goes even further, creating an entire galaxy from a
macro scale, such as stars and planets, to a micro scale, creating
plants and animals.

Despite the multitude of possibilities derived from procedural
generation, it can also end up generating inconsistent and chaotic
results, which stands as one of the challenges to the implementa-
tion of a dynamic content generation system. A given artifact may
have a huge set of variables that define what constitutes a multidi-
mensional problem of high complexity, so an adequate knowledge
regarding the techniques used in this solution is needed.

2.1.1 Pseudo-random number generation
Pseudo-random number generators are specific, sequential and de-
terministic algorithms that use mathematical foundation to generate
sequences of numbers from an initial value called seed, therefore,
given a seed, the output is always the same.

These have many applications, from statistical experiments, nu-
merical analysis with methods of Monte Carlo, probabilistic algo-
rithms, encryption and even applications related to entertainment,
being also ideal for digital game applications, but different applica-
tions require adequate levels of quality according to the context.

It is considered a good sequence number generator algorithms
that are able to guarantee a high level of randomness, which oper-
ate uniformly distributed chains of values, that are portable among
different platforms, with reproducible and homogeneous output in

1Rogue, 1980, developed by Michael Toy e Glenn Wichman
2Minecraft, 2011, developed by Mojang, 2011: https://

minecraft.net
3No Man’s Sky, 2016, developed by Hello Games: http://www.

no-mans-sky.com

relation to the bits randomness, and that have periods long enough
that are not repeated within the same execution cycle [17].

There are several types of approaches used to generate pseudo-
random numbers, and the most commonly used, developed and
tested techniques are the Linear Congruent Generators, the Lagged
Fibonacci Generators, the Shift Registers Generators and Hybrid
Generators [21]. Among the currently existing solutions, the
Mersenne Twister algorithm shows itself capable to provide ade-
quate functionality to the context of this work, specifically for dy-
namic values attribution purposes for the generation of certain arti-
facts control parameters.

2.1.1.1 Mersenne Twister
The Mersenne Twister algorithm is a pseudo-random number gen-
erator proposed by Matsumoto et al. [11], it is a variant of the Shift
Registers Generators. The algorithm is able to generate sequences
of numbers with a period of ρ = 219937− 1, and its operation can
be described by the linear recurrence (1):

xk+n = xk+m⊕ (xu
n|xl

k+1)A,(k = 0,1, ...) (1)

Where: n is the degree of the recurrence, m is the middle word,
1 ≤ m ≤ n, u and l additional tempering bit shifts, and a matrix
A(m×m). The initial seeds are x0, x1, ..., x(n−1), then it generates
xn by the linear recurrence presented with k = 0. The other values
x(n+1), x(n+2), ... are determined by making k = 1, 2,

Nandapalan et al. [15] points out some studies that criticize the
algorithm in a more rigorous statistical perspective, however for
certain purposes, such as this work, these cons may be disregarded
by not significantly compromise the end result.

2.1.2 Coherent noise generation
For certain applications, randomly generated numbers with a high
degree of randomness, as in the case of generating pseudo-random
numbers, do not present an ideal solution because they create se-
quence values without any correlation with each other, making their
use infeasible due to lack of control over what is generated as out-
put. Faced with these issues, coherent noise generation techniques
emerge as a solution to provide methods of generating sequences
of pseudo-random numbers that allow some level of control over
the frequency distribution of these numbers given distance, area or
dimensional space of higher order [7]. Objectively, coherent noise
generation must meet three basic criteria:

• Given an input value, the generated output is always the same.

• A small variation in the input generates a small variation in
output.

• A large variation in the input generates a random variation in
output.

Based on this assumption, you can generate a value, given a point
in a space n-dimensional, consistent with its neighbors, in the same
space, that is, a coherent noise generator is capable of producing
sequences of numbers with a smooth transition. This feature al-
lows these techniques to be particularly useful in generation of the
procedural textures and height maps for the creation of terrain. La-
gae et al. [9] describes the following benefits of procedural noise
techniques:

• A procedural noise function is extremely compact, it does not
need to store texture data since generates at run time.

• The noise can be generated for any resolution, that is, it is
possible to approach a point indefinitely without losing defi-
nition.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 91

Figure 2: Hierarchical structure of the taxonomy of procedurally generated content. Adapted from Hendrikx et al. [5].

• It does not present periodicity for any space n-dimensional.

• Procedural noise function is parametrized, which allows con-
trol over the pattern noise by adjusting these variables.

• Allow dynamic access to different portions of the space n-
dimensional, which allows the use of parallelism by CPU or
GPU.

One of the most known techniques has been introduced by Perlin
[19] known as Perlin Noise algorithm, which is capable of generat-
ing procedural noise for a wide range of applications in computer
graphics. There are also other techniques that use the outputs of co-
herent noise generators to increase the variety of final results, such
as based of Fractals and Multifractals functions [2], using a combi-
nation of noises generated in different scales to create a final result
of greater complexity.

2.1.2.1 Perlin Noise
The Perlin Noise algorithm was developed using the concept of pro-
cedural noise generation, aiming to simulate a degree of realism in
textures in order to render clouds, fire, water, marble, wood and
stone. Miranda et al. [14] summarizes the algorithm stating that
noise at a point in space is given by the result of inner product de-
termined by (2):

G · (P−Q) (2)

Where: P is the position of the point where the noise is being
calculated, Q the position of one of the neighbor points, and G the
value of a pseudo-random gradient vector. Thus, the inner product
is calculated for all neighbor points, followed by a spline interpola-
tion [9], ensuring a smooth transition between adjacent values.

Since its creation the Perlin Noise algorithm had been improved
to contemplate more efficient methods of generating procedural
noise, but with different results, known as Simplex Noise.

2.1.2.2 Worley Noise
Worley Noise [22] is a type of noise generator used in procedural
texture generation, it is based on the concept of Cellular Texturing
and is capable of producing similar results to various types of sur-
faces such as sponge, scales, pebble and tiles [2], being also useful
in generating height maps due to their cellular characteristics that
can be used in the creation of mountain ranges, and may be further
combined with other noise generation techniques, such as Perlin
Noise, in order to enhance the naturalness and realism of the final
result.

The purpose of the Worley Noise algorithm is based on the
Voronoi Diagram, which in a simple definition can be described
as the division of space into regions or cells, so that all the points
contained in each region are closest to a certain predefined point,

called feature point, a set of other points distributed in a space of
dimension R2 or R3, that is:

• A two-dimensional or three-dimensional space is defined.

• A certain amount of feature points are distributed in this
space.

• For each feature point, all points closer to itself in relation to
other feature points are found.

• The noise fn(x) is the distance to the n-th point closer to x.

Where: n is a feature point belonging to the first set of points
generated, and x is an arbitrary point in space, different from any
feature point.

2.1.2.3 Fractals and Multifractals
Fractals are defined by Ebert [2] as geometrically complex objects,
where the complexity emerges through repetition of a certain geom-
etry across a range of scales. Comparatively, the complexity of the
generation methods of non-fractal objects arises from the combina-
tion of artifacts generated over time through unrelated events, that
is, the actual process of generating non fractal object is complex in
itself, while the fractal complexity starts from a simple assumption,
defined as the combination of products resulting from the same pro-
cess carried out in different scales.

Algorithms based on this concept are especially useful for gen-
erating textures and height maps, because they add complexity to
the final result, making it more realistic and believable to the user,
simulating synthetically a similar behavior as observed in nature,
such as mountains, clouds, water and planetary surfaces. Fractal
Brownian Motion, or simply fBm, is an example of a very useful
fractal based technique used on height maps generation.

However, methods of fractal generation as fBm, have certain
limitations in situations where the environment size is relatively
large, since fractal algorithms are said statistically homogeneous,
as the results show repetitive patterns over the entire surface, and
isotropic, because the resulting surface has repeated physical char-
acteristics in all directions. In other words, realism is limited
to more restricted scenarios, and its application in vast scenarios,
such as a planetary surface, for example, can generate monotonous
and unnatural results, allowing to characterize such techniques as
Monofractais.

A relatively simple solution is to apply Multifractals techniques,
which heuristically can be defined as heterogeneous fractals, whose
heterogeneity is invariant according to the scale, that is, it captures
the heterogeneity of large-scale terrains [14] allowing the variabil-
ity of the results generated by presenting, in a context of terrain
generation, both mountain ranges as great plains in different places.
One of the notable techniques used in generation of terrains and em-
ploying this concept is the Ridged Multifractal.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 92

2.2 LOD systems
LOD or Level of Detail systems are techniques typically used in
the optimization process of interactive graphics applications, where
the objective is to obtain performance gain at the expense of the
level of complexity presented by the elements that compose a scene
and therefore reducing the computational load for execution. As
emphasized by Luebke et al. [10], despite constant advances in
graphics processing hardware, the need to use these optimization
techniques still exists, because as computational resources evolve,
the applications themselves also grows in complexity and establish
new requirements and limits to be met.

In the context of digital games, LOD techniques are commonly
used to simplify 3D objects meshes, reducing its complexity as its
distance increases relative to the observer within the virtual envi-
ronment, textures, applying equivalent versions of lower resolution,
or even controlling aspects of shading and lighting, alternating sim-
ple and advanced techniques to eliminate the cost of processing and
memory.

Basically there are three LOD management methods: Discrete
LOD, Continuous LOD and View-dependent LOD. Discrete LOD
is characterized by an offline approach to the generation of the el-
ements, where the artifacts representing an object are defined in
advance, so at run time, as they are presented on the screen, the
LOD system, based on predefined rules, determines the appropriate
representation of the object to be displayed, saving, in the case of
3D meshes, for example, a considerable amount of polygons, and
allowing more objects to be displayed without the loss performance.

Continuous LOD works similarly to Discrete LOD, however, the
simplification system creates a data structure that encodes a contin-
uous range of detail, so that the quality of the object is defined at
runtime without the need to pre-process the object to be displayed
on the screen. View-dependent LOD is a variation of the Continu-
ous LOD technique, where the level of detail observed is dependent
on the current point of view, so that even a single object presents a
range of different levels of complexity through its mesh.

3 RELATED WORK

Although the techniques of procedural content generation is being
used for decades, there is no single reference able to determine an
enough generic solution to meet all the needs, but several proposals
have been made, and new techniques come up from time to time.
The challenges involved in this work address both basic resources
generation issues and high level organizational problems, so it is
essential to be aware of previous work on procedural content gen-
eration so that a critical view on this field of knowledge can estab-
lished.

3.1 State-of-the-art
In Hendrikx et al. [5] a search is conducted for the purpose of orga-
nizing the data known about procedural content generation focused
on digital games, motivated by the fact that there is not a solid and
comprehensive bibliographic references in this area, noting that the
works are spread across different areas of knowledge, which makes
the process of research on the subject very complex, since there is
not a consolidated and final generalization of the approach of the
techniques in the context of games. Faced with this situation, it
was proposed a taxonomy of the types of content that can be gen-
erated using procedural techniques, where the content types were
arranged in a layered structure, allowing an overview of content
groups according to the level of complexity. Then presented a tax-
onomy of existing techniques for procedural content generation for
digital games, in order to clarify the applicability of each technique
with the respective layers of the taxonomy of content defined in ad-
vance. After the taxonomic definition of content and techniques,
an investigation regarding the level of maturity of the techniques
were performed, where it was observed that the higher the content

complexity, the lower the evolution level of the technique used in
that context is. Finally, the research highlights five key points to be
best studied in future work, particularly highlighting the need for
research on techniques that allow the creation of most complex and
abstract content as shown on the proposed taxonomic structure.

Keane [8] leads a study to propose a framework capable of proce-
durally generating and displaying in real time the surface of plan-
ets, allowing developers to focus on gameplay rather than invest
time in manually creating these elements. Several assumptions are
adopted, such as performance, aesthetics and versatility of the tool,
using as a development platform the Unity4 game engine. The
research involves the use of techniques such as Perlin Noise and
Ridged Multifractal for texture composition, as well as optimiza-
tion techniques for presentation of content, such as LOD and Multi-
threading to control generation of some elements more efficiently.
In general the work shows promising results, being able to gen-
erate planetary surfaces, but does not address certain framework
customization requirements, which can be problematic in certain
cases.

Greuter et al. [4] introduces a framework for generating pseudo-
infinite virtual worlds, towards a more generalist approach. The
structure of the system is based on three main components, namely:
filling the field of view, limiting the generation of content to the
limit of the frustum; caching geometry, which provides a certain
amount of memory space for the storage of elements already gen-
erated, thus avoiding the need to regenerate them; and geometric
generation itself, which combines a number of techniques to gener-
ate the elements that compose the scene. The framework is applied
to the context of a procedurally generated city as a way of valida-
tion, generating also procedurally the buildings that compose the
scene, which is highlighted as a counterpart to the best known com-
mercial solutions, which generally use pre-designed elements. The
framework proved to be able to manage the resources and gener-
ate the virtual environment, however certain technical aspects were
not considered, such as the use of a physics system for collision
management, but the architecture design proved to be valid.

Yannakakis et al. [23] presents the EDPCG framework, Expe-
rience Driven Procedural Content Generation, with a general and
effective approach to optimized content generation based on user
experience. The justification is based on the fact that despite the
dynamic generation of content show up as an obvious solution, it
is most effective when the configuration parameters are determined
according to the specific characteristics of the target audience of
the product. The solution relies basically on the capture of user ex-
perience quality, using it as a form of metrics to decide what and
when to generate more or less a given element, which in this case is
treated as a search space to be computed either by exhausting means
or with the adoption of heuristics to rely on existing dimensions to
solve the problem. The study demonstrates practical scenarios with
the proposed approach, but points out the difficulty of the applica-
tion of the technique because there is a high degree of subjectivity
to be captured for the result to be effective.

In Merrick et al. [13] a structure of a procedural generation sys-
tem of wide range aimed for generation of content for digital games
comprising an evaluation process of the result based on Wundt
Curve is proposed, which defines, in a simple way, the level of in-
terests of the subject in relation to the degree of innovation of the
generated artifact, so potentially less interesting results to the end
user can be eliminated in advance. To apply this principle, it was
decided that a design task for a given device can be understood as
a set of variables, characterizing a multi-dimensional search space.
Thus, given a predefined design by a person, its decomposition is
carried by the tool, and applying the concept adopted, similar re-
sults are generated based on this initial model, that is, the problem

4Unity is a cross-platform game engine developed by Unity Technolo-
gies: https://www.unity3d.com

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 93

is deconstructed in a computable search space to generate different
artifacts.

Rudzicz [20] proposes to aggregate in a single framework, called
Arda, a variety of procedural content generation techniques of vari-
ous levels of detail through a system of interchangeable generation
modules, potentially solving problems of generating content in dif-
ferent contexts. However, for functionality verification purposes in
a viable time, restrictions were adopted about the content type, in
this case terrain, cities and buildings. Subsequently, implemented
over the framework, it presents a tool that provides a control inter-
face for the generation of specific content adopted as a basis for the
solution. The proposal was successful, being able to generate con-
tent in a satisfactory manner within the restrictions, but it highlights
the noticeable lack of realism and complexity of the scene, and the
absence of some more advanced technical optimization, able to par-
allelize certain parts of the procedural generation system to ensure
optimum performance.

Carpenter [1] exposes two recurring problems in the process of
procedurally generating vast worlds for digital games, the first is
the need to produce content beyond the storage capacity of mem-
ory in a way capable of handling such resources to be created only
when they are accessed, that is, without previously being generated,
and the second addresses the problems involved in the generation
of artifacts existing in larger structures without the need to generate
the entire structure in which it is contained. Faced with this prob-
lem, a framework prototype that is able to solve these problems is
proposed, based on a spatial subdivision logic that allows the man-
agement of low levels of granularity within larger and more com-
plex systems, without the first is directly attached to the generation
of the second. The structure adopted uses a hierarchical model of
nodes and defines four types of interfaces that make up the entire
system architecture. In order to validate the framework, the pro-
posed architecture is applied to a specific context for the generation
of a procedural galactic structure, however without proper generat-
ing each planetary system in detail for each star in this structure.
In terms of performance and use of hardware resources the project
had been successful, only in relation to the application generality an
observation is raised, it is said to be complex to measure the level
of flexibility without certifying the applicability in practice, but is
positively accepted as theoretical assumption.

3.2 Contextualization in the state-of-the-art

Among the studied work it is perceived a certain consensus on the
importance and applications of using procedural content genera-
tion. In a summarized manner, technical limitations are pointed, in
the sense that the computational resources of today are still very
limited to ensure the representation of very large virtual environ-
ments despite all the technological advances of recent decades, and
limitations of financial resources, that ensure the structural mainte-
nance of the companies for the production of content, which agrees
with the scenario clarified by this work.

The survey conducted by Hendrikx et al. [5] is of utmost impor-
tance for the whole area of procedural content generation, serving
to provide an overview of the maturity of the game content genera-
tion systems, and is very relevant to the scope of this paper, offering
good guidance on the use of procedural techniques in each specific
area and allow to situate the contributions of this work within the
presented taxonomic structure of content.

The framework proposed by Keane [8], as the author points out,
suffers from some flaws in regards to the ability to customize some
elements, which may lead to greater restrictions for different ap-
plications, such as this proposal. An interesting question raised by
the author points out certain limitations of the platform used, in this
case the Unity game engine, related to the representation of floating
point numbers, which causes the adoption of appropriate strategies
for the representation of vast environments.

Greuter et al. [4], Rudzicz [20] and Carpenter [1] have simi-
lar contributions, since they use hierarchical organizational meth-
ods on their framework models, in order to meet in a generalist
way the solution of procedural generation resources management
for the production of content for different genres of games. Despite
all the solutions prove promising and appropriate according to most
of the assumptions made by each author in its scope of work, there
is a certain lack of practical evidence of each proposal in the real
context of a game, as in a game there are several other issues that
should have a negative impact on performance, which added to the
resources consumed by each solution may come to affect the play-
ers experience. However, the similarity between the architectural
models observed through the studied work demonstrated that a hi-
erarchical structure of nodes appears to be quite efficient and easier
to maintain, which contributed to some important choices in this
work. Another important consideration relates to the adoption of
optimization techniques which indicates the necessity of the use of
parallelism depending on the intended application.

Yannakakis et al. [23] and Merrick et al. [13] address issues
related to the evaluation process of the generated content, gener-
ating data that turns into improvements for the results themselves
subsequently. The biggest problem perceived in these proposals is
the difficulty of capturing the subjectivity involved in this process,
which is confirmed by both, but it is also true that the quality of
results tends to be higher, if the data is worked consistently in each
domain. Highlighted these difficulties, a more viable alternative to
the adoption of advanced content evaluation techniques is a more
simplistic approach, however valid, that is to validate the artifacts
directly with the target audience.

Among the solutions studied, despite having positive and useful
results for use in content generation, all serve a more experimental
purpose just aiming to prove their hypotheses. However, there is
a certain lack of concern for conditioning their solutions to a more
favorable environment for a practical implementation of an inter-
active application based on its framework, which implies a lack of
a more emphatic validation and restricts the result itself to a more
theoretical field. Keane [8] comes closer to this ideal, since it takes
a solution approach within the Unity game engine, which allows
easier access by other developers, but having specialized his archi-
tecture for a particular purpose, it does not prove to be as useful
to different contexts. Facing this scenario, this work presents it-
self as a counterpart, as presupposes the use of a user-friendly de-
velopment environment for the implementation of games from the
beginning, and consider a more generic framework architecture.

4 FRAMEWORK ARCHITECTURE

Through the understanding of the procedural generation techniques
according to their classification and applicability, and having stud-
ied some formulation methods of frameworks for content gener-
ation already proposed, the architecture of the gameBITS Frame-
work5was structured, as shown in Figure 3. The framework takes
the following assumptions:

• The existence of a hierarchical organizational node system to
manage the generated artifacts.

• The ability to generate content synchronously or asyn-
chronously.

• The existence of a LOD system based on a set of simple rules..

• The distinction between concrete and abstract artifacts.

5A C# implementation of the gameBITS Framework for
Unity can be found at https://github.com/Carnicero/
gameBITS-Framework

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 94

• The characterization of artifacts through a components sys-
tem.

• The complete separation between characterization and gener-
ation of artifacts.

The structure makes use of some design patterns of general use,
as well as some more specific patterns for digital games. The pro-
cedural generation resource management core is defined by a Sin-
gleton pattern, as shown in Johnson et al. [6], ensuring that only
one instance of the class resides in memory during the same appli-
cation execution cycle and providing a global point of facilitated
access to the managed resources. Other patterns are used to define
the characterization and generation interfaces of artifacts, such as
the Builder and Abstract Factory patterns also exposed by Johnson
et al. [6], which ensure a high degree of generalization at the same
time that provides decoupling between the artifact definition and
creation.

In the concrete artifact and LOD system classes, stands out the
use of the Update Method pattern, presented within the Sequencing
Patterns demonstrated by Nystrom [16], which allows a centralized
update control of the resources through the management class. The
architecture also makes use of an adaptation of the Game Loop pat-
tern, also clarified by Nystrom [16], which offers a way of coupling
between the internal update process and the game engine update
process, providing easy integration between them.

The gameBits Framework architecture has fifteen different
classes that compose the framework. The gBManager class is re-
sponsible for centralizing the management of generation requests,
it also holds the root artifact of the artifact hierarchy, grants regis-
tration and access to tools, as well as providing integration with the
update cycle of the game engine and transmitting to each artifact the
internal update order of each and its LOD systems. The gBObject
class characterizes the interface that defines an object within the
context generation system. gBTool defines an interface for classes
that provide specific services, such as access to the game engine
features, for example. gBSensor is a specialized class tool that
aims to define a capture interface of any state of the virtual envi-
ronment or performance data, providing access to this information
mainly by the LOD system. gBGenerator is a specialized tool class
that specifies an interface for accessing the generation of a partic-
ular resource, targeting itself to isolate the complexity of the same
generation process. gBRequest is the class responsible for mediat-
ing requests between specific devices and generators synchronously
or asynchronously. The class gBResource defines the basis of a re-
source generated procedurally, and is the one who contains the seed
that determines the outcome generated. gBParameter is the class
that features a parameter of an artifact, that is, it is what defines
the characteristics of a particular artifact. gBArtifact describes a
generic artifact, and is characterized by a collection of parameters.
gBAbstract is the class definition of abstract artifacts, in general it
characterizes resources such as meshes and textures, for example.
The gBHelper class defines auxiliary structures for storage and ma-
nipulation of data, in general used to handle data not manipulated
by the game engine. The gBConcrete class characterizes what is de-
fined as concrete artifact, it consists of abstract artifacts, characteri-
zation parameters, may have a LOD control system, and is the class
that characterizes the concept of node, it may be linked to a par-
ent node and several child nodes. The gBLODSystem class defines
an interface for LOD systems. The gBLODRuleSet class features
a LOD system based on a Discrete LOD system, which manages
the rules that define the presentation behavior of an artifact. The
gBLODRule class describes a level of detail modification rule of an
artifact, being able to dynamically change characteristics of this to
suit a particular situation detected by sensors.

5 APPLICATION

For efficacy validation purposes, having adopted as principles to be
provided by the architecture performance, flexibility, extensibility
and reusability, three scenarios in which the framework was used as
a basis for the development of the final solution were studied. The
first scenario uses the framework for building a procedural plane-
tary systems generator, called StellarGen, in order to evaluate the
performance and the extensibility potential of the basic interface
provided by the framework. The second scenario uses the frame-
work for the implementation of a procedural generation system of
pseudo-endless tracks for Endless Runner games, called TrackGen,
aimed at assessing the reuse potential of modules developed in the
first application at the same time as evaluates the framework flexi-
bility for totally different purposes. The third scenario aims to val-
idate the use of the proposed solution in the context of a game,
called Stellar Empire, in order to study the overall behavior of the
system stability in a real environment of competition for hardware
resources.

In the three case studies the Unity game engine was used as a
development environment. The framework and applications were
implemented in C# language. For carrying out the performance
tests, a computer equipped with an Intel Core i5-750 2.66GHz pro-
cessor, 2x4GB RAM memory at 1333MHz in dual-channel mode
and a Nvidia GPU GTX560Ti with 1024MB of RAM were used.
All tests were performed three times, so that the results presented
are an average of the results obtained in each test.

5.1 StellarGen: A procedural planetary systems gener-
ator

StellarGen6 is an asset developed for Unity which has the func-
tionality of generating planetary systems containing a number of
elements present in real systems, such as stars, rocky planets, gas
planets, dwarf planets, asteroids, meteoroids and satellites, as well
as generating other elements that help to build these artifacts like
barycenters, orbits, belts, atmosphere and oceans. The application
is able to generate textures and high quality and high complexity
meshes, especially using algorithms of coherent noise generation
like Perlin Noise, Worley Noise and Ridged Multifractal controlled
with a parameter configuration interface, whose values are also gen-
erated dynamically within a pre-determined range by the use of
pseudo-random number generators based on the Mersenne Twister
algorithm. Figure 4 shows an image generated by the asset. Al-
though the generation process is complex, the generation of each
system originates from a single initial seed, which is an unsigned
integer value of 64-bit, providing a wide range of possible unique
results.

The asset was created in order to test the relationship between all
parts of the framework, also assuming as a principle the pursuit of
full performance during execution. Initially all elements are gener-
ated in a minimum quality to be displayed, and during the execution
more complex versions of each artifact is generated asynchronously
by using the combination of the requisitions system with the LOD
system, which allows the obtaining of a visual experience of high
quality without the need to generate each element previously, which
in extreme cases render impossible the application execution on
systems with limited hardware, and without major impact on the
flow of execution, since it does not stop user interaction with the
virtual environment. Every concrete artifact of higher complexity
consists of abstract artifacts, which in general can be described as
textures, meshes and sets of coherent noise modules, each with its
specific characteristics depending on the type of artifact to be gen-
erated.

6StellarGen can be found at https://www.assetstore.
unity3d.com/en/#!/content/65062

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 95

Figure 3: The gameBITS Framework architecture.

Figure 4: Planetary system generated by the asset.

As a reference for performance evaluation, some tests were per-
formed. Thus, a system was selected with a large number of ele-
ments. For an initial seed equal to 7777, a system with 1179 ele-
ments generated procedurally was created with a configuration as
shown in Table 1.

Table 2 presents the results of time spent on the initial gener-
ation, and minimum and maximum memory consumption during
execution, considering the generation of three quality levels, so that

Table 1: Elements contained in the generated system.

Artifact Amount
Asteroids 21

Atmospheres 17
Barycenters 582

Dwarfs 2
Gas 5

Meteoroids 479
Oceans 3
Orbits 37
Rings 3
Rocky 2

Satellites 27
Stars 1

each level of quality is defined by the maximum texture size as fol-
lows: 512x256 pixels for low quality, 1024x512 pixels for medium
quality, and 2048x1024 pixels for high quality. This evaluation is
important because it mainly emphasizes the management efficiency
of the resources generated and stored in memory.

Table 3 shows the average generation time and memory con-
sumption by a common artifact at different levels of detail, with
the same texture formats presented by the previous test, but with

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 96

Table 2: Time spent on the initial generation, and minimum and max-
imum memory consumption.

Memory consumption (MB)Quality Time (ms) Min Max
Low 1711 251 525

Medium 4053 260 838
High 13256 402 2788

the difference that for each quality level the complexity of the mesh
also presents changes in the amount of polygons as follows: 320
polygons on low level, 1280 polygons on medium level, and 81920
polygons on high level. In this case, a rocky planet has been used
as the subject to run the tests. This evaluation helps to provide an
important reference for comparison with the consumption of global
resources demonstrated by the previous test.

Table 3: Generation time of a concrete artifact.

LOD Time (ms) Memory consumption (MB)
Low 134 2,8

Medium 531 11,2
High 2445 45,5

By comparing the data in Table 2 and Table 3, it is possible to
note the importance of dynamics in the generation and handling of
artifacts, as by a simple math one can see that for keeping all the
data loaded in memory during the entire time, it would be required
more memory than the amount present in the hardware used, and
on the other hand, if only the highest quality data remained loaded,
there could be enough memory, but the processing would be com-
pletely compromised by the excessive amount of visually complex
elements in the environment at the same time.

5.2 TrackGen: A procedural track generator
TrackGen7 is an asset developed for the Unity game engine for the
purpose of generating pseudo-endless tracks, commonly used in
Endless Runner games. Each track is generated by combining a se-
ries of blocks fitted to each other, where each block suffers a defor-
mation in its front face by changing rotation of its vertices relative
to the center of frontal face itself in the x, y and z local axis, so that
the next block to be generated fits the vertices of its back face on the
vertices of the front face of the previous block, and thus repeating
the process of deformation and fitting indefinitely to form the track.
In order that the deformation control is consistent over time, co-
herent noise generation modules based on Perlin Noise were used,
controlled by a parameters interface with a pre-determined range
of values generated procedurally through a Mersenne Twister algo-
rithm, just like the planetary systems generator. Figure 5 shows a
generated track with the asset.

The implementation of this application allows to critically an-
alyze the framework versatility matters, proving in this case the
ability to use it in completely different contexts and with distinct
levels of complexity. It is also important to highlight the reusability
of resources, due to the proposed modularized solution induced by
the framework architecture, about 80% of the track generator asset
code comes from the modules built for the planetary systems gen-
erator, usually with just a few specializations, but without the need
to change the original code.

The impact on performance while generating tracks proved neg-
ligible, as highlighted in Table 4. Each track section takes less than

7TrackGen can be found at https://www.assetstore.
unity3d.com/en/#!/content/65400

Figure 5: Track generated procedurally with the asset.

1 millisecond to be generated. A game prototype came to be de-
veloped in order to evaluate the performance of generating tracks
process in a real scenario, where the track was generated at a rate of
20 blocks per second, but running the application both inserted in
the game and outside of context, the rate of frames per second kept
oscillating between 300 and 450 frames per second, which is well
above the minimum acceptable as standard for interactive applica-
tions, ranging from 30 to 60 frames per second.

Table 4: Average generation time per track block.

Blocks generated Time (ms) Time per block (ms)
1000 859 0,859

5.3 Stellar Empire: An application in the context of a
digital game

The game implementation was based on StellarGen, as the asset it-
self, as already highlighted, uses intensively the entire framework
resource structure, which allows to clearly evaluate its potential in-
serted within the context of a game.

The developed game, called Stellar Empire8, is based on a space
economy system, where the player must grow his empire and ex-
pand its domain to other planets, satellites or asteroids present in
the planetary system where it is located. The game is inspired by
titles like Sim City 49 and Imperium Galactica II10. The gameplay
is similar as regards the administration of resources, construction
of buildings and units system. Figure 6 shows an in-game screen
capture.

The game is slightly focused on visual aspects, and relies more
on micromanagement matters of each celestial body dominated by
the player, and on the management of spacecrafts that transport
units and resources between each planet. In terms of hardware re-
source consumption, these characteristics tend to require more pro-
cessing and memory than the GPU, which in this case is positive,
since potential performance issues tend to stand out if there is a
conflict between the use of resources for the game and the asset,
which could provide clues on a bad design decision regarding the
framework architecture. Table 5 exposes the performance results
comparing a scenario where the asset runs in isolation, and in a
second scenario where its already inserted into the game. The seed

8Stellar Empire can be found at http://gamejolt.com/games/
stellar-empire/162250

9Sim City 4, 2003, developed by Maxis: http://www.simcity.
com/en_US/product/simcity4

10Imperium Galactica II, 2000, developed by Digital Reality: http:
//www.imperiumgalactica.com

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 97

Figure 6: In-game image of the game Stellar Empire.

used was equal to 7777, and the quality setting was set to high with
a maximum size of textures equal to 2048x1024 pixels.

Notably, while out-game the asset has full performance within
acceptable standards for interactive applications, as well as in-game
compared to average performance, but it is evident that during the
game there are certain performance drops, but when compared to
the minimum out-game performance it takes to assume that the poor
performance responsibility is related more to the game itself than
the asset, or even some internal process of the game engine, since
the average tends to remain close to 60 frame per second.

Table 5: Asset performance in-game and out-game.

Taxa de FPSContext Min Average Max
Out-game 113 162 238
In-game 27 58 78

6 DISCUSSION

The architecture model presented by the gameBITS Framework
shown to be able to manage different sources of content generation,
such as textures, mesh and pseudo-random numbers sequences, for
example, while maintaining an internal organizational structure of
the content generated, allowing resources to be handled and stored
in nodes in a hierarchical structure analogous to a tree, similarly as
employed by Carpenter [1].

The robustness of the solution is ensured by the high level of
generalization adopted, allowing it to be flexible and extensible so
that it can adapt to different contexts, to avoid specialization fash-
ion solution as is observed in Keane [8], and by the modularized
content generation that enhances the reusability of code through
granularization of the solutions built on top of the framework.

The modularization is based on the analysis of the functional
definition of artifacts generated procedurally introduced by Hen-
drikx et al. [5] combined with an adaptation of components system
exposed by Gregory [3], as shown in Figure 7, in this context an
object can be seen as an artifact, where components are different
characterization parameters of the artifact or even abstract artifacts,
if the first is a concrete artifact, for example. The framework also
provides some management features of asynchronous requests with
priority assignment, especially connected to the LOD control sys-
tem, which allows a simple way to use threads for the paralleliza-
tion of content generation via CPU, solving issues raised by Rudz-
icz [20].

Both assets developed corroborate for validating the applicabil-
ity of the proposed framework in different scenarios and under dif-
ferent perspectives already emphasized, however for complete val-

Figure 7: Components system, with an object containing several
components. Adapted from Gregory [3].

idation within the context of procedural content generation for dig-
ital games, it is considered necessary to introduce a solution based
on the framework in an actual game, which was a clear gap in some
of the studies reviewed. Thus it was proposed a game that could
take advantage of the features offered by the planetary systems gen-
erator, so that it was possible to observe the behavior of the asset
built based on the architecture presented by this work, competing
with a medium complexity game for hardware resources, and thus
be able to provide an analysis in a real environment and not just
hypothetical, allowing the search for bottlenecks in the proposed
architecture. In general, all cases showed positive results, although
it was noticed certain underperforming situations within the game,
these tends to manifest themselves more isolated and without a clear
correlation with the solution, potentially without direct relationship
with the asset or with the framework as suggested by the compara-
tive performance tests.

However, the performance drop can also highlight the limits of
the architecture in more complex scenarios, which does not affect
the result obtained, as the proposal had always been targeted to low
and medium complexity applications. Possibly, based on the results
obtained in the context of the game, in more complex applications
the introduction of more advanced LOD techniques would be nec-
essary, like Continuous LOD or even View-dependent LOD, in order
to provide greater processing performance and better use of mem-
ory without a big impact in frame rate, and therefore releasing more
hardware resources to the game.

A possible gap in the proposed framework, when compared to
Yannakakis et al. [23] and Merrick et al. [13] is related to the
absence of an approach to a quality evaluation method, so as to
provide a process which is able to quantify in a single metric the
quality of an obtained result in the generation of artifacts from so-
lutions built on top of the framework. These metrics could serve
as a form of input for subjectivity capture system based on various
artificial intelligence techniques, in order to treat high complexity
matters, like individually setting each parameter within a parame-
ter set, through simplified and more comprehensible metrics. An
approach to solve this gap could allow the introduction of more ab-
stract matters such as the application of Game Design concepts di-
rectly in the process of procedural generation, becoming ever more
modeling results a rules-based design task, which would be much
simpler from a human point of view, and less manual and low-level.

7 CONCLUSION AND FUTURE WORK

In this paper several concepts related to procedural content gener-
ation for digital games were studied, trying to understand the tech-
niques most commonly used in the generation of coherent noise
for creating textures and height maps, and pseudo-random numbers
generation techniques capable to provide number sequences with
long periods for applications of various levels of complexity, also
raising a number of works aligned with this proposal, serving as a
reference for the proposition of the gameBITS Framework architec-
ture.

The effectiveness of the framework has been demonstrated
through the implementation of three applications built on top of

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 98

its structure, which were evaluated from the perspectives of perfor-
mance, flexibility, extensibility and reusability. The results were
positive, and corroborate for the validation of the proposal, mainly
because of having employed the solution in a real game. Essen-
tially, it can be stated that the gameBITS Framework is able to put it
as a general purpose solution for small developers looking for ways
of saving development time and financial resources in applications
related to procedural content generation for digital games.

As future work, it is seen the need to extend the architecture to-
wards an approach to manage and apply artificial intelligence tech-
niques capable of providing means to capture the subjectivity con-
nected with the process of evaluating the quality of the generated
artifacts, turning it into simple metrics that allow their treatment
at a higher level. Future works should also study the feasibility of
extending the architecture to be used in more complex scenarios,
also aiming at its validation in different contexts, in order to offer
a solution to a wider range of applications of procedural content
generation for digital games.

REFERENCES

[1] E. Carpenter. Procedural generation of large scale gameworlds. Mas-
ter’s thesis, University of Dublin, Trinity College, 2011.

[2] D. Ebert. Texturing & Modeling: A Procedural Approach. Morgan
Kaufmann series in computer graphics and geometric modeling. Mor-
gan Kaufmann, 2003.

[3] J. Gregory. Game Engine Architecture, Second Edition. A. K. Peters,
Ltd., Natick, MA, USA, 2nd edition, 2014.

[4] S. Greuter, J. Parker, N. Stewart, and G. Leach. Undiscovered worlds–
towards a framework for real-time procedural world generation. In
Fifth International Digital Arts and Culture Conference, Melbourne,
Australia, volume 5, page 5, 2003.

[5] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup. Procedu-
ral content generation for games: A survey. ACM Trans. Multimedia
Comput. Commun. Appl., 9(1):1:1–1:22, Feb. 2013.

[6] R. Johnson, E. Gamma, J. Vlissides, and R. Helm. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[7] B. Kachscovsky. Interactive methods for procedural texture genera-
tion with noise. Master’s thesis, Uppsala University, Department of
Information Technology, 2015.

[8] J. Keane. Procedural generation of planets in real-time. Undergraduate
thesis, Teesside University, Middlesbrough, England, UK, 2014.

[9] A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D. Ebert,
J. Lewis, K. Perlin, and M. Zwicker. A survey of procedural noise
functions. Computer Graphics Forum, 29(8):2579–2600, 12 2010.

[10] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varshney. Level
of Detail for 3D Graphics. Elsevier Science Inc., New York, NY, USA,
2002.

[11] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator. ACM Trans. Model. Comput. Simul., 8(1):3–30, Jan. 1998.

[12] A. Meer. Biomeshock: The new minecraft worlds.
http://www.rockpapershotgun.com/2010/10/27/biomeshock-the-
new-minecraft-worlds, October 2010. Accessed: 2015-10-21.

[13] K. E. Merrick, A. Isaacs, M. Barlow, and N. Gu. A shape grammar ap-
proach to computational creativity and procedural content generation
in massively multiplayer online role playing games. Entertainment
Computing, 4(2):115 – 130, 2013.

[14] F. Miranda, C. Cordeiro, and L. Chaimowicz. Um sistema para
geração procedural de terrenos pseudo-infinitos em tempo-real uti-
lizando gpu e cpu. In Proceedings of VII Brazilian Symposium on
Games and Digital Entertainment, pages 113–116, Rio de Janeiro,
RJ, BR, 2009.

[15] N. Nandapalan, R. Brent, L. M. Murray, and A. Rendell. High-
performance pseudo-random number generation on graphics process-
ing units. Parallel Processing and Applied Mathematics, 7203:609–
618, 2012.

[16] R. Nystrom. Game Programming Patterns. Genever Benning, 2014.

[17] N. Pandeey. Implementation of leap ahead function for linear congru-
ential and lagged fibonacci generators. Master’s thesis, Florida State
University, 2008.

[18] I. Parberry. Designer worlds: Procedural generation of infinite ter-
rain from real-world elevation data. Journal of Computer Graphics
Techniques (JCGT), 3(1):74–85, March 2014.

[19] K. Perlin. An image synthesizer. In Proceedings of the 12th Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’85, pages 287–296, New York, NY, USA, 1985. ACM.

[20] N. E. Rudzicz. Arda: A framework for procedural video game content
generation. Master’s thesis, McGill University, School of Computer
Science, 2009.

[21] C. E. C. Vieira, C. C. Ribeiro, R. de Castro e Souza, and P. U. C.
do Rio de Janeiro. Geradores de números aleatórios, 2004.

[22] S. Worley. A cellular texture basis function. In Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’96, pages 291–294, New York, NY, USA, 1996.
ACM.

[23] G. N. Yannakakis and J. Togelius. Experience-driven procedural con-
tent generation. IEEE Trans. Affect. Comput., 2(3):147–161, July
2011.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 99

	157525
	157525

