
Dynamic terrains applying pseudo-infinity and synthesized by Bezier
curves

Rodrigo de Toni∗ Fernando Marson Vinicius J. Cassol

Universidade do vale do Rio dos Sinos(UNISINOS), Escola Politécnica, Brazil

Figure 1: Representation of Bezier curves as a terrain

ABSTRACT

This paper describes the development of a procedural pseudo-
infinite deformable terrain system. The proposed method intends
to deal with the high performance required by games. In this work
the terrains are synthesised using Bezier curves and are loaded and
saved automatically as needed, that is according to the camera po-
sition. The Heightmap’s generating process is, at some moments of
a game, an expensive task. Considering such aspect we perform
the Heightmap’s synthesis in the background of the application,
restricting it to a specific FPS target. Moreover, we developed a
deformation model which allows alterations in the HeightMap and
Texture. We have used texture arrays at the GPU level to prevent
sending unnecessary data. The performance of the system is mea-
sured both in the average FPS during the deformation of the terrain
and the time taken for the synthesis

Keywords:Real-time dynamic terrain, synthesis, procedural.

1 INTRODUCTION

Realism is a key feature of many modern games. Realistic graph-
ics and realistic physics are ways of immersing the player into the
game, another part of this realistic environment is interactivity, the
environment has to change according to the player’s actions. Some
of this interactions are easily done, such as opening a door but
changes that require a fundamental alterations to the game envi-
ronment are more complex (such as the explosion from a grenade
deforming the ground the player walks on).Often developers resort
to simplified versions of this change, such as swapping predeter-
mined geometries or simply painting a texture on the location.

In this work is presented a framework for a middle-ware to cre-
ate deformable terrains that using inheritance allows developers to

∗e-mail: rodrigodtoni@gmail.com

create any type of terrain deformation, and using markers a devel-
oper can define how a terrain will deform on specific regions of the
terrain. For example defining specifically how a sand region of the
terrain will be deformed.

Furthermore, the terrain and deformation model are integrated
with pseudo-infinity. Maintaining seamless consistency in an ever
expanding environment, and generating this terrains in a fast man-
ner so that it does not interfere with game-play.

The remaining of this paper is organized as the following: 2)Ba-
sic Concepts: A explanation of some of the basic concepts involved
in this paper, 3) Related Work: A brief overview of the scientific
literature surrounding this paper, 4)The Proposed Model: Presents
in detail the model being proposed, 5) Results: Shows the results
obtained using the proposed model and 6)Conclusion and Future
Work: Gives our final thoughts and possible continuations on this
line of work.

2 BASIC CONCEPTS

Heightmap is the primary concept behind most terrain systems[7,
10], it is a greyscale texture where each pixel represents the the
heights of the vertices’s within a 3D mesh-grid. For each vertex of
a mesh there is a pixel that alters the vertex’s position along the y
axis based on how close to black or white the pixel is.

Bezier curves are commonly used in computer graphics to create
smooth surfaces or paths, this are parametric curves taking control
points as input and averaging its position based on a value t, where
t is a value of 0 to 1, 0 being the starting point of the curve and 1
being the ending[8].

3 RELATED WORK

Many terrain systems seek to simulate infinite worlds large
environments[10, 2]. A truly infinite terrain system is impossible[6]
so this systems limit themselves to pseudo-infinity that being the
system will create new terrains as needed, and load the same terrain
at the same location to maintain consistency.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 170

Some terrain systems seek to simulate deformations, this terrains
are called dynamic terrains. In general there are two categories of
dynamic terrains: physics based and appearance based. Physics
based dynamic terrains simulate surface deformation on Soil Me-
chanics. Over the years several articles have been published de-
scribing the development of a physics based approach to dynamic
terrains[5], however the cost of this type of realistic simulation is
the high computational cost involved in using such complex physics
based algorithms. Appearance based dynamic terrains disregard
physics based calculations and try to create deformations that look
realistic, this is generally done using parameters that modify how
pre-determined behavior will occur[1],typically this approach ob-
tains greater performance than physics based methods but is more
limited on the number of different soils that it can simulate due its
simplified approach.

Another common feature of terrains in the scientific literature is
the procedural generation of its contents. There has been several re-
searches that developed techniques to synthesize Heightmaps, such
as Saunders[9], he proposes a genetic algorithm approach that uses
both real-world sample data in combination with user input, the user
gives a seed of what type of Heightmap they want(in the form of a
2D map of polygonal regions), and the algorithm selects from pub-
lic available data which DEMs fit the user requested Heightmap.
Another method proposed by Ariyan [2] utilizes a web of curves
to synthesize mountains with the center point of the web being the
peak, the user can define the peak and the algorithm simulates the
rocky formations of a typical mountain.

3.1 Contextualization
This paper focuses primarily on real-time modification to the
height-map and the terrain’s textures using a appearance based ap-
proach.The main contributions from this paper being: 1)A struc-
tured middle-ware that allows for the use of textures as markers to
alter how collisions and deformations will change on specific areas
of the terrain, 2)The deformation of terrains in a pseudo-infinite en-
vironment, requiring seamless deformation in several terrains and
3)A grid of Bezier curve approach to synthesizing terrains.

The objective in this work is to create a environment that allows
for any type of deformation to be developed, with the main focus
being towards video game. Since the focus in this paper is on real-
time processing and games a strong focus is placed on GPU and
Shader processing.

4 PROPOSED MODEL

The model proposed in this work uses pseudo-infinite terrains in
combination with appearance based deformation techniques. All
the terrains are synthesised using a curve based approach [2], more
specifically quadratic Bezier curves. The further sub-sections are
divided as follows: 4.1) Performance manager: This sub-section
explains our model for dividing processing over time so more com-
putationally expensive functions do not interfere with game-play,
4.2) Terrain creation: explains how the Heightmap and texture are
synthesized, 4.3) Deformation Model: elaborates on how the ter-
rain is altered on collision or by command and 4.4) Pseudo Infinite:
this final section explains how both prior sections are put together
in a ever expanding environment.

4.1 Performance manager
Several processes are too expensive to be executed in its entirety
during a game, that is without creating a noticeable FPS spike, pro-
cesses like synthesizing a terrain or saving this terrain’s information
into the hard-drive. So in our model such features are divided and
executed over a longer period of time, rather than executing it all at
once.

The performance manager is controlled by a predetermined
amount of time it is allowed to occupy in a single frame, that is

the class has a list of delegated functions to execute, when it ex-
ecutes a function the time it took to perform its task is added to
a timer, when the timer is equal or greater than the predetermined
time the manager waits for the next frame to continue to execute its
delegates. The form this delegated functions can vary, for example
to synthesize the terrain we execute a function SetHeight(int x,int
y) to generate a single pixel of the terrain’s Heightmap, so when
passing the SetHeight function to the manager we declare it to be
executed from x=0 to x=256 and the same for y.

4.2 Terrain creation
The terrain is synthesized using 3 point Bezier curves organized in
grid network, much like a Heightmap, the control points are equally
distributed along the X and Z axis with variation only on the Y,
where the P1(the first control point) is equal to P3(the last control
point) of the curve before it on the relevant axis (x or z), see figure
1. To have a smooth and seamless transition between one curve
to another, the middle control point (P2) has only to be in the line
created from the previous curve’s P2 and its curves P1. Than P1
and P3 are the only ones that are randomized, in this project we
used pseudo-randomization i.e each control point receives only a
small variation from the last one, with the exception of the first one.

So our model only randomizes the odd numbers control points,
with P2 being always smooth. The randomization process is
pseudo-random, that is, apart from the very first control point, every
control point is a small random increment from the previous con-
trol point. So after the first control point(P1) of the first curve(C1)
is randomized from 0 to 1, its final control point receives the Y
position of P1 plus a small random value from -r to r(where r is a
number smaller than 0.1).

With a synthesis based around curves connected in a grid format,
pseudo-infinity is a simple matter of connecting more curves to grid
(they do however must maintain a consistent size, a curve grid of
16x16 can only connect with another curve grid of 16x16). After
the generating the terrain’s Heightmap the terrain’s texture is gen-
erated based on its results, that is according to the height of a vertex
the pixels surrounding it will be of one terrain’s TerrainTexture’s
tile or another. The outcome here is based on developer input, the
model allows so that a texture has a range of height, so a texture of
rock may occupy the height space of 200 to 500.

4.3 Deformation model
Each vertex on the terrain mesh has several weights from 0 to 1 that
represent its connection to a TerrainTexture, we will call this val-
ues VT, so a vertex might have VT1= 0.5, VT2=0.25, VT3=0 and
VT4=0.25 (all the values put together must add up to 1), each one
representing its association with a different TerrainTexture. VT is
determined after the terrain creation and is based around the pixels
surrounding the vertex.

The VTs will determine how the vertex will be deformed. Ev-
ery TerrainTexture added to the terrain has a series of functions that
defines how the deformation will occur, the results are altered mul-
tiplied by the VTs associated with that TerrainTexture and added up
before altering the terrain.Than the deformation process is defined
by two functions from the TerrainTexture: 1)SetHeight: receives
the vertex and deformation info and returns a float. 2) SetPixel:
returns a color, receives the deformation info and the pixel infor-
mation as it relates to the vertex nearby i.e if there are 32x32 pixels
within a square in the mesh grid the function will receive its posi-
tion within this 32x32 coordinates.

Each one of this functions are virtual, meaning they will be over-
written by inheritance, so a developer can create as many types of
deformations as it pleases them on top of this class. Each Terrain-
Texture object can an instance of the same class or several different
ones. They receive as a parameter a object called ImpactInfo which
contains the following information about the collision: 1)Position:

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 171

a 2D vector containing the X and Y indexes of the mesh grid or
the texture. 2)Strength: The magnitude of vector that caused the
collision. 3) Area: A integer area in vertexes or in pixels of that is
being altered in this impact, equal for width and height. 4) Impact
Position: a 2D vector containing the X and Y indexes of the mesh
grid or the texture, so when Impact Position is 0,0 it is the bottom
left corner of the area affected by the impact. 5) Current Value: the
current pixel of value of the texture.

Outside of the process of altering the vertexes and texture some
other aspects of the terrain are relevant to the Deformation Model,
mainly the collision testing and how to treat it in a constantly alter-
ing environment and the rendering process for a terrain with con-
stantly changing mesh and texture, hence the following remaining
of this subsection is divided to deal with Collision and Rendering
respectively.

4.3.1 Collision

With the terrain’s shape being constantly altered it’s collider also
must be, however constantly recalculating a mesh collider and for a
large terrain is expensive. In order prevent this cost we only calcu-
late colliders where they may be relevant, that is whenever a object
(that may potentially collide with the terrain) is found within the
terrain’s bounding box, using fast indexation a collider is generated
for the area directly below this object, the area that this collider
occupies depends on the bounding box of the object.

4.3.2 Rendering

The terrain’s mesh is a grid of 254 by 254 and it is rendered using
shaders, in the shader the mesh is adapted to a Heightmap of 256 by
256(the mesh is limited to 254 to keep its total number of vertexes
within the range of a unsigned short integer, and the Heightmap is
kept with its dimensions at 256 to maintain it under the potency
of 2 which prevents unnecessary copying for the GPU). Still in the
shader the normals are calculated based on the vertexes adapted to
the Heightmap.

Since the proposed model presented in this work also seeks to
paint the terrain’s texture on real time it cannot send large textures
to the GPU, transferring a a 2048 by 2048 texture to the GPU can be
a computationally expensive task and a unnecessary one, if a colli-
sion occurs and it paints a single pixel it is unnecessary to send the
entire texture again to the GPU. In this model, in order to prevent
this unnecessary cost, we divide the terrain’s texture into 16 smaller
texture each representing a 4 by 4 division of the original texture,
so since the terrain would use a 2048 by 2048 texture instead now
it uses 16, this textures are placed in a 4 by 4 grid which are than
accessed in using fast indexation both in the GPU and in the process
of painting it in the CPU.

4.4 Pseudo-Infinite

Typically pseudo-infinite terrain systems use several small terrains
that surround the rendering camera [3], this terrains will constantly
re-position themselves and load(or if needed generate) Heightmaps
and textures as the camera moves, hence simulating a infinite world.
As good practice it is wise to keep this loading and generating pro-
cess invisible for the user (seeing it occur may break the illusion of
infinity) so while terrains are going trough this process they should
be invisible.

Using fast indexation we can map regions to a single terrain that
uses a grid like global positioning system, this is based on a consis-
tent pattern of width and height for all the terrains. So if a camera
is positioned in a vector (x,z) it is positioned in the terrain (x/width,
z/length). When a deformation occurs at the border of a terrain
instance, if the area of the deformation would overflow this ter-
rain, the Pseudo-Infinite system managing the terrains will apply
the remaining area of deformation in the appropriate neighboring

Figure 2: Repositioning Terrains as camera moves

terrain.If the deformation occurs and the neighbour is not yet syn-
thesized or even existent, the pseudo-infinite manager holds on to
that information so that is applied later.

Working with a 5 by 5 grid of terrains surrounding the camera,
where 0,0 is the bottom left, 4,4 is the top right and 2,2 is where the
camera is localized, in order to prevent unnecessary loading and
synthesizing processes, only the terrains that are outside of the area
of the camera go trough this, see figure 2. When the pseudo-infinite
system sees that a terrain is out of range of the camera and it will be
used elsewhere, the information of the the terrain is stored in a file,
a file unique to the terrain’s global positioning.All the terrains that
are on the borders of the grid (i.e the terrains that have x or y =0
or equal to 4) are always invisible and non-interactable by anyone
other than the Pseudo Infinite system, this is because rendering such
terrains is unnecessary as they are barely visible, being so distant,
and they are often the ones going trough the synthesis process .

5 RESULTS

In order the to validate our model we developed an application in
Unity3D 1, in the game engine’s version 5.4.1b. Due to several per-
formance issues with systems that use Unity’s native terrain system,
we opted to develop our own system. Such tests involve a number
of collisions and the area of this collisions(measured in equal di-
mensions of a square, so a collision with area 5 altered a square of
5pixels by 5 pixels) in varying amounts.

We aim here to get the minimum of 120 FPS, as previously es-
tablished by Crause as a standard for terrain deformation [4]. This
value is set as the bare minimum for video game development be-
cause most games aim for 60 FPS, and they also will involve a lot
more than just the terrain system, so some breathing room is neces-
sary.

Figure 3 specifies the tests and it’s results.Each tests are ex-
ecuted during a period of 1 minute and the resulting FPS is the
average FPS measurement over this 1 minute, the column Objects
describes the number of objects colliding and causing destruction
simultaneously, and area describes the fixed area of impact for all
of this deformations.

1www.unity3d.com

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 172

Figure 3: Deformation measurements

Outside of testing the performance of the deformation, the pro-
cess of creating the terrain is measured, figure 4 describes the set
of tests and their results that measure this aspect of our application.
The Target FPS is the parameter set in our Performance Manager
(see section 4.1) so that the synthesis is not allowed to occupy more
than this time, dimensions is the width and height of the terrain’s
Heightmap, the results are measured in seconds.All the synthesis
used 4 TerrainTextures and a texture of 1024 by 1024.

Figure 4: Synthesis measurements

Both of this set of tests were performed in a Dell computer, with
Intel(R) Core(TM) i5-4200-1.600 GHZ, a GeForce GT 740M and
6GB of RAM.

As seen on Figure 3 the system surpasses the minimum FPS even
in its most rigorous stress test, maintaining 233.35 Frames Per Sec-
ond. In both columns of area of 5 and 10, the system barely affected
the performance,overall in most situations maintained a 270 to 330
FPS variation.As expected, we can see on Figure 4 that the time
consumed synthesizing the terrain is proportional to its limitation
and terrain scale. A terrain with 64 by 64 synthesizing with 60 FPS
limitation takes twice as long to be created as a terrain with 64 by
64 with a 30 FPS limitation, and the same happens with the terrain’s
dimensions.

6 CONCLUSION AND FUTURE WORK

We have presented a model for pseudo-infinite deformable terrain,
being synthesized by Bezier curves. Using curves to synthesize
the terrain, pseudo-infinity becomes a simple matter adding more
curves to the network.Futurely more work should be done to im-

prove the performance of this process, and combine it with other
filters effects to give better visual quality to the Heightmap.

By reducing unnecessary communication with the GPU, our
model can take advantage of its processing power to render the
terrains, while allowing for it to be altered in real-time, without
creating a bottle-neck. Further work is needed on integrating this
grid based approach with the Heightmap aspect of the pseudo-
infinite terrain, perhaps than only a single larger terrain with several
Heightmaps is enough to perform a pseudo-infinite system.That is
in Figure 2, one single terrain would occupy all the slots in the grid,
or perhaps a combination of the two approaches.

REFERENCES

[1] A. S. Aquilio, J. C. Brooks, Y. Zhu, and G. S. Owen. Real-time gpu-
based simulation of dynamic terrain. In Proceedings of the Second
International Conference on Advances in Visual Computing - Volume
Part I, ISVC’06, pages 891–900, Berlin, Heidelberg, 2006. Springer-
Verlag.

[2] M. Ariyan and D. Mould. Terrain synthesis using curve networks. In
Proceedings of the 41st Graphics Interface Conference, GI ’15, pages
9–16, Toronto, Ont., Canada, Canada, 2015. Canadian Information
Processing Society.

[3] Bevilacqua, C. T. Pozzer, and M. C. Ornella. Charack: tool for real-
time generation of pseudo-infinite virtual worlds for 3d games. Sym-
posium on Games and Digital Entertainment, 2009.

[4] J. Crause, A. Flower, and P. Marais. A system for real-time deformable
terrain. In Proceedings of the South African Institute of Computer Sci-
entists and Information Technologists Conference on Knowledge, In-
novation and Leadership in a Diverse, Multidisciplinary Environment,
SAICSIT ’11, pages 77–86, New York, NY, USA, 2011. ACM.

[5] X. Li and J. M. Moshell. Modeling soil: Realtime dynamic models
for soil slippage and manipulation. In Proceedings of the 20th An-
nual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’93, pages 361–368, New York, NY, USA, 1993. ACM.

[6] J. Pouderoux and J.-E. Marvie. Adaptive streaming and rendering of
large terrains using strip masks. In Proceedings of the 3rd Interna-
tional Conference on Computer Graphics and Interactive Techniques
in Australasia and South East Asia, GRAPHITE ’05, pages 299–306,
New York, NY, USA, 2005. ACM.

[7] H. P. Ranjali. Terrain Rendering and Collision: Managing and Ren-
dering Large Environments in Games. LAP Lambert Academic Pub-
lishing, Germany, 2010.

[8] D. Salomon. Curves and Surfaces for Computer Graphics. 2006.
[9] R. L. Saunders. Terrainosaurus Realistic Terrain Synthesis using Ge-

netic Algorithm. Master’s thesis, A&M University, Texas, 2006.
[10] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes. A survey on

procedural modelling for virtual worlds. Computer Graphics Forum,
33(6):31–50, 2014.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 173

	157326
	157326

