
Towards a comprehensive classification for
procedural content generation techniques

Nathan Oliveira1∗ Rodrigo Duarte Seabra2

1UNIFEI – IESTI – Brazil
2UNIFEI – IMC – Brazil

ABSTRACT

The video game industry has relied on procedural content genera-
tion techniques for decades, be it as means of trading memory con-
sumption for processing power or as a way of creating content ei-
ther faster of with more variation than what can be handmade. Still,
until recently, very little research has been done towards a unified
taxonomy that could then be used to better understand these pro-
cedural techniques and help their users choose the best algorithms
for their particular needs. We aim to provide a plausible taxonomy
of procedural techniques, based on related work by Hendrikx et
al. [5], Kelly and McCabe [6], and Togelius et al. [16]. To achieve
this goal, we identify their taxonomies, group them in a single tax-
onomy and explain each method of the taxonomy. With this, we
conclude that there is a need to discuss which the best way to clas-
sify the procedural techniques currently in use is, in order to help
the research on further techniques.
Keywords: Procedural Modeling, Procedural Content Generation,
Algorithm Analysis, Game Content Generation

1 INTRODUCTION

With the advance of computer graphics, we can render scenes and
virtual worlds with ever increasing realism. Initially, these elements
were created manually, through 3D editors. However, this process
is becoming too expensive, with games such as Star Wars: The Old
Republic and Grand Theft Auto V having costs of US$200,000,000
and £170,000,000, respectively [17], with Grand Theft Auto V hav-
ing more than a thousand developers, and with complaints that
some development teams worked twelve hours a day, six days a
week for various months [14] to achieve the game production dead-
lines. Therefore, procedural techniques have been used to help and
to speed-up the content creation.

There is currently a growing demand for realism in video games.
This desire comes from players wanting more immersion in their
games, and causes an increase in production costs that can lead to
higher games prices or even the bankruptcy of game studios. These
problems arise from the fact that the production of game content is a
complex task, which requires skilled content creators. They create
the game contents with the help of specialized software, but this
process does not scale well, and the need for skilled people grow at
a rate at which makes it hard to find the workers needed.

With these problems in mind, one good solution is the use of
procedural generation for the game content. In the past, procedu-
ral content generation (PCG) was used to overcome limitations in
storage space, by storing only a procedure that could create the nec-
essary content during the execution of the game. Although some
games still use procedural techniques for trading memory use for
processing power – especially to reduce the bandwidth use between
CPU and GPU, these techniques provide ways of creating content

∗e-mail: nathan@unifei.edu.br

faster than by hand and with more variability than that obtained by
creating the content beforehand.

PCG is a set of techniques that can produce content for creating
terrains, maps, characters, sounds, and other content used in digital
games. The research on these techniques began in the 1970s, with
the works on shape grammars, by Stiny and Gips [15], and fractals,
by Mandelbrot [9]. Shape grammars are types of formal grammars
that can produce strings of geometrical shapes by using a defined
set of production rules. Fractals are mathematical sets that present
recursive patterns and can be used to represent content with infinite
level of detail.

Even though for the games industry PCG has already raised great
interest, scientific research on the subject is still in its infancy. This
can because very few authors of published papers about PCG try
to further research about it, with the vast majority of the publica-
tions focusing on the creation of commercial products, sometimes
omitting vital parts of the techniques created, which prevents both
the reproduction of the results and a further study on the proposed
technique. Another problem of this limited scientific interest is that
even after decades of active use and research of PCG techniques,
we still do not have a definitive taxonomy of the main algorithms
and procedures used.

In Brazil, the PCG field is just starting to draw attention, with lit-
tle national production. Among these works, we can highlight the
research by Miranda, Cordeiro and Chaimowicz [10], which pro-
poses a technique for generating terrains using both CPU and GPU;
Silva, França and Cabral [12], with a technique based on fuzzy sys-
tems for generating games soundtracks; and Leite and Lima [8],
which proposes a technique for creating bidimensional maps of
caves, dungeons and islands. Apart from these works, four masters’
dissertations about PCG were found: Bevilacqua [2], with a tech-
nique to generate coastal terrains in real-time; Pereira [11], with a
technique based on fuzzy systems to create tasks for an educational
game focused on teaching reading and writing skills; Carli [3], with
a technique for generating tridimensional canyons; and Duarte [4],
with a technique to generate scenes based on objectives.

Recent proposed taxonomies include the works by Kelly and
McCabe [6] that surveys techniques for city generation, Togelius
et al. [16] with a survey on techniques based on search and op-
timization, and Hendrikx et al. [5] with a survey into algorithms
for a wide range of content types. These taxonomies are shown
in Section 2. Some other works proposes taxonomies for related
techniques, such as Smelik et al. [13], that proposes a taxonomy
for procedural modeling techniques. However, our work focuses
on techniques that can generate content without user intervention.
The work of Smelik et al. [13] does propose a family of procedural
modeling that can be used for PCG, but we do not list it in this pa-
per for brevity, since the families are very similar to what Hendrix
et al. [5] proposed.

The main goal of our work in unifying and expanding these pre-
vious works is to create a taxonomy that can be used for any type of
PCG technique, not being focused in a special type of content. The
proposed taxonomy could then be used to create databases of im-
plementations of PCG techniques that can be browsed and filtered

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 166

to find PCG techniques that match the needs of both developers and
researchers. This is because we still do not have a readily available
database for code of procedural methods, and this forces anyone
that wants to study or research PCG methods to implement them
from scratch or spend a good amount of time searching for already
made implementations on the internet. This database would help
reduce the time needed to obtain, understand and modify common
PCG techniques.

This paper is structured as follows: Section 2 presents a review
of the taxonomies of Hendrikx et al. [5], Kelly and McCabe [6],
and Togelius et al. [16]; and Section 3 describes our proposed tax-
onomy. We end the paper with our conclusion and possible future
works in Section 4.

2 RELATED WORK

Kelly and McCabe [6] define seven criteria to judge the quality of
results of the surveyed techniques: (i) realism, (ii) scale, (iii) varia-
tion, (iv) input, (v) efficiency, (vi) control, and (vii) real-time. Al-
though proposed for analyzing city generation, these criteria can be
used in different types of techniques. Based on their definitions, we
can broaden each criterion: (i) realism – if the content generated
looks real or not – this is highly subjective, and depends on the type
of game art as some games adopt a cartoony look, e.g. World of
Warcraft; (ii) scale – if it appears to be the correct size – the size
of a virtual object depends on its representation in the game world
and the graphics engine of the game must be taken in account for
this analysis, e.g. a pebble and a boulder can be represented by the
same content, just at a different scale; (iii) variation – whether the
technique can generate outputs that cover the large range of varia-
tions encountered in nature or not – for example, a terrain generator
can output all types of geographical features, or at least enough dif-
ferent types to cover the needs of the game; (iv) input – what is
the necessary input data for the algorithm to produce an output, and
what input can produce good results; (v) efficiency – both the time
needed to create the output and the algorithm complexity; (vi) con-
trol – if the user can alter the results by changing some parameters,
to what degree can the results be changed and whether the control
is intuitive or not; and (vii) real-time – if the technique can be used
to produce content when it is needed or has to create it beforehand
– some typess of content take considerable time to be correctly gen-
erated and can only be used in places where it can be precomputed.

Togelius et al. [16] propose some distinctions for search-based
PCG: (i) online versus offline, (ii) necessary versus optional con-
tent, (iii) random seeds versus parameter vectors, (iv) stochastic
versus deterministic generation, and (v) constructive versus gener-
ate-and-test. They note though, that more distinctions are necessary
to classify the PCG techniques. Some of their taxonomy can be
used for techniques that do not use a search-based approach. Here,
based on their definitions, we show how they can be applied to non-
search-based PCG: (i) online versus offline – their definition is the
same as that of Kelly and McCabe’s real-time criterion; (ii) neces-
sary versus optional content – a distinction of the type of content
generated, where necessary means that the content is needed in or-
der to progress in the game, and optional content can be skipped by
the player – the necessary content must be correct or the game be-
comes unplayable, but the optional content can be generated incor-
rectly, since the player can ignore the wrong content; (iii) random
seeds versus parameter vectors – this distinction regards the input
data of the algorithms – some only receive a seed value for a random
number generator, while others can receive more values that control
the results – it is somewhat related to Kelly and McCabe’s control
criterion, in the sense that the more parameters available, the finer
the control offered to the user and their input criterion that concerns
the minimum necessary input; (iv) stochastic versus deterministic
generation – whether the algorithm produces the same output for a
given input or the output changes; and (v) constructive versus gen-

erate-and-test – this distinction regards the stop condition of the
algorithm, namely if it creates a result and stops (constructive) or if
it performs tests on the result to check for fitness and only returns
when the result has the necessary properties.

Hendrikx et al. [5] create classes of game content that can be
produced by PCG and introduce a taxonomy for PCG techniques.
The classes of game content they made are as follows: game bits,
which encompasses the following content types: textures, sound,
vegetation, buildings, behavior, fire, water, stone and clouds – these
elements are rarely displayed by themselves, being integrated to
other elements to create a believable scene; game space, composed
of indoor and outdoor maps, and bodies of water and other map
features– the maps present the players with a space to perform their
actions, and the water bodies and other map features are generally
used as barriers to limit the playing area; game systems are behav-
ior models that represent believable interaction between elements
in the game, and are composed of ecosystems, road networks, ur-
ban environments and entity behavior; game scenarios, are ways
of describing the world in which the player is, in the form of puz-
zles, storyboards, the story or the levels of the game; game design,
which represents the rules and goals of the game, and is composed
of the system design and of the world design; and derived content,
generated by the players, consisting of news, broadcasts and leader-
boards. For each of these content classes, they cite examples of
successful uses and discuss their results. As for the techniques tax-
onomy, the authors introduce: (i) pseudo-random number genera-
tors, (ii) generative grammars, (iii) image filtering, (iv) spatial algo-
rithms, (v) modeling and simulating complex systems, and (vi) ar-
tificial intelligence. These classes of methods represent the most
common methods used to create more complex procedural content
generators. The classes are explained as: (i) pseudo-random num-
ber generators, used to mimic the seemingly random patterns of
nature; (ii) generative grammars, which can be used to generate
content guaranteed to be correct by the use of sets of expansion
rules – among which, Lindenmayer-systems, split grammars, wall
grammars and shape grammars; (iii) image filtering, techniques to
transform images by applying simple operations, and can be used
to remove noise and to detect edges among other operations – the
more common operation types are binary morphology and convo-
lution filters; (iv) spatial algorithms are techniques to generate con-
tent based on geometric manipulations of space – the authors cite
tiling and layering, grid subdivision, fractals and Voronoi diagrams
as examples; (v) modeling and simulation of complex systems can
be used to create content that is too complex to be generated by
mathematical equations – some of these techniques are cellular au-
tomata, tensor fields, and agent-based simulation; and (vi) artificial
intelligence that tries to model problems mimicking what animals
do, with some techniques such as genetic algorithms and artificial
neural networks used to find good results in some algorithms.

3 ALGORITHMS TAXONOMY

Based on the taxonomies of Hendrikx et al. [5], Kelly and Mc-
Cabe [6], and Togelius et al. [16], we propose a taxonomy to unify
and to expand their works. With this, we expect to help the re-
search of PCG to move towards a comprehensive taxonomy of its
techniques, which can help both research and development in the
field.

We propose that the taxonomy should discriminate each tech-
nique against the following classes: (1) type of content generated;
(2) base technique(s) used; (3) generation time; (4) input; (5) real-
ism; (6) scale; (7) variation; (8) control; (9) correctness of result;
(10) determinism; (11) stop condition; (12) algorithmic complex-
ity; (13) execution time; and (14) memory consumption. Note that
these categories are not listed in order of importance, and only the
users of the techniques can determine what is important for their
use cases. We now explain what we intend to achieve with each

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 167

classification and how to classify the content in each one of them.

3.1 Type of content generated
The reason to classify on the type of content generated is to help
the user find techniques to achieve the necessary goals.

This is a simple classification achieved by simply checking the
proposed content classes against the original classification by Hen-
drikx et al. [5].

3.2 Base technique(s) used
The main reason to discriminate the used base technique(s) is to
help researchers find them based on technical aspects. This can
facilitate the study of algorithmically similar solutions. Another
important reason is that the base algorithms used can give the user
a rough idea of the behavior of the content generator.

Again, to obtain this classification is simply a matter of fitting the
base technique used against the original classification by Hendrikx
et al. [5].

3.3 Generation time
This category is based on Kelly and McCabe’s real-time and To-
gelius et al. online vs offline classifications. This is an important
distinction to be made, given that some techniques cannot be used
to generate content during the execution of a game, since the player
will not wait too long to be able to use the content.

The best way to classify this is by using the execution time metric
(explained in Subsection 3.13). This can give an estimate of the
possibility of use at run-time, but the final answer to this category
depends on each use case, since the developers alone can determine
if there is enough time to run the generator.

3.4 Input
The analysis of the inputs needed to generate the content can be
used to choose the best generator for a given need. There are cases
in which the user only needs some content and its results do not
need to be controlled and others in which fine control is a must. This
analysis is related to the control metric (explained in Subsection
3.8), in the sense that more input parameters may lead to better
control of the outputs.

To obtain this classification, an analysis of all input parameters,
their domains and boundaries must be made. This is a complex
task, but one that can help guarantee the correctness of the outputs
(cf. Subsection 3.9).

3.5 Realism
This is a highly subjective classification, as there is no final metric
to define it other than examining the results and comparing them to
the equivalents in nature. It is an important metric, though, given
that realism is one of the most sought element in games nowadays.

With this classification, we should prevent the comparison of the
rendering engine used instead of the content. To this end, we should
use good rendering engines, and guarantee that no detail of the gen-
erated content is lost in the rendering process. A subpar rendering
engine can cause the content to look unreal even if it could look
better with proper rendering techniques.

3.6 Scale
Scale is a way of measuring the content in order to see if it has the
same size as similar content in nature. It is a measure that can be
used to prove that the content does not look real, although it is not
sufficient to prove otherwise. Kelly and McCabe [6] define scale
as a measure of the maximum size that the generated content can
have. In their case, cities should have the “feel” of a city, covering
large areas of the map with road networks and buildings, or else it
looks like a small town or village. Outside of the context of cities,
the concept of scale is still applicable. Some types of content, such

as vegetation or height maps that can exhibit recurring, fractal-like
patterns and these patterns can be used to generate contents of dif-
ferent sizes. In general, scale should be a measure of the propor-
tions of the generated content in order to determine if it displays the
same size properties as their natural counterparts.

To measure scale, we again depend on the rendering engine, as
scaling operations can change the resulting look of the content. Be-
cause of this, the same rules of Subsection 3.5 should be used.

3.7 Variation
Kelly and McCabe [6] define the variation metric as the amount
of heterogeneity possible in one instance of the generated content.
This is an important metric in the generation of cities, but there are
many types of content, such as noise, vegetation, clouds and indoor
maps where, given one instance of generated content, little variation
should occur. In these cases, variation is good only among different
instances of content.

Given that one of the main goals of PCG is the ability to create
large quantities of related content cheaply and fast, and that our
goal is to propose a taxonomy that can be used for different types
of content, we propose that variation should be a measure of the
possible outputs by the method. The variation of the content is a
good metric, since we sometimes need large differences between
the content generated, and sometimes, the contents produced have
to be similar to one another. As such, users can base their choice of
generator based on the outcome desired.

The analysis of output variation depends on the class of con-
tent generated, with some classes, such as pseudo-random number
generators lending themselves to simple statistical analysis, while
others, such as cities generators, have to be analyzed manually.

3.8 Control
This category refers to the user’s ability to influence the outcome of
the generation process. It is desirable for offline generators to give
users a great amount of control, since they are normally used to
help artists create the game content. As for online generators, these
controls have to be manipulated by the user, and should be simpler.
In both cases, a measure of the intuitiveness of the controls is useful.

The degree of control must be measured after the input analysis
is performed. This is because the input domains must be fully ana-
lyzed in order to understand what changes they make to the results.
An analysis of intuitiveness should be performed from a usability
point of view, although an experienced user can give feedback on
the “feel” of the controls that can be used to achieve a rough esti-
mate of control intuitiveness.

3.9 Correctness of result
Correctness of result is a guarantee that the output of the generator
will always be right. It is important to define if the content can be
used as necessary or only as optional. This classification is impor-
tant to allow users to know beforehand if the generator meets the
necessary guarantee of correctness. Note that not all content must
be correct, as long as the player can choose to ignore it.

Again, this measure depends on the input analysis. This analysis
is very complex, and normally needs to be performed mathemat-
ically, since we cannot generally test all the possible inputs and
outputs of the generator.

3.10 Determinism
This class differentiates between techniques that, given the same
input, always produce the same results and those that do not. It
is important for generating content such as textures, in which the
artists might want the result to be the same for all users. On the
other hand, the randomness of non-deterministic algorithms is im-
portant for content – like maps, where it is interesting for the player
to always have a new map to play with.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 168

This measure also requires the analysis of the inputs and outputs
of the generator, although it is far easier to prove than the correct-
ness of result. Togelius et al. [16], in proposing this classification,
exclude the random seeds for the pseudo-random number genera-
tors from the analysis, as taking it into account would mean that all
techniques are deterministic.

3.11 Stop condition

The stop condition of a generator regards how the algorithm be-
haves at the end of the processing phase. It can simply output the
generated content (constructive) or test the result for fitness and
only output a result when the test conditions are met (generate-
and-test). Clearly, from this behavior, we can see that the second
method might take a long time, or never stop. This makes that class
of algorithms only suitable for offline use.

This classification is simple to obtain by just reading the code
and by identifying any generate and test loop.

3.12 Algorithmic complexity

Algorithmic complexity, with the big-O notation, can be a good
reference of how much processing power the generator needs in the
worst case scenario [7]. This helps the user understand the behavior
of the algorithm when changing, e.g. the size of the map generated
or the number of steps in a cellular automata technique. This metric,
allied with the execution time, can be used to choose algorithms
guaranteed to finish in a necessary time frame.

To determine the algorithmic complexity, we simply analyze the
complexity of the algorithm.

3.13 Execution time

Especially when selecting an online generator, the execution time
is of vital importance, as the player will not wait indefinitely for
the game to process. This metric, allied with the algorithmic com-
plexity, can provide developers with enough data to choose the best
algorithm for their use cases.

In Figure 1, we show a simple way of measuring the execution
time of a technique. C++ was chosen as the sample language as it
is the lingua franca of the game industry.

using namespace std::chrono;
auto begin = high_resolution_clock::now();
// call the method to be measured...
auto end = high_resolution_clock::now();
auto duration =

duration_cast<nanoseconds>(end - begin);
auto elapsed = duration.count();

Figure 1: C++ code for measuring the elapsed time of a piece of
code.

3.14 Memory consumption

Memory consumption is not always a concern for PCG techniques,
but they should be taken into account, especially for generators in-
tended for use in mobile devices, in which memory is limited. This
metric should be used particularly when we use PCG as a means of
trading memory consumption for processing power, in order to see
if the memory ratio really justifies the trade-off.

To obtain the memory consumption, a profiler can be used, or
we can simply analyze the algorithm to determine its memory con-
sumption in the worst case scenario.

4 CONCLUSION

With this paper, we expect to help the field of PCG move towards
a more complete taxonomy for its techniques. We did not propose
this taxonomy as a definitive one, but as a unification of already
proposed topical taxonomy that, when unified, complement them-
selves into a more comprehensive one.

As future work, we see two actionable points deriving from this
work. The first is the improvement of this taxonomy, towards a
future definitive version. And the second is the application of this
classification to the most commonly used techniques in PCG.

Should this taxonomy be accepted by the community, we believe
that it would be useful to expand the Procedural Content Genera-
tion Wiki [1] with both known and future implementations of PCG
techniques and its classification. This classification work could be
useful in helping users of PCG algorithms to choose the best op-
tion for their use cases among the available options and in bringing
better understanding of the particularities of the techniques. This
would prove helpful to future works on expanding and adding PCG
techniques for new types of content.

ACKNOWLEDGMENT

The authors would like to thank CAPES for the support to this
work.

REFERENCES

[1] Procedural Content Generation Wiki, 2016.
[2] F. Bevilacqua. Ferramenta para geração em tempo real de bordas de

mapas virtuais pseudo-infinitos para jogos 3D, 2008.
[3] D. M. D. Carli. Geração procedural de cenários 3d de cânions com

foco em jogos digitais, 2012.
[4] P. M. Duarte. Geração Procedural de Cenários Orientada a Objetivos,

2012.
[5] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup. Procedu-

ral content generation for games: A survey. ACM Trans. Multimedia
Comput. Commun. Appl., 9(1):1:1–1:22, Feb. 2013.

[6] G. Kelly and H. McCabe. A survey of procedural techniques for city
generation. ITB Journal, pages 87–130, 2006.

[7] D. E. Knuth. Big Omicron and Big Omega and Big Theta. SIGACT
News, 8(2):18–24, Apr. 1976.

[8] G. d. O. B. Leite and E. S. D. Lima. Geração Procedural de Mapas
para Jogos 2D. Proceedings of SBGames 2015, pages 244–247, 2015.

[9] B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman
and Company, 1982.

[10] F. M. Miranda, C. S. Cordeiro, and L. Chaimowicz. Um Sistema para
Geração Procedural de Terrenos Pseudo-Infinitos em Tempo-Real Uti-
lizando GPU e CPU. VIII Brazilian Symposium on Games and Digital
Entertainment, pages 113–116, 2009.

[11] A. B. C. Pereira. Um sistema fuzzy para geração de tarefas de ensino
de leitura e escrita em um jogo digital, 2012.

[12] M. C. Silva, F. M. G. França, and G. R. E. Cabral. Construindo Trilhas
Sonoras Dinâmicas Em Jogos Utilizando Sistemas Fuzzy. Proceed-
ings of the SBGames 2014, pages 974–977, 2014.

[13] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes. A survey on
procedural modelling for virtual worlds. Computer Graphics Forum,
33(6):31–50, 2014.

[14] R. Spouses. Wives of Rockstar San Diego employees have collected
themselves, 07 2010.

[15] G. Stiny and J. Gips. Shape grammars and the generative specification
of painting and sculpture. In Segmentation of Buildings for 3DGen-
eralisation. In: Proceedings of the Workshop on generalisation and
multiple representation , Leicester, 1971.

[16] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne. Search-based
procedural content generation: A taxonomy and survey. Computa-
tional Intelligence and AI in Games, IEEE Transactions on, 3(3):172–
186, Sept 2011.

[17] L. Villapaz. ‘GTA 5’ costs $265 million to develop and market, mak-
ing it the most expensive video game ever produced: Report, 2013.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Short Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 169

	157019
	157019

