
A modular GPU raytracer using OpenCL for non-interactive graphics
Henrique Nunes Jung∗ Vinicius Jurinic Cassol†

Universidade do Vale do Rio dos Sinos, Escola Politécnica, Brazil

ABSTRACT

We describe the development of a modular plugin based raytracer
renderer called RenderGirl suitable for running inside the OpenCL
framework. We aim to take advantage of heterogeneous comput-
ing devices such as GPUs and many-core CPUs, focusing on paral-
lelism. We implemented the traditional partitioning scheme called
bounding volume hierarchies, where each scene is hierarchically
subdivided into axis-aligned bounding boxes, so a ray may only
need to traverse a subset of geometry by traversing the BVH and
discarding objects it surely cannot hit, optimizing the rendering
process. These structures were implemented on a many-core high
parallel architecture suitable for OpenCL, which needed a specific
binary tree structure implementation ready for stackless traversal
on GPUs. RenderGirl is split between two main portions: Core and
Interface, where the Core portions provide the bulk of ray-tracing
operations and manage the communication with OpenCL; and the
interfaces provide communication with a given host program, seek-
ing modularity. In this paper we describe our results and perfor-
mance gains with our partitioning scheme.

Keywords: GPGPU, OpenCL, computer graphics, raytracing

1 INTRODUCTION

Platforms for general purpose computing using GPUs started when
NVIDIA1 released its GPGPU platform called CUDA2, which is
capable of running only on NVIDIA hardware. OpenCL3 was born
sometime later using the label heterogeneous computing, in order
to specify that the platform was supported by many kinds of hard-
ware and computer processors, including CPUs and non-NVIDIA
GPUs, which could be implemented by any vendor interested in
developing hardware focused on parallel computation.

Within this context, this work aims to provide a modular plugin-
based raytracer software that takes advantage of the parallel capa-
bilities of modern GPUs while maintaining hardware agnosticism
by using the portability OpenCL provides to hardware vendors and
developers. By being modular, it’s also capable of running inside
larger 3D suites such as Blender, this way we can delegate other
tasks to the host 3D program and focus on the rendering tasks. We
developed a C++ application and a reference plugin for Blender,
used to validate this architecture. The code has only portable sys-
tem calls and OpenCL function calls.

There are several acceleration structures meant to increase the
efficiency of rendering, which are called spatial data structures.
Some of these structures are bounding volume hierarchies (BVH),
binary space partitioning, trees, quad-trees and octrees. They hi-
erarchically subdivide a scene so that the queries for their objects
become faster [1, Chapter 14.1]. For RenderGirl, we developed

∗e-mail: henriquenj@gmail.com
†e-mail: vjcassol@unisinos.br

1NVIDIA website http://www.nvidia.com/
2CUDA homepage http://www.nvidia.com/object/cuda_home_new.html
3OpenCL on Khronos Group website https://www.khronos.org/opencl/

a variant of the BVH partitioning structure suitable for stackless
traversal on the GPU.

Our contributions include:

• A renderer independent of a given 3D software.

• A raytracer designed to take advantage of parallel computa-
tion capabilities of modern GPUs and other OpenCL-capable
devices.

• A modular architecture with replaceable components that
communicates with a known interface.

• Usage of acceleration structures suitable for storing scene in-
formation inside OpenCL architecture.

2 RELATED WORK

Applications that provide GPU rendering capabilities for non-
interactive graphics include Blender Cycles4 , Octane render 5, V-
Ray renderer 6, Redshift 7 and Indigo renderer 8. Indigo and Cy-
cles both claim to run using the OpenCL framework. Cycles is the
only one that is free software; originally it only supported CUDA-
capable devices, but newer versions of Blender ship with Cycles
that works with limited features also on OpenCL, although the de-
velopers specify that the CUDA platform is more mature 9.

Recent related work on the computing literature includes: Áfra
and Szirmay-Kalos propose a novel traversal algorithm for BVH
that doesn’t use a stack, and can be executed both on CPU and GPU
platforms. They introduce the concept of bitstack, which is an inte-
ger used in the place of a stack [8]. Kalajanov and colleagues pro-
pose an acceleration structure using hierarchical two-level grids im-
plemented in CUDA, which can eliminate problems arriving from
using a single uniform grid for subdividing a scene. They call it the
"teapot in a stadium" problem, where a great amount of objects is
allocated on a single cell of the uniform grid [2]. Ravichandran and
colleagues propose a parallel divide and conquer raytracing suited
for GPUs. Divide and conquer ray tracing removes the need of
creating an explicit acceleration structure once per frame, instead
it creates an approximation using bound boxes [4]. Shumskiy and
Parshin write a comparative study of ray-triangle intersection algo-
rithms, how they perform on GPU hardware and how BVH accel-
eration structures can be optimized for each one. They point out
that some of their results differ from generation to generation of the
same line of GPUs due to changes in the micro-architecture. [5].
Wong and colleagues propose an optimization method for GPU ray
tracing by dividing objects into view-sets based on light and cam-
era position, the BVH is then built using these views-sets, this way
the amount of triangles on the BVH is reduced [7]. A great portion
of these works deal with acceleration structures for GPU raytracing
- e.g. kd-trees, BVHs -, which indicates the complexity of these
structures on GPU hardware.

4Cycles website http://www.blender.org/manual/render/cycles/
5Octane website https://home.otoy.com/render/octane-render/
6VRAY website http://www.chaosgroup.com/en/2/vray.html
7Redshift website https://www.redshift3d.com/products/redshift
8Indigo website http://www.indigorenderer.com/
9Cycles GPU rendering page http://www.blender.org/manual/render/

cycles/gpu_rendering.html

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers 

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 194



2.1 Contextualization
Our work differs from the previously mentioned publications by
focusing on modularity and portability, both of hardware and oper-
ating system.

3 METHODOLOGY

We developed a GPU raytracer using the OpenCL framework called
RenderGirl10 licensed under LGPL. We try not to pose any restric-
tion on the use of the software regarding its host program, so anyone
can implement their own interfaces.

The host program of RenderGirl is Blender, which provides all
the base functionality of a 3D software suite. RenderGirl con-
nects with Blender through its Python API and implements a Ren-
derEngine interface. The host software performs all communica-
tion with the final user through its own GUI.

4 ARCHITECTURE

RenderGirl is composed of a core that communicates with a given
interface.

The core portion is a static library that provides an API for re-
ceiving the 3D scene structure - vertices, triangles, objects, cameras
and lights - and the OpenCL device selection. It performs all of the
communication between OpenCL and the interfaces, handling its
context. The output of the render is an array of pixels with the
rendered frame. The core also provides the Log Subsystem dedi-
cated to log operations. Most of the interactions with the raytracer
occur using a shared object called RenderGirlShared, which is im-
plemented as a shared singleton. Scene structures are managed by
a singleton called SceneManager, providing an API for setting up
a scene using RenderGirl data structures; it’s also responsible for
subdividing the scene into BVH structures and making it suitable
for OpenCL memory models.

The interfaces can be anything from executables to dynamic li-
braries, depending on the plugin interface provided by the host 3D
program. Interfaces link themselves to the core at compile time and
translate all the requests from the host program. They can pick in-
dividual features to support, and a given interface may support only
a subset of features of the core. Three interfaces are provided as
examples, they are:

• Console interface: The simplest interface. It is linked to the
core and compiles as an executable. It only provides options
for OBJ loading and does not output any image file. It’s useful
for porting the Core to other platforms and making sure it’s
working.

• wxWidgets interface: compiles as a standalone application
with a GUI for loading OBJ files and render models, using
the wxWidgets11 toolkit. The user can choose attributes of the
scene like camera position, color of light source and the out-
put image format. It’s likely to be deprecated over the Blender
plugin interface due to the amount of dependencies it carries.

• Blender Plugin: the Blender plugin is the interface we provide
as reference design to other interfaces for RenderGirl.

4.1 OpenCL scheduling model
OpenCL dispatches each execution of the raytracer by running a
piece of code called kernel. Each kernel runs once inside a work-
item which belongs to a work-group. The exact nature of the exe-
cution will be hardware dependent - e.g. a work-item can become
a thread -, we assume that each work-item can work independently
with no knowledge of other work-items, and therefore the kernels
do not perform any synchronization.

10RenderGirl project page https://github.com/henriquenj/rendergirl
11wxWidgets website http://wxwidgets.org/

We launch one work-item executing one kernel per pixel of the
image. Each kernel will then build a ray based on pixel location
within the image to be tested for collision against the BVH struc-
ture, where each ray may reach a leaf node, in which case it must
test against all the geometry of that object. This approach works
well in parallel because it does not require any synchronization
among work-items, hence it’s well suited for GPUs.

4.2 Scene structures
In order to make a 3D scene fit into an OpenCL compatible struc-
ture, we must not rely on complex data structures such as linked
lists and dynamic arrays. Pointers can only be used with a fea-
ture called shared virtual memory, however it’s only available on
OpenCL 2.0, and NVIDIA still has its implementation running on
1.2, so we didn’t want to rely on SVM.

Figure 1 shows how the 3D geometry is organized within the
target device. The structure is similar to the OBJ file format. The
core concept are the global buffers, they collectively describe the
geometry of the entire scene. E.g. the vertices buffer contains all
vertices for the entire scene. The vertex buffer is indexed by the
triangle buffer. The triangle buffer is then divided into regions that
compose the objects. An object’s metadata array describes where
each object starts on the triangle buffer and where it ends.

4.3 Acceleration structures
Acceleration structures are commonly used on ray tracing in order
to avoid expensive and inefficient brute-force ray-triangle intersec-
tion tests for the entire scene. With these structures, using a given
ray, we can query for only a subset of triangles and perform the
intersection tests on them.

Thrane and Simonsen conduct a study comparing three different
acceleration structures and their implementations on GPUs: bound-
ing volume hierarchies, kd-trees and uniform grids. On their exper-
iments, they concluded that BVH outperforms the other two except
for a few cases, citing the simpler nature of the traversal code with
minimal branching as the most likely responsible for the good re-
sults [6]. After careful consideration of their results, we chose BVH
for our own implementation.

The process of using acceleration structures is usually divided
in two steps: construction and traversal. The BVH was originally
proposed by Kay and Kajiya[3], they describe an implementation
using convex hulls as bounding volumes for each level of the tree.

For our BVH in GPU, the construction portion is roughly the
same as described by Kay and Kajiya. The BVH is built as a binary
tree where at each level objects are sorted by their absolute position
either in the X or Y axis, the collection of objects is then split into
half, composing the two children of that node. The axis used for or-
dering are swapped at each level of the tree in an attempt to make a
fair distribution of objects. This process of ordering and division re-
peats itself until the collection of objects is reduced to one, making
it a leaf node, which then contains all the geometry of that particular
object. The major difference between our approach is that we use
axis-aligned bounding boxes(AABB) as bounding volumes instead
of convex hulls, since the traversal code is less complex, although
with a much less tightly fit bounding volume. Thrane and Simonsen
mention that there’s a great penalty of running complicated code on
the GPU[6]. Every node holds an AABB fitting all the geometry of
its child nodes, so a ray must only test a collision against the AABB,
if the collision fails, the algorithm can discard that sub-tree and re-
sume processing on the next sibling node. If the program reaches
a leaf node, then the ray must be tested against all the geometry of
that object within the leaf node. All the construction phase happens
on the CPU.

On the traversal step, we implemented the traversal algorithm
described by Thrane and Simonsen in their master thesis[6]. The
main problem to be solved here is to overcome the lack of stacks on

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers 

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 195



Figure 1: The relationship of each data buffer that composes the geometry within the OpenCL device. Dotted arrows represent an integer index
that points to some other array. The BVH will be covered in its own section.

GPU hardware, since tree traversal algorithms are usually imple-
mented using recursion. The key difference from traditional CPU
implementations is that we build a fixed-order traversal array on
the CPU and only iterate over it in the GPU, so we never trans-
mit the tree to the OpenCL device but rather the iteration itself.
The traversal array already contains the nodes we must intersect in
the correct order. The BVH node on the traversal array has three
properties: the AABB that fits all the geometry of that node and
its children, the escape index and an index that points to an object
in the global list of objects. The escape index represents the in-
dex where the traversal should resume if the current node’s AABB
fails to intersect with the ray. If the traversal should end, the escape
index is equal to the size of the traversal array, acting as a global
escape index. This can be visualized on figure 2. The object index
is only valid in child nodes, and it’s flagged as -1 when in a middle
node. The traversal is done in a top-bottom left to right order. The
algorithm for traversal is detailed on Algorithm 1.

Algorithm 1 BVH traversal on OpenCL device
1: Given a ray r
2: tarray ← The traversal array
3: s← size of traversal array
4: index← 0
5: while index < s do
6: node← element from tarray at index
7: if r intersects with node’s AABB then
8: if node is a leaf node then
9: Executes ray-triangle intersection with all triangles

on this leaf node and return the nearest
10: else
11: index← index + 1
12: end if
13: else
14: index← node’s escape index
15: end if
16: end while

5 RESULTS

We tested our raytracer implementation by running it from Blender
using a variety of scene configurations. We aim to test different
kinds of object distributions in order to test how the BVH performs
on each case. We used the following test scenes:

• Scene 1: A simple scene depicting a table and some kitchen

0

4

8

E

5

7

D

6

C

1

3

B

2

A

9

Figure 2: Visualization of the BVH as a tree. The numbers indicate
the order of visiting. Dotted arrows represent where the traversal
should resume if the ray fails to hit the AABB. 9 is the global escape
index. Each leaf node holds an index to the global array of objects,
here depicted as a triangle.

objects. It contains 21.424 vertices, 42,848 triangles divided
into 28 objects.

• Scene 2: The same scene as before but with several evenly
distributed tables. It contains 203.644 vertices, 405.242 trian-
gles divided into 233 objects. See figure 3.

• Scene 3: A scene with a single whale object containing 8.432
vertices and 16.764 triangles. See figure 4.

• Scene 4: A scene depicting a cabin. It contains 93.570 ver-
tices, 178.104 triangles divided into 250 objects. See figure 5.

The figure 6 shows ours results using the scenes described previ-
ously. All tests were executed on a NVIDIA GeForce GTX 970 us-
ing driver version 353.30. The OpenCL specification version used
by this driver is 1.2.

From the graph we can see that the BVH works well with scenes
that are already divided into several objects. Scene 1 and 2 are good
fits for the algorithm because most leaf nodes have a low amount
of geometry, and the increase of resolution plays little role in the
rise of time. We can observe that the single object scene does not
perform as well as the other two, since in scene 3 a single object
holds all geometry, so we can observe that the BVH has little to no
improvement, since all rays certainly hit the AABB covering the
whale, and in the end the GPU has to test against all the geometry

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers 

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 196



Figure 3: Scene 2 with the tables Figure 4: Scene 3 with the single whale ob-
ject Figure 5: Scene 4 with the cabin

0 500 1,000 1,500 2,000
0

1,000

2,000

3,000

4,000

62 125 218
374296 375

501
695

203

829

1,875

3,227

314

779

1,521

2,540

Resolution

M
ill

is
ec

on
ds

The time of rendering for each scene

Scene 1
Scene 2
Scene 3
Scene 4

Figure 6: Rendering time of the four scenes across different resolu-
tions. Resolution value represents both width and height.

of the object for almost all rays. This is due to the fact that the
BVH partitions objects, but it does not split geometry, so it depends
if the scene is already well divided into suitable chunks. An object
with a large amount of triangles that covers most of the frame will
certainly slow down any rendering, even if the triangle count of the
scene is relatively low. Scene 4 also performs poorly even though
it has a good amount of objects, the reason for this is that we have
a floor object on the scene that contains a great amount of triangles
and covers most of the frame, creating a situation like the whale
scene.

6 CONCLUSIONS AND FUTURE WORK

The BVH performed well within the scope of its ability, providing
good speedups , even if with some known weaknesses of the accel-
eration structure. For a future development, we could implement an
hybrid of kd-tree and BVH by partitioning objects that are above a
given threshold of triangle count, which would speed up cases like
the whale scene. Although we must still exercise caution on the
complexity of the partitioning scheme, since the generation of the
structures are done on the CPU side and it’s serialized, while the

traversal and ray intersection operations takes full advantage of the
OpenCL device. For instance a BVH that takes 3 seconds more to
generate must save at least 3 seconds worth of processing on the
device, so a solution for the worst case of the BVH should taken
into consideration the whole context of the application.

The plugin architecture was validated by embedding the Core
on three different interfaces that can make use of the same library,
e.g Blender can run the unmodified RenderGirl that is also embed-
ded on the other two interfaces. We can also take advantage of all
the facilities Blender provides, such as image saving, 3D geometry
loading and triangulation features. This spare us of having to im-
plement all from scratch, enabling our work to be focused on the
rendering itself.

REFERENCES

[1] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-Time Rendering
3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

[2] J. Kalojanov, M. Billeter, and P. Slusallek. Two-level grids for ray trac-
ing on gpus. 30:307–314, April 2011.

[3] T. L. Kay and J. T. Kajiya. Ray tracing complex scenes. In ACM SIG-
GRAPH computer graphics, volume 20, pages 269–278. ACM, 1986.

[4] S. Ravichandran and P. J. Narayanan. Parallel divide and conquer ray
tracing. SIGGRAPH Asia 2013, November 2013.

[5] V. Shumskiy and A. Parshin. Gpu ray tracing – comparative study of
ray-triangle intersection algorithms. GraphiCon’2012, pages 61–66,
October 2012.

[6] N. Thrane, L. O. Simonsen, and A. P. Ørbæk. A comparison of accel-
eration structures for gpu assisted ray tracing. Technical report, 2005.

[7] S.-K. Wong, Y.-C. Cheng, and S.-Y. Lii. Gpu ray tracing based on
reduced bounding volume hierarchies. pages 1–6, July 2012.

[8] A. T. Áfra and L. Szirmay-Kalos. Stackless multi-bvh traversal for cpu,
mic and gpu ray tracing. 33:129–140, November 2013.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers 

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 197


	157507
	157507




