Applying pathfinding techniques on the development of an Android game

Paulo Vitor Freitas da Silva* Saulo Moraes Villela

Universidade Federal de Juiz de Fora, Departamento de Ciência da Computação, Brasil

ABSTRACT

Mobile devices are present, more and more, in our daily life. As the most of these devices have low memory and low processing power, the developers need to be smart and creative to develop applications that can be performed quickly and efficiently. This work aims to face these limitations and apply artificial intelligence techniques, which usually require long time processing and large memory usage, on the development of an Android game. We chose the Android platform because it is the most popular nowadays for mobile devices. We developed a maze game, where the player must follow a path to reach a goal, escaping from enemies. The enemies use pathfinding techniques, trying to reach the player. Each enemy has been implemented with a different pathfinding technique, and the behaviors and performances were evaluated and compared. We implemented the uninformed (blind) search strategies breadth-first search, depth-first search and uniform-cost (ordered) search, and the informed (heuristic) search strategies greedy search and A* search. We observed, as expected, that techniques using information of the problem domain are more promising, because they can find good paths and also run in a satisfactory time. Thus, we showed that it is possible to create an Android game, applying these methods, ensuring its fluidity and the user’s enjoyment.

Keywords: Android, Artificial Intelligence, Pathfinding, Mobile, Games

1 INTRODUCTION

It is well known the intense growth of the mobile market. With it, arises in the same proportion the demand for development of technologies and software that enhance the functionality of these devices. And one of these demands is, especially, the game development. The limitation of processing power and memory capacity of this type of device makes developers for mobile devices have to exercise their creativity and knowledge to create games that are able to run with these restrictions and bring entertainment to the user at the same time.

This paper describes the development of a game for Android devices where we apply artificial intelligence (AI) techniques, trying to face these limitations. The basic idea of the game is that the user guides a character through a maze to reach a goal point, running from enemies who, endowed with some AI methods, will follow paths to the player’s position or to the point goal, in order to arrive before the user or catch him. In this context, some AI techniques that we can use are pathfinding methods, among them breadth-first search, depth-first search, uniform cost (ordered) search, greedy search and A* search.

Mobile devices usually have limited processing power and memory. When developing for this type of device, the developer should be aware of these limitations. On the other hand, develop an application that uses AI techniques can require a lot of memory and machine processing, depending on the treaty issue. Therefore, to develop a game using such techniques is necessary to establish a balance between limiting the mobile device, the complexity of the technique to be implemented and the user enjoyment. That is, the game developed may not require much AI processing, to be able to play against the user, and should also bring some entertainment to the player. In this sense, this work raises the question: is it possible to develop an intelligent game that is executable on a mobile device which has considerable difficulty and that is funny for the player?

Video games make up a solid market, and it is not different on mobile devices. Every day there are new games for these devices, of different styles. Moreover, a special attention is given in the artificial intelligence field, including techniques applied in games. There is a public that enjoys cooperative and competitive games, where there is one or more opponents to play against or in groups. In this context, it is reasonable to develop a game with some AI techniques, able to play against a player, and it is more interesting implement this idea on a mobile device, given its market size, and also given the challenges that arise when trying to apply AI techniques in such device. Creating this game can prove that it is possible for a mobile device entertain its users with games that can carry intelligence to assume the role of the opponent. Furthermore, it is very useful to obtain performance results of mobile devices when we use AI techniques, considering the response time, the memory usage, and other factors related to the device performance.

The main goal of this work is to implement and evaluate pathfinding algorithms in a game for Android. Thus, we can enumerate the following subgoals: implement pathfinding algorithms in a generic way for any graph; implement a game where an agent can follow a route implemented by a pathfinding algorithm; adjust some parameters (map size, number of AI agents etc.) in order to obtain a fluid game; evaluate the game performance and its pathfinding algorithms in a mobile device, comparing the results in different scenarios.

The remainder of this paper is organized as follows. Section 2 gives an introduction to Android and a summary of how to develop to this operating system (OS). Then, section 3 shows the pathfinding methods, since theirs basic structure to the particularities of each method used in this work. After, section 4 presents the implementation details of the game, including the class modeling, the search methods implementation, the code structure, the graph construction, the map editing etc. In section 5 we have the experiments and their results. Finally, in section 6, we present some conclusions of the work and some suggestions for further works.

2 ANDROID

Android is an OS for mobile devices, open source, based on Linux kernel. Its development has been started by Android Inc., which was acquired by Google in 2005 [6]. In 2007, Android become developed and maintained by Open Handset Alliance (OHA), which is an alliance of 84 companies and led by Google [7]. Nowadays it is the most used OS in mobile devices. In the second quarter of 2015 it held 82.8% of the mobile market [5].

Android applications are mostly developed in Java, one of the most used programming languages in the world. Moreover, it is free, and open source. It is object-oriented and has a wide availability of libraries that help implementation. Other languages may also be used to program Android, such as C or C++, using a set of tools called NDK (Native Developer’s Kit) [1]. Compiling an appli-
cation for Android generates an APK package, and it is considered an Android application.

Google provides an official tool to develop for Android, called Android Studio, where we can program natively in Java [2]. There is a great community to support programming for Android, and Google provides an extensive material containing examples, step-by-step and others to support the creation of applications [4].

Firstly, to program for Android, the developer must choose which will be the minimum API (Application Programming Interface) level, or, in other words, the minimum Android version compatible to the app. The API may differ from each other, with respect to the support methods and Android libraries. To develop the proposed game and test the search algorithms, we chose the 4.1 version, since it is present in devices that exhibit good configuration, and moreover, the latest versions are capable to run an application of that version. Nowadays, 4.1 or higher versions are present in 95.7% of Android devices [3].

Secondly, for programming we chose the Java language because it is natively supported by Android Studio and has the necessary and sufficient resources for the development. Moreover, the game does not use advanced rendering functions that require an optimized language. The chosen API provides the necessary resources to run application with a good performance. When a Java code is compiled for the chosen API, it is converted to a bytecode that runs by the Dalvik virtual machine, which is especially built for Android, rather than Java virtual machine supplied by Oracle [6].

3 Pathfinding techniques

The purpose of using pathfinding techniques is to find a path between the starting point and the goal point on a map, maze or graph for example. Some of these techniques generate states exhaustively, covering all possible paths until find a solution, and others use heuristics or evaluation functions that guide the search, in order to find the solution more quickly and reduce the consumption of computing resources, generating less states, without losing the solution quality compared to exhaustive methods.

3.1 Structure of a pathfinding algorithm

A pathfinding algorithm uses a tree as the main structure. The search is performed during the tree construction, and the addition and expansion of its nodes follow a criterion established by the algorithm. Each tree node represents a state of the search and has the information of what was the parent node who generated it, the action applied to create it, and the path cost from the initial node (root) to it [8].

The edges that connect the nodes can have a value of local cost, which is the transition cost between the nodes connected by the edge. Usually this local cost is associated with the action that created such edge.

In addition to the tree structure, there is usually the use of two lists: the list of open nodes, that contains the generated nodes that have not been visited yet, and the list of closed nodes, that contains the expanded nodes, which have already been visited by the search. These lists can be consulted during the search to avoid the generation of repeated nodes, avoiding cycles (loops). Beside that, the list of closed nodes is used to retrieve the path found by the search if necessary. The order of expanding and inserting nodes in such lists may vary according to the pathfinding algorithm used.

When a node is selected for expansion, all reachable nodes from it are generated and inserted into the list of open nodes, and the expanded node is then inserted into the list of closed nodes and removed from the open list. In the proposed game the insertion of an expanded node in the closed list is carried with the information of who is your parent, so we can retrieve the path obtained by the algorithm when it found a state that is the goal point.

3.2 Uninformed methods

When the pathfinding algorithm is an exhaustive method, it is classified as uninformed method [8]. The solution is obtained by the exhaustive expansion of the nodes. That is, given a node, the method will generate all the next possible nodes, and the next node to be expanded will be selected according to the order in which it was generated, not considering any information of the problem domain. The visit and the expansion of the nodes are performed systematically through a graph. These methods are also known as weak methods. We implemented three uninformed methods: breadth-first, depth-first, and ordered searches.

The breadth-first search generates and expands nodes laterally in the tree. Thus, the tree is generated from level to level. That is, all the nodes of a level d are expanded before any node of the level $d+1$. The criterion for selecting a node to expand is to select the one that is the most time on the list of open nodes, that is, this list has the behavior of a queue. The next node to be expanded will be one on the same level of the newly expanded, or the first generated at the next level when there are no more nodes on the same level.

The depth-first search expands and generates vertically states, firstly performing the search to the ‘deepest’ node on the tree, then the next deepest, and so on. Given a node at a level d, all of the deeper nodes are visited and expanded before returning to the parent at the level $d-1$. To expand a node is selected from the open list one that is less time on the list, so the list has the behavior of a stack. In certain cases, it is not guaranteed that the method stops generating nodes. Depending on the problem the algorithm could generate nodes infinitely while there are computational resources. When this kind of problem can occur we can use an extension of the depth-first search, where the depth of the search tree is limited, i.e. the method generates nodes up to a given depth, and if a solution is not found the maximum depth is incremented and the process is repeated. This also allows to establish a maximum size for the path, since the tree depth indicates the size of the found path. In the case of our game there is no need to limit the depth, because, as shown in section 4.5, the application checks if it is not generating repeated states by consulting the open and closed lists, and there is no possibility of generating states infinitely, as the maze shows a limited number of nodes.

In the case of breadth-first and depth-first searches, a sequence of actions that will have priority to expand the nodes must be defined. For our game, we decided that the methods should try to go first to the north, west, south and then east.

Finally, the ordered search (also known as uniform-cost search) expands nodes selecting the one that has the lowest accumulated cost on the open list. This cost is the sum of the local costs of each edge on the path taken since the root to the current state. It is usually used in graphs that have costs on their edges (or weighted graphs). This method is not considered an informed method (see section 3.3) because it does not use data relating to the state as an expansion criterion, but only the path cost from the root to the state. Using this criterion, the ordered search can find the shortest path, i.e., the path with the lowest possible cost on its edges, not the path with the least number of edges as the breadth-first search. In the case of the developed game, the transition cost of the states is constant (as shown in section 4). Therefore, this search has a similar behavior to the breadth-first search, since the cost of a node is equal to its depth on the search tree, doing the method select a node for expansion on the lowest level of the search tree, as the breadth-first search. Nevertheless, for a comparison purpose, the ordered search was also implemented for the proposed game.

3.3 Informed methods

When a search uses some heuristic function, it is considered an informed search [8], where the selection of a node to expand considers an evaluation function, denoted by $f(n)$, which is the main
factor that defines the method, where \(n \) is the current node. An informed method uses inherent information of the current instance of the problem and its states, in order to select those nodes that are more promising to reach the result faster.

An evaluation function can be defined in various ways, especially using cost information, which is usually denoted by \(g(n) \), and heuristic functions, which is denoted by \(h(n) \). As seen before on the ordered search, the cost is the value assigned to the transition from one state to another (the cost of the edge).

A heuristic function tries to predict an approximate value of the real cost from the current state to the goal. The heuristic used in the game of this work is the Manhattan distance, where are considered the current state and the destination point. The heuristic is obtained directly from the coordinates of the points on the Euclidean space. Considering a 2D space where the points are positioned with coordinates \(X \) and \(Y \), and the destination point \(P_2 = (x_2, y_2) \), the Manhattan distance of these two points is given by:

\[
h_{\text{manhattan}}(P_1, P_2) = |x_1 - x_2| + |y_1 - y_2| \tag{1}
\]

This heuristic is interesting when the problem works with a pattern of coordinates, where they are discretized, as on a matrix for example. The calculation is simple and can be done quickly.

The heuristic is admissible, since it never overestimates the real cost to reach the goal, i.e. it always estimates a lower or equal cost than the real cost. As in our game there is movement restrictions in the north, south, east and west coordinated poles, with no movements in diagonal, the minimum size of the path to be followed is calculated by this heuristic.

The heuristic is also consistent (or monotonic), since for each node \(n \) and each successor \(n' \) generated from \(n \) with an action \(a \), the estimated cost \(h(n) \) to achieve the goal from \(n \) is not greater than the cost of going from \(n \) to \(n' \) plus the estimated cost \(h(n') \), that is:

\[
h(n)
\leq \min(a,n,n') + h(n') \tag{2}
\]

This definition is a generalization of a triangle inequality, which says that each side of a triangle cannot be greater than the sum of the other two sides. Here, the vertices of this triangle are the nodes \(n, n' \), and the goal.

We implemented the informed methods greedy search and the A* search. In both searches, we select to expand the node with the lowest evaluation function on the list of open nodes, independently of its depth on the search tree. The evaluation function of the greedy search considers only the heuristic function and the A* search has the evaluation function defined as the sum of the cost and the heuristic values, as follows:

\[
f_{\text{greedy}}(n) = h(n) \tag{3}
\]

\[
f_{A*}(n) = g(n) + h(n) \tag{4}
\]

In the proposed game, where the cost is uniform, the A* evaluation function always has a constant value during the search when it generates states that approach the goal, because given a node \(n_1 \) with an heuristic value \(h_1 \) and cost \(g_1 \), walking a step to an adjacent node \(n_2 \) approaching the goal, the heuristic value \(h_2 \) is \(h_1 \) subtracted from one, but the cost will be increased by one. That is, with cancellations of constants, the evaluation function of \(n_2 \) is equal to \(n_1 \), thus:

\[
f_{A*}(n_2) = g(n_2) + h(n_2) = g(n_1) + 1 + h(n_1) - 1 = f_{A*}(n_1) \tag{5}
\]

That is, we must define the algorithm’s behavior in case of a tie when choosing a node to expand. We chose arbitrarily to expand that node that is less time on the open list. On the other hand, when A* generates a node that is getting away from the player, the cost and heuristics values are both incremented by one, i.e. the generated node has an evaluation higher than its parent. So this node will only be selected to expand if there is no path through the other nodes with lesser value.

4 The Game

In this section we describe the modeling and implementation of the game and the pathfinding techniques.

4.1 Class modeling

The Figure 1 shows the class diagram projected for our game. As the main map representation we have the Board class, which stores the graph, the enemies and the player positions, the matrix to draw the map (maze), and the game states: victory (PLAYERWIN), defeat (GAMEOVER), game resuming (RESUME) and map construction (BUILDING_BOARD). This class is responsible for run the pathfinding algorithms for each enemy according to the user’s movements, and also provides methods to help the map editing.

The matrix (grid) is populated with pre-defined values of barrier (BARRIER), empty space (EMPTY) and the objective position of the player (GOAL). From this matrix the graph with its adjacency list is populated, as we show in section 4.3.

An instance of Board maintains an enemy list populated dynamically at runtime. Each enemy has an instance of the Search class, which keeps stored its origin point of the search (start), its objective point (end), its pathfinding method (searchType) and its graph under which the search is performed. The origin point is a direct reference to the enemy point, i.e., the enemy movement is mirrored with this point. The same happens with the destination point: as the goal of the enemy is to get in the player’s position, an user movement directly updates the end point. Thus, the project maintenance is facilitated, allowing the use of the pathfinding algorithms in different ways: the end point could be another convenient point in the map, as the goal point or other item that in future may be implemented, for example. In addition, an instance of Search keeps a list of points (path) indicating what was the path found by the search at the last run of the algorithm.

The Enemy and Player classes were implemented as inheritances of the Entity class, allowing the generalization of these objects for use of the searches.

The graph is represented by the Graph class with an adjacency list, and keeps in a separate instance the player objective point (GOAL). As a representation of a graph node we have theGraphNode class, which indicates the point node, its type (empty space or player goal), and its respective adjacency list. We cannot perform the search only with this class, since there is no storage for the cost and heuristic values used in some methods. For this, we have created the SearchNode anonymous class belonging to Search and as an inheritance of GraphNode. This class keeps the node cost, its evaluating value, and who is its parent node (dad).

4.2 Code structure

The classes in the project were divided in three packages: data structure (br.edu.ufjf.core), artificial intelligence (br.edu.ufjf.ai), and main game execution (br.edu.ufjf.main), which includes activities and visions of Android. In core package are the Board, Entity, Enemy, Player, Graph and GraphNode classes, whose details were discussed in section 4.1. In ai package we have the Search class, which is responsible for the pathfinding algorithms. Then, in main package, are the following classes:

- **Game**: activity that controls and displays the screen where the user can play;
- **GameView**: class that inherits from the View Android class, and implements the draw functions for play, and also handle the touchscreen events;
Each position in the grid is represented by a matrix, called the map, where given a position of the map the corresponding node is retrieved from the nodes stored in a matrix too, called the graph, since the map is represented by a matrix, the nodes are also stored in a matrix. When the map is changed, the graph is rebuilt by the GameInstanceManager class. To store the mazes in file we have implemented two anonymous classes: GameInstanceManager and EnemyInstanceManager. These classes convert the lists in static sized vectors, since the serialization on Android does not allow the storage of lists. Thus, the saved files are from GameInstanceManager type. When reading one of these files, its information is mapped back to a Board instance.

4.4 Storage of the mazes

The storage for the mazes is made using serialization in file, where an entire object in memory is saved in a file directly [6]. We have reserved ten files (slots) to store the maps. The GameInstanceManager class handles these files. To store the mazes in file we have implemented two anonymous classes: Instance and EnemyInstance. These classes convert the lists in static sized vectors, since the serialization on Android does not allow the storage of lists. Thus, the saved files are from Instance type. When reading one of these files, its information is mapped back to a Board instance.

4.5 Implementation of the pathfinding methods

The execution of the pathfinding functions is a responsibility of the Search class. The pathfinding methods implemented in this class are breadth-first (breadth_first), depth-first (depth_first), ordered, greedy (greedy), and A* (a_star) searches. The general functioning of these methods was discussed in section 3. We show the Java code for a generic search on the following listing, and further we show the specifics of each search.

```java
private void generic_search()
{
    List<SearchNode> openList = new ArrayList<>();
    List<SearchNode> closedList = new ArrayList<>();
    SearchNode dadNode = new SearchNode(graph.
        getNode(start));
    SearchNode sonNode = new SearchNode(graph.
        getNode(goal));
    openList.add(dadNode);
    while(!openList.isEmpty()&&!reachedObjective()){
        openList.remove(dadNode);
        closedList.add(dadNode);
        for (GraphNode adjNode : adjacency) {
            sonNode = new SearchNode(adjNode);
            if (!closedList.contains(sonNode)) {
                adjacancy = dadNode.adjacency;
                contains = false;
                if (!closedList.contains(sonNode) &&
                    !closedList.contains(sonNode)) {
                    closedList.add(sonNode);
                }
            } else {
                sonNode = new SearchNode(adjNode);
            }
        }
        dadNode = selectNextNode(openList);
    }
    buildPath(dadNode);
}
```

In this code, the list of open nodes is the openList object, and the list of closed nodes is the closedList object. While the open list is not empty (otherwise the search would not have found a path) or the current state of the loop does not match the position of the objective point (calculated by the reachedObjective() function), the function continues to expand states, inserting them into the closed list and inserting the new generated nodes into the open list. But, before the insertion of the generated nodes, the function verifies if they have not already been created by consulting the lists (between the lines 17 and 20). This step is important to prevent the search from loop. In this code the state that is being expanded is the dadNode object, and the newly generated node is the sonNode. At the end of the search, the buildPath() function is called to retrieve the calculated path.
path. It receives as parameter the last selected node for expansion, which corresponds to the objective point if a path has been found. From this node, this function retrieves the path using the parent node of each node, thus the path construction is made from the end to the beginning. The code of buildPath() is listed following:

```java
private void buildPath(SearchNode endOfPath) {
    path.clear();
    if (reachedObjective()) {
        SearchNode answer = endOfPath;
        while (answer.dad.point.x != start.x ||
               answer.dad.point.y != start.y) {
            path.addFirst(answer.point);
            answer = answer.dad;
        }
        path.addFirst(answer.point);
    }
}
```

Given a node of the path, it is inserted in path, then its parent node is selected, and so on. The while loop is only interrupted when the parent of the current node is equal to the starting point, indicating that the path was completely recovered.

The implemented pathfinding methods differ at two points in the generic search code: at node evaluation (line 11) and at node selection (line 22). On breadth-first and depth-first searches, the evaluation function have no effect. The difference between these methods is on the selection function: on the breadth-first search, we select the first node on the list of open nodes, and on the depth-first search we select the last one. The new generated nodes are always inserted at the end of the open list. Thus, in breadth-first search this list is a queue and in depth-first search this list is a stack. Thus, the techniques fill the search tree as described in section 3.2.

On the ordered, greedy and A* searches, a new generated node is evaluated by the evaluateNode() function. On the ordered search, this evaluation is the sum of the local costs of each edge on the path taken from the root to the point of the current state, as shown on the following code:

```java
private void evaluateNode(SearchNode sonNode) {
    sonNode.cost = dadNode.cost + Graph.TRANSITION_COST;
    sonNode.evaluation = sonNode.cost + Graph.heuristic(sonNode.point, end);
}
```

Since the cost is uniform, we have that the transition cost (TRANSITION_COST) is one. The evaluation of a new node is the sum of its parent cost and the transition cost.

On greedy search this evaluation is only the heuristic value of the node, as implemented on the following code:

```java
private void evaluateNode(SearchNode sonNode) {
    sonNode.evaluation = Graph.heuristic(sonNode.point, end);
}
```

Finally, on A* search the node evaluation is the sum of the heuristic value and the accumulated cost, as shown on the following code:

```java
private void evaluateNode(SearchNode sonNode) {
    sonNode.cost = dadNode.cost + Graph.TRANSITION_COST;
    sonNode.evaluation = sonNode.cost + Graph.heuristic(sonNode.point, end);
    openList.add(sonNode);
}
```

The heuristic function is a direct implementation of the Manhattan distance as defined in equation 1. The code of this function is:

```java
public static int heuristic(Point pl, Point p2) {
    return Math.abs(p2.x-pl.x) + Math.abs(p2.y-pl.y);
}
```

The node selection step is the same for the ordered, greedy and A* searches: they select the node with the lowest evaluation on the open list.

5 EXPERIMENTS AND RESULTS

5.1 The test mazes

For test the game and the pathfinding algorithms, we have created three mazes, storing them in files. In these mazes the enemies were arranged on the bottom right corner of the mazes, and the player was placed on the top left. Each enemy was colored with a different color: red for breadth-first search, blue for depth-first search, pink for ordered search, grey for greedy search and black for A* search. The player is the green point. The Figure 2 shows the test mazes, and the Figure 3 shows the disposition of the player and of the enemies with the indication of each pathfinding method.

The first maze has 30 units wide and 40 units high and has no barriers, thus its graph has 1200 nodes. That is, a pathfinding algorithm can generate 1200 states. This maze was created with the purpose of showing the general functioning of each algorithm on an open maze (without barriers). Each player movement implies on a new execution of each search algorithm to find a new path for each enemy. It is interesting to note that this maze has many optimal paths, so that some optimal methods found different paths.

It can be observed that the greedy and A* searches calculated the same path. The depth-first search gave a lot of laps to find a solution, as shown on Table 1. The breadth-first and ordered searches calculated different paths, although they found paths with the lowest possible cost as A* does. The ordered search tended to follow a diagonal path, given the way it select nodes to expand by choosing one with the lesser accumulated cost, and the breadth-first search followed paths with fewer curves, given its node selection that follows the order of precedence of the actions (north, west, south and east). The Greedy and A* searches displayed paths with fewer curves too, but they followed another direction due to the use of heuristics to expand nodes.

The second maze has 20 units wide and 30 units high. This maze was generated randomly and allows to show the behaviour of the pathfinding algorithms in a map with barriers. The player tried to reach the goal, indicated by the yellow square, but some enemies reached the player before.

We observed a similar behaviour of the algorithms in both mazes 1 and 2: the depth-first search calculated long paths, taking many laps. The A* and ordered searches always calculated the same path, and the greedy search followed different paths.

Lastly, the third maze was made with greater dimensions: 40 units wide and 50 units high. This maze was also generated randomly. In this case, the player reached the goal.

5.2 Results

We grouped the execution results of the pathfinding algorithms in the Tables 1 and 2. We collected the number of generated (Gen.) and expanded (Exp.) states, the size of found path (Size), and the runtime (Time) in milliseconds for each pathfinding algorithm. We show in Table 1 these numbers for each player movement in the first maze, and then the sum of these values for all 3 mazes in Table 2. The tests was executed in a Sony E1 Dual with 512 MB RAM and 1.2 GHz Dual-Core processor.

In the first maze the player has done 34 movements in total. In general we observed that the uninformed methods (breadth-first, depth-first and ordered searches) generated and expanded much more states than the informed methods (greedy and A* searches).
Figure 2: The test mazes. The smaller points indicate the path calculated for each enemy after the first movement of the player. The player
begins on the upper left corner and the enemies on the bottom right corner. The first map has 30 units wide and 40 units high, the second map
has 20 units wide and 30 units high and the third one has 40 units wide and 50 units high.

Figure 3: Identification of the game elements: player, goal and the
enemies with their pathfinding methods.

The difference of runtimes was also large: the uniformed methods took much longer to respond. The depth-first search deserves
a highlight for its abrupt change between the movements of the player: in some cases, this search has generated all possible states,
in other cases it generated fewer states than the breadth-first search and took less time, but never found a shortest path and the path
sizes varied widely. Moreover, in general, the sums of its values were very high. These variations can be observed at the game run-
time: the path indicated by the depth-first search varies all the time. This indicates how bad the depth-first search can be for a pathfind-
ing problem.

Although we said that A*, greedy, ordered and breadth-first searches always found the shortest path, note that the table shows
different path sizes to the same movement of such searches. This is because, as these searches followed different paths, at times a
player movement favored an enemy to approach it and detracted another to get away, which does not change the fact that these al-
gorithms find the shortest path considering the state of the game in every move, where the enemies are at different positions.

In the second maze the player has done 29 movements. In this
maze the depth-first search showed much variation between each
movement as in the first maze, despite their summations have not been larger. The breadth-first search also encountered paths with
the lowest cost, but presented runtimes and high numbers of gener-
ated and expanded states. The same has occurred with the ordered
search. In general, the greedy search presented the lowest times,
but for this maze it does not found the shortest path, despite using
heuristics. This occurs because it follows a path attempting to ap-
proach the player but ignoring the path cost, i.e., it can approach the
player but follow a large path, as it only uses the heuristic function,
as shown in equation 4. The A* search presented good values: the
number of expanded and generated states and the runtime were not
so high, and the path had the lowest possible cost, as expected.

In the third maze the player has done many movements (97 in total). In this maze the pathfinding algorithms showed similar be-
haviors to the other mazes, but the difference in results was higher
due to the larger size of the map.

These results show that the uninformed methods did not perform
well, which makes them strong candidates to be dropped from a fi-
nal version of the game. The informed methods have better results,
both in generating and expanding the states and in runtimes. How-
ever, the greedy search does not always find the shortest path, while
responds slightly faster than the A* search. That is, the use of these
two methods is interesting, and the greedy search can be used when
we want a faster response and without concern for its quality, since
this search is not optimal, and the A* can be used when we want to
get the shortest path with a good runtime.

6 Conclusion

This paper presented a study of the application of pathfinding tech-
niques in developing an Android game. As the results show, tech-
niques that use heuristics are the most recommended, since they
have better performance compared to other searches, which is al-
Thus, depending on the situation, the greedy search can be more interesting, without being impossible to beat. So, even if we are (player’s actions), and must also present a challenge that make it depth-first search), the greedy and A* searches performed better.

When compared to the uninformed methods (especially the uninformed depth-first search), the greedy and A* searches performed better. A game needs to be fluid, quick to respond to external stimuli (player’s actions), and must also present a challenge that make it interesting, without being impossible to beat. So, even if we are seeking for a search method with the best possible performance, it may not be so effective as to render impossible the user’s victory. Thus, depending on the situation, the greedy search can be more interesting, since it has low response time and does not always calculate the best path, which would give an advantage to the player.

The type of the proposed game requires almost an immediate response of the pathfinding algorithm, given the rapid dynamic of switching between a player movement and the enemies movements. It would not be interesting if the game had to stop its execution to calculate the movements, otherwise the whole dynamic would be broken. As shown in the results, some algorithms have answered only after two seconds, which, in this context, is a high time. It is better to give preference to algorithms that respond more quickly.

6.1 Future works

This game features an mechanics of alternation between plays, which requires a fast response time of the used pathfinding method. However, we propose another dynamic where the movements of

Table 1: Results of the execution of the pathfinding algorithms for the first maze. For each algorithm we show the number of generated (Gen.) and expanded (Exp.) states, the size of the found path (Size), and the runtime (Time) in milliseconds. We show these numbers for each player movement (Mov.).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 2: Summations of the execution data of the pathfinding algorithms for each maze. For each algorithm we show the number of generated (Gen.) and expanded (Exp.) states, the size of the found path (Size), and the runtime (Time) in milliseconds.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 3: Results of the execution of the pathfinding algorithms for the first maze. For each algorithm we show the number of generated (Gen.) and expanded (Exp.) states, the size of the found path (Size), and the runtime (Time) in milliseconds.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 4: Summations of the execution data of the pathfinding algorithms for each maze. For each algorithm we show the number of generated (Gen.) and expanded (Exp.) states, the size of the found path (Size), and the runtime (Time) in milliseconds.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 5: Results of the execution of the pathfinding algorithms for the first maze. For each algorithm we show the number of generated (Gen.) and expanded (Exp.) states, the size of the found path (Size), and the runtime (Time) in milliseconds.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 6: Summations of the execution data of the pathfinding algorithms for each maze. For each algorithm we show the number of generated (Gen.) and expanded (Exp.) states, the size of the found path (Size), and the runtime (Time) in milliseconds.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

ready expected according to the literature. In the case of the greedy search, despite using a heuristic function, it did not always calculate the shortest path, but had the lowest runtimes. The A* search always calculated the shortest path, and its runtimes were not much larger than the runtimes of the greedy search.
the enemies are calculated regardless of the player’s movement, according to some time interval. That is, the enemies will move all the time and it would require for the player to have a quick wit to trace a route to escape from them. In this case, the difficulty would be set by the time interval between the path calculations and the enemies speed. If the pathfinding function does not respond in time, an enemy could continue following a path previously calculated until a new one is obtained. In this context, it would be necessary the implementation of threads, thus bringing the concepts of parallel execution. Issues like synchronization of functions would have to be observed.

Another proposal is a maze in constant motion like a side-scrolling game. The maze would be generated randomly all the time, and the player would have to run away from enemies that are chasing it. These enemies would be always choosing the shortest path to the player, forcing it to choose the shortest path as well. If the player follows a larger path, the enemies would approach it, until one of them catches the player. In this game mode, it would not have a goal point. Instead, the goal would be just to break records: at each time, the player would try to go further. Nowadays many games use ranking mechanic, often synchronizing the players data on the cloud, in order to create a competition between them.

As shown, depending on the map and the positions of the entities, there may be multiple optimal paths. The pathfinding methods have been implemented in order to use the first optimal path found (in the case of optimal methods). However, it may be interesting to allow these methods to find all the optimal paths and then use some function to estimate where the player will follow to choose among the optimal paths which is closest to it. From this, we can also program the enemies to work together to try to hinder the player to follow different paths.

Finally, we also propose the inclusion of items in the game, which can be used by both the player and the enemies, making the pathfinding methods have new information to work: when choosing an item or not. This would require a new layer of artificial intelligence, which would work with probabilities, making the game more dynamic and making enemies have closer to a human player behavior. Examples of items are:

- Mobile barriers: blocks that can be moved, changing the map and requiring the graph update;
- Speed items: in cases that the game has constant movements of the enemies, it could have items that change the speeds of the player or of the enemies;
- Portals: items that allow the transport of an entity from a point to another instantly;
- Lives: the player could have a number of lives, thus, when it was hit by an enemy, it would lose a life instead of lose the entire game, while it has lives;
- Immunity: temporary effect that allows the player be hit by an enemy without anything happening.

The development of other elements, as a collaborative online mode between mobile devices (via Bluetooth or network wireless for example) and the sharing of custom mazes by cloud, is also encouraged.

ACKNOWLEDGMENTS

The authors would like to thank Universidade Federal de Juiz de Fora for the financial support, through scientific initiation scholarships (BIC/UJFF).

REFERENCES