
Game Mechanics Design: Applying Machinations to Eliosi’s Hunt
Tiago Zaidan1∗ Daniel Zaidan2 Luı́s Fabrı́cio W. Góes3

TDZ Games1

PUC Minas, Computer Science Department, Brazil2

ABSTRACT

The game mechanics design process suffers from the lack of
widespread formal methods. Game designers tend to build pro-
totypes to test their mechanics before implementing them in a
game. The current methods of prototyping mechanics can be time-
consuming and often do not provide a model that has a satisfac-
tory trade-off between the level of abstraction and accuracy. The
Machinations Framework was created to address these issues as a
method to formalize, model, prototype and test game mechanics.
The framework makes use of a designer-friendly node-based model
of a flow of resources and an online tool to simulate the diagram,
making it easier for designers to evaluate their mechanics. Machi-
nations is most used to model a game’s internal economy, which is
a type of mechanic, along with physics, progression mechanisms,
tactical maneuvering and social interaction. The tool’s iterative na-
ture fits perfectly a game designer’s need to constantly change and
improve one’s designs. This paper presents the use of the Machi-
nations Framework to design the internal economy of the game
Eliosi’s Hunt currently being developed by TDZ Games. The use
of the framework allowed us to visualize the game’s internal econ-
omy’s structure and flow of resources. It also showed the econ-
omy’s feedback loops and emergent behavior, possible deadlocks,
the impact of random values and its balance in order for the designer
to improve it through fast iterative cycles.

Keywords: Game Design, Game Mechanics, Machinations Frame-
work, Game Mechanics Design, Eliosi’s Hunt, Feedback Loop, In-
ternal Economy, Game Systems.

1 INTRODUCTION

A game is a system in which players engage in an artificial conflict,
defined by rules, that results in a quantifiable outcome [10]. When
it comes to digital games, however, the term game mechanics ap-
pears more often than rules [3]. While rules are the explicit and un-
ambiguous instructions shared by all players [10], game mechanics
are more detailed and often hidden from a player. According to [3],
the rules of a game consist of the information players need to play
a game, for example, in a platform game “press Space to jump” is
a rule. The outcomes of the rule, such as jumping on enemies or

∗e-mail: tiagozaidan@gmail.com

falling and dying, are mechanics. Therefore, mechanics include ev-
erything that affects the operation of a game and what is needed to
program a game [3].

In [7], it was presented a formal approach to understand games
and improve the design process of games. The MDA model divides
games in three levels: Mechanics, Dynamics and Aesthetics. A
designer and a player approach a game from different perspectives.
A player experiences a game through its aesthetic, which represents
the pleasures games can provide, such as sensation and discovery
[7]. Although the aesthetics are also the designer’s main goal, he
can only directly design the mechanics, from which dynamics will
emerge. In turn, it is the dynamics (the run-time behavior or game
systems) that will evoke the emotional responses of the aesthetics.
The MDA framework describes the relations of the three levels but
lacks a tool to build each of them.

The Machinations framework was created as a formal method to
view, understand and design game mechanics as a flow of tangi-
ble and abstract resources [4]. Previously, there were three main
methods of testing and prototyping game mechanics [3]. Soft-
ware prototyping represents faithfully the mechanics but are usu-
ally time-consuming to build and require code skills. Paper proto-
typing, a non-computerized tabletop game created to test aspects of
the mechanics, are faster to build but it fails to represent mechanics
which are dependent of heavy calculations, such as precise timing
of physics. The last technique is physical prototyping, which re-
quires the designer to draft rules and play a game in real life. While
it is even faster and more adaptable than paper prototyping, it is
a hard task to accurately adapt the mechanics to be tested in this
scenario. The Machinations framework allows designers to rep-
resent and test the mechanics in a way that is designer-accessible
and yet maintains the structural features and dynamic behavior of
a game. These features, such as feedback loops, are presented in
a way which is clearly visible in order for designers to better com-
municate, iterate and construct emergence on a game mechanics’
design [4].

According to [2] there are five types of game mechanics:
physics, internal economy, progression mechanisms, tactical ma-
neuvering and social interaction. Machinations focuses mainly in a
game’s internal economy, that is, the transaction of game elements
which are collected, consumed, and traded [3]. The resources in-
clude anything from money, energy and ammunition to enemies.
There are also intangible resources (that does not exist in a game
world), such as health points; and abstract resources (that does not
exist in a game as a whole but only in its current state). For ex-
ample, in a game of chess, a player might sacrifice a piece to gain

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Art & Design Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 313



strategic advantage. In this case, strategic advantage is an abstract
resource [3].

In order to improve the game mechanics’s design process, we
used the Machinations framework in the development of Eliosi’s
Hunt. Currently being developed by TDZ Games 1, an independent
video games studio based in Belo Horizonte, Brazil, Eliosi’s Hunt is
a top-down 3D action game, combining the shooter and platformer
genres. It is a challenging skill-based single-player game in which
the main character, Eliosi, is a young alien obsessed with the idea of
becoming a bounty hunter but completing his first contract will be
more difficult than it seems. The game depends heavily in physics
mechanics such as jumping, shooting and dashing. Another very
present game mechanic type is the internal economy.

Eliosi’s Hunt internal economy deals with a number of different
resources such as ammunition, life points, speed boosts, enemies
and most importantly, the energy system. Throughout the game,
Eliosi will find several items that give his companion drone energy
when destroyed (each level has a unique item associated with it).
He can also gain it from killing enemies and destroying check-
points. The energy goes through a formula which randomizes its
amount and takes into account the number of player deaths: the
more a player dies, the more energy he will get from the items,
acting like a negative constructive feedback loop.

The main goal of this paper is to model and test the Eliosi’s
Hunt internal economy during the design process through the use
of Machinations Framework. By using the Machinations Frame-
work, it was possible to easily identify deadlocks and iterate to
create the best solution. It also made the feedback loops of the
game system very clear. By observing the action and interaction of
feedback loops and its characteristics, it was possible to easily un-
derstand and create complex systems as well as balance them. The
main contribution of this paper is to show all the process of design-
ing a real game’s mechanics through the modeling of its internal
economy using the Machinations Diagram, as well as the aspects a
game designer should observe and iterate on when creating game
systems.

This paper is organized as follows. Section 2 presents the back-
ground, elucidating the main concepts and related work. Section
3 and 4 presents the game Eliosi’s Hunt and Machinations Frame-
work, respectively. Section 5 presents the application of Machina-
tions to Eliosi’s Hunt. Finally, Section 6 concludes and discusses
future work.

2 BACKGROUND

2.1 Game Mechanics
Game mechanics are the core of a game, they are the interactions
and relationships that remain when all of the other game elements
are removed from a game [9]. The mechanics describe, at the level
of data representation and algorithms, particular components of a
game. They are the various actions, behaviors and control mecha-
nisms afforded to a player within a game context [7].

As many other process in game design, it does not exist a uni-
versal taxonomy of game mechanics [9]. In [3], it is described
five different types of mechanics. The physics mechanics define
the science of motion and force in a game world. They can be
found in games when characters move from place to place, jump
up and down or drive vehicles. Physics plays a large role in many
modern games from ultra realistic first-person shooters to physics
puzzle-games [3].

The second type of game mechanics is the internal economy,
that is constituted by mechanics of transactions involving game el-
ements that are collected, consumed and traded. The internal econ-
omy of a game typically encompasses items easily identified as re-
sources, such as money, energy, ammunition, enemies and so on. A

1available at www.tdzgames.com

game’s economy is not limited to concrete tangible items, it can also
include abstractions such as health, popularity and magical power.
The third type of mechanic is the progression mechanisms, which
controls a player’s progress though a game’s level. It is represented
by mechanisms that block or unlock a player’s access to certain ar-
eas, such as levers, switchers and magical swords that allow a player
to destroy certain doors [3].

Games have mechanics that deal with the placement of game
units on a map for offensive or defensive advantages. This is the
fourth type of mechanics, the tactical maneuvering, and it is critical
in most strategy games. The mechanics that govern tactical ma-
neuvering typically specify what strategic advantages each type of
unit may gain from being in each possible location. The last type
of mechanics is the social interaction. Many online games include
mechanics that reward giving gifts, inviting new friends to join, and
participating in other social interactions [3].

2.2 Internal Economy

An economy is a system in which resources are produced, con-
sumed and exchanged in quantifiable amounts [2]. Games also
have their economy, and it consists of the resources that a game
manipulates and the rules that govern how they are produced and
consumed. A game’s internal economy is different from a real life
economy, it can include resources such as health, experience, skill,
time and units that are not part of a real-life economy, but games can
also have money, goods, and services in their economy. To under-
stand a game’s gameplay, it is essential to understand its economy,
no matter how big or small it is, and creating it is an important
design task [3].

A game’s internal economy revolves around the flow of re-
sources, and it refers to any concept that can be measured numeri-
cally [3]. Anything that a player can produce, gather, collect or de-
stroy is probably a resource. Not all resources are under a player’s
control, time for example, is a resource that normally disappears
by itself and a player cannot change that. Platforms, walls and any
other type of inactive or fixed-level features are not resources [3].

Resources can be tangible or intangible [2]. The tangible re-
sources represent physical objects that exist in a game world, they
can be stored or transported for example. The intangible resources
have no physical properties in a game world, they do not occupy
space or exist in a particular location [2]. Medical kits are tangi-
ble and health points are intangible resources in shooter games for
example [3].

Resources can also be divided as abstract or concrete [3]. The
abstract resources are intangibles but are computed from the cur-
rent state of a game. For example, in chess a player might sacri-
fice a piece to gain strategic advantage over his opponent and this
strategic advantage can be considered an abstract resource. A game
usually does not tell players about abstract resources, they are used
only for internal computation. It is important to note that not all in-
tangible resources are abstract, experiences points are concrete re-
sources that must be earned and sometimes can be spent like money.
Happiness and reputation are two other intangible resources that are
concrete parts of a game [3].

The internal economy of a game can also be used to influence a
player’s progression through the levels [3]. For example, power-
ups and unique weapons can be used in an action game’s economy.
They can be used to gain access to new locations. A double-jump
ability in a platform game can allow a player to reach a higher plat-
form that was initially unreachable. In terms of economy, these
abilities can be considered as new resources to produce the abstract
resource accesses. These accesses can be used to gain more re-
wards or can be required to progress through the level. A designer
should be aware of a deadlock situation and needs to provide means
to break deadlocks if one occurs. For example, a game might have
a special enemy that can be killed only with an energy gun guard-

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Art & Design Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 314



ing the exit of a level. This energy gun in located somewhere in
the same level and can be used throughout the level. When a player
finds the energy gun, it is loaded with bullets and there is no more
until the next level, but a player does not know this in the first time
playing. If a player spends all his bullets before facing the special
enemy, the designer has created a deadlock situation. Thus a player
needs access to the next level to gain bullets but needs bullets to
gain access [3].

2.3 Feedback Loops
According to [7], a game designer creates the mechanics and they,
in turn, give rise to the dynamic system behavior which is the run-
time behavior of the mechanics acting on a player’s input. The
dynamic system leads to a particular aesthetic experience. Interest-
ingly, a player perceives a game through the aesthetics, which is
born out in the observable dynamics and eventually, operable me-
chanics [7]. This means that game design is a second-order design
problem [10], because it can only indirectly design the experience
by directly designing the mechanics.

As mechanics lead to dynamics (or systems) when a player in-
teracts with a game, it is important to have a great understanding
of systems and how they work. According to [10], a system is
a group of interacting, interrelated or independent elements that
forms a more complex whole. The field of cybernetics was first
introduced by Norbert Weiner in his book Cybernetics or Control
and Communication of the Animal and the Machine [11]. Accord-
ing to [10], cybernetics is the study of the regulation and control of
systems. There are three elements of a cybernetic system: a sensor,
a comparator and an activator. The interaction between these ele-
ments form a feedback loop [10], in which the information about
the result of a transformation or an action is sent back to the input
data.

Figure 1: The structure of feedback loops in games [8].

In his 1999 lecture at GDC: “Feedback Systems and the Dra-
matic Structure of Competition” [8], Marc LeBlanc presented a
model to understand games as feedback systems (Figure 1). With
the game state representing the current condition of the elements of
the system, such as the pieces positions in a chess board, the other
three elements correspond to the elements of a cybernetic system’s
feedback loop. The scoring function is the sensor that measures an
aspect of the game’s state. The controller is the comparator, which
makes the decisions. The game mechanical bias is the activator, an
event that changes the game’s states.

Positive Feedback Loop Negative Feedback Loop
1. Destabilizes a game Stabilizes (balance) a game
2. Rewards the winner Forgives the loser
3. Ends a game Prolongs a game
4. Magnifies early success Magnifies late ones
Table 1 - Effects of positive and negative feedback loop [8].

We can observe a simple example of feedback loops in games
when we consider the number of pieces of players in a game of

chess. When a player loses a piece, the game’s state changes, and
players lose the abstract resource of strategic advantage. This loss
makes it easier for a player to lose more pieces (game mechanical
bias). When a feedback loop is used to amplify the difference, it
is known as a positive feedback loop. Feedback loops can also be
negative. In this case, the system’s output is driven towards a tar-
get value, essentially creating a stable result. In the racing game
Wipeout, for example, there is a negative feedback loop that makes
the vehicles that are far behind the first place faster. According to
[10], it is common for racing games to employ a similar mechanism
because exciting moments such as fighting for the first place among
a dense cluster of vehicles are more likely to occur.

Figure 2: Seven characteristics of feedback loops [3].

Marc LeBlanc reached certain conclusions regarding the behav-
ior of positive and negative feedback loops in games shown in Ta-
ble 1 [8]. Marc also points out that feedback systems can emerge
from the game mechanics by accident and according to [1] they can
greatly harm the system if improperly implemented. In the light of
that, it becomes essential in designing mechanics to be able to iden-
tify the feedback loops and understand their impact on a game’s
dynamics.

Joris Dormans and Ernest Adams in [3] go deeper in the profile
of a feedback loop in order to understand how it affects the sys-
tem. They list seven characteristics of a feedback loop as shown in
Figure 2.

2.4 Related work
There are two main works related to this paper. In the first one [5],
Joris presents the Machinations framework and shows how Machi-
nations diagrams can be used to simulate and balance games before
they are built. Emergent behavior are hard to design, mainly be-
cause the mechanics of those games are hard to balance and usually
designers must rely on frequent game test to achieve this balance.
Joris presents a way to simulate games in early stages of develop-
ment, the Machinations framework, before prototypes are built, in
order to design balanced mechanics effectively and efficiently. To
this end, Joris used the Machinations framework to simulate and
balance the game SimWar, that has been described by Will Wright.

In [7], the authors presents the MDA (Mechanics, Dynamics
and Aesthetics) framework. This framework is a formal approach
to understand a game, aiming to fill the gap between game design
and game development. According to the authors, this methodology
clarifies and strengthens the iterative process of developers, making

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Art & Design Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 315



it easier for all parties to decompose, study and design a broad class
of game designs and game artifacts. To test the framework, the au-
thors improve the AI component of a game using the MDA, and
they noticed that simple changes in the aesthetic requirements of
a game will introduce mechanical changes for its AI on many lev-
els. Using the MDA framework, the authors could reason explicitly
about aesthetic goals, draw out dynamics that support those goals,
and then scope the range of mechanics accordingly.

The main difference between the frameworks proposed in each
paper is that the MDA framework [7] focuses on all of the design
process, it goes all the way from the mechanics to the aesthetics. In
contrast, the Machinations framework [5], focuses only in the de-
sign of the mechanics. The MDA does not propose a framework to
model the mechanics separately, it focuses on how each component
of the framework (Mechanics, Dynamics and Aesthetics) influence
each other. In the end, the Machinations framework complements
the MDA framework.

3 ELIOSI’S HUNT

Eliosi’s Hunt 2 is a 3D sci-fi top-down shooter and platformer cur-
rently being developed by TDZ Games (Figure 3). The game will
be released for PC, PS4 and Xbox One in the third quarter of 2016.
A player plays as the young Eliosi, who dreams of becoming a
bounty hunter. To complete his first contract, Eliosi will have to
face monsters from nature, mutated creatures, nomad tribes, natu-
ral disasters, a robot army and others. During his journey, Eliosi can
use several weapons (e.g flame-throwers, laser guns and launchers)
and equipment (e.g jetpacks and thruster boots) to help him through
the dangers around him. He will also be able to upgrade his com-
panion drone that helps him in the toughest moments but in order
to do that he must explore the most dangerous places in the planet.

Figure 3: Eliosi platforming in the first level.

The story of the game takes place after a war where the popu-
lation of the planet had to be demilitarized. To solve the conflicts
such as high criminal rates and animal raids, the people started to
contract bounty hunters. The game starts at a bar where the bounty
hunters usually take their contracts.

Young Eliosi is at the bar gazing at the contracts board while
some of the greatest bounty hunters are choosing their contracts.
Eliosi decides to take his first contract where the mission is to cap-
ture a great entrepreneur and robot builder, Sieverr, that is being
wanted after banished for his creation of war machines. After his
research, Eliosi finds out about a hidden factory in the middle of a
swamp (Figure 4) and he decides to investigate it. In order to com-
plete his contract, Eliosi will face 6 unique designed levels (Swamp,
Factory, Volcano, Desert, Factory and City).

3.1 Eliosi’s Hunt Mechanics
Eliosi’s Hunt physics mechanics consist of jumping, dashing and
picking up items. The jumping physics is influenced by the mo-
mentum that affects the impulse of the jump depending on the ve-

2trailer available at http://www.tdzgames.com/en#media

Figure 4: Eliosi in the first level - A Lady Swamp.

locity of a player and the moving objects that he might be on. The
impulse of the jump can also be influenced by the amount of time
a player holds the jump key up to a maximum limit of time. The
dash mechanic allows a player to move a fixed amount of space in a
short period of time. The dash mechanic can be combined with the
jump. While using dash on the ground a player becomes immune
to any damage for 0.1 seconds (the time a player is in dash mode).
There are 3 types of physics pick up items. The jet pack allows a
player to float in the air for an amount of time. The thruster boots
gives the double jump ability to a player and the speed boots let a
player to run faster for a short period of time.

Progression mechanics can also be found in Eliosi’s Hunt. These
mechanics takes form of “gates” that prevents the progression of a
player to a certain part of the map. These “gates” can be opened
using specific weapons or killing the enemies in the area. Thus it
gives the designer more control over how a player progress though
the level. These mechanics can also be used as hidden rooms that a
player can open either backtracking or figuring out a quicker way.

Another type of mechanic that can be found in Eliosi’s Hunt is
social interaction. The game has a mode that encourages a player
to finish the levels as quickly as possible. A player’s time will be
displayed in an online leaderboard so that he can compare his time
with his friends’.

Finally, we get to the last type of mechanic in Eliosi’s Hunt, in-
ternal economy. There are several examples of internal economy
in the game. In order to use the dash mechanic, a player needs to
accumulate a fixed amount of dash points. When a player uses his
dash, he loses all of his points from one slot. He starts the game
with only one slot of dash point, but he is able to upgrade his stats
in order to have up to three dash points slots. A player gains dash
points at a fixed rate, but he can also gain points when he shoots
enemies. Once a player has all of his dash points slots full, he stops
gaining points until he decides to use the dash ability.

Another example of an internal economy in Eliosi’s Hunt is the
ammunition mechanic. A player can pick up weapons during the
levels. A weapon comes with a fixed amount of ammo but a player
can upgrade his stats so the weapons can come with more ammo.
There are certain places in the level where the weapons available to
pick up will come with less ammo then the normal amount, even if
a player has already upgraded the ammunition stats. The weapons
consume ammo in two different rates. The flamethrower, for exam-
ple, consumes the ammo every frame as long as a player is holding
the fire button. On the other hand, the machine gun, for example,
consumes ammo per shot fired. The only weapon that has infin-
ity ammo is Eliosi’s pistol so a player can always have a weapon
available for use.

Eliosi’s hunt main internal economy is the energy system that
Eliosi collects in order to power his drone that will protect him.
This works as Eliosi’s life system. A player starts with 3 available

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Art & Design Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 316



energy slots and can upgrade it up to 6 slots. All the monsters and
objects that cause damage to a player have a fixed damage power.
All the hits suffered by a player represents one full energy slot.
Only when a player fails on a platformer challenging, like falling
into a hole or lava river, he will lose all his energy slots at once.
The energy that a player can collect throughout the levels usually
represents less than the amount needed to complete one full slot.
Only once a player complete a full energy slot that it will be used
to protect him.

There are three ways that a player can collect energy. When he
kills a monster he automatically collects its energy. The stronger
the monster is, the more energy it gives. The other way to collect
energy is destroying a check point. When a player reaches a check
point he can choose to use it to save his progress or destroy it. When
he destroys it, he gains a speed bonus and also all the energy needed
to complete one full energy slot.

The last way to gain energy points is destroying energy objects
spread throughout the levels. There are two kinds of these objects.
The weak one gives less energy and the designer can determine how
much energy each object can give depending on his placement on
the level. On top of the amount of energy that a designer choose
per object, there is a random deviation that can go from 15 percent
less up to 15 percent more. There is also a death multiplier that in-
fluences the final number of energy that the object gives. The more
a player dies, the bigger the number is. This works as a negative
feedback loop in the game, helping a player who is having more
trouble to go trough the levels. The strong energy object always
gives all the energy needed to complete the next energy slot, just
like when a player destroys a check point. Finally, when a player
dies, he comes back to the last saved check point with the half of the
collected energy he had when he saved that check point (a player
always have at least one full slot of energy).

4 THE MACHINATIONS FRAMEWORK

Game mechanics may not be clearly visible in a game. There have
been a lot of attempts to create models to describe them. The
Machinations framework, described in [4], was designed to re-
tain the structural features and dynamic behaviors of games they
represent. Program code, finite state diagrams and Petri nets are
examples of models that are sometimes used to describe game me-
chanics. These models are complex and not really accessible for
non-programmers designers. Furthermore, these models lack on
the level of abstraction on which feedback loops, for example, are
not immediately apparent.

The Machinations framework is driven by the vision that game-
play is determined by the flow of tangible, intangible and abstract
resources. These flows are represented in the Machinations diagram
and they make it easier to identify the feedback structures that exist
within a game system. It is these feedback structures that most of
the time determine the dynamic behavior of game economies.

The Machinations framework was designed to model activity, in-
teraction and communication between the parts of a game’s internal
economy. In other to accomplish that, the Machinations framework
uses several types of nodes that pull, push, gather and distribute
resources. Figure 5 shows the basic elements found in the Machi-
nations framework [5].

The most basic type of node is the pool. The pool represents
where resources are gathered. The flow of resources is dictated by
resource connections represented as solid arrows. They can trans-
fer resources at different rates. The time step at which the diagrams
operate can be easily adjusted. In each iteration, the nodes in the
diagram may fire automatically or they can be interactive. The in-
teractive nodes represent a player actions and are activated when
clicked. When a pool fires, it will try to pull resources through any
inputs connected to it. A pool can also be set to push mode. In this
mode, it pushes resources along its output connections [5].

Figure 5: Elements of Machinations diagrams and example construc-
tions [5].

When resources move from one place to another, the state of the
diagram changes. It is possible to use the state changes to modify
the flow rates of resource connections. Triggers are state connec-
tions that when fired, the target node will be activated either pulling
or pushing depending on its connections and resources available.
On the other hand, the activators are state connections that activate
or inhibit their target node based on a specific condition [3].

There are other types of nodes in a Machinations diagram be-
sides pools. In contrast to a pool, a gate is a node that does not col-
lect resources. Its function is to redistribute resources via a prob-
ability or a condition label instead of a flow rate. There are four
types of nodes that represent the basic economic functions. Sources
are another type of node that creates resources. The rate of which
a source produces resources is indicated by the flow rate of its out-
puts. Drains are nodes that consume resources. A resource that goes
into a drain disappears permanently and its drain rate can be steady,
random or intervals. The converters nodes convert one resource
into another. Finally, the traders nodes change the ownership of the
resources when fired. It is important to note that traders should be
used when needed to exchange (not convert into) a number of re-
sources of one type to another amount of resources of another type
[5].

Another feature of the Machinations diagram is end conditions.
It checks at each time step, if the condition is fulfilled, the diagram
stops working immediately. The Machinations diagram also offers
the use of artificial players to simulate players interacting with the
diagram. This introduces the possibility of running multiple au-
tomated tests. Their behavior can be affected by the state of the
diagram [3].

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Art & Design Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 317



The Machination tool 3 offers the possibility of collecting data on
the behavior of a game system before a game is built. It allows the
designers to test different playing strategies and foresee undesirable
and dominant strategies to test a game’s balance [3].

5 APPLYING MACHINATIONS TO ELIOSI’S HUNT

Eliosi’s Hunt mainly focuses on player skill to create challenge. In
the light of that, we decided to create a simplified internal economy
(at least from a player’s point of view) that would not require much
strategic thought. Figure 6 shows the first diagram of the energy
mechanic. This simplified system was first designed as a source
producing a fixed amount of energy (or static engine) and a con-
verter to turn 100 energy resources into one life resource. The static
engine was created to represent the action of a player shooting items
throughout the level that would generate a constant flow of energy
points. The conversion of energy points into life resources is auto-
matic (represented by the * icon) and only when a player has 100
energy points that it converts them into one life point (represented
by the & icon).

Figure 6: First diagram of the energy mechanic.

A player would accumulate life points as he progresses through
the levels and destroys energy items. Figure 7 presents three new
mechanisms: the option to fight enemies, the game over condition
and the availability of energy items. The fighting mechanic was
abstracted in this diagram in order to focus on the internal econ-
omy. It is represented by an interactive gate with a joystick icon,
that means this action takes player skill into account. In order to
analyze a larger number of player skills in the diagram it was used
a random number (the die icon) to make sure a player would lose a
life point and die in some of the fights. The game over condition is
simply a test to stop the diagram when the lives pool reaches zero
resources. The energy item mechanism was expanded in order to
match the in game system more faithfully. Because a player can
only destroy each energy item (and collect its energy) once, the en-
ergy resource source was replaced with a converter, which requires
the energy items available resource. This resource is generated by
a slow static engine (it generates one resource for every five time
steps), representing a player’s progression through the level.

This mechanic creates a problematic deadlock situation. A
player has two available actions: to fight enemies (which may cost
one life resource) and to destroy energy items (that are needed to
indirectly generate lives). The deadlock arises when you consider
that a player needs the available energy item resource to destroy
energy items (and that its source depends on a player progression
through the game space) and that he needs lives in order to fight.
In order to solve this deadlock, a simple mechanism was created
represented by Figure 8.

When a player fights and dies, he will lose a life resource but it
will also restore all the available energy items (note that the pool is
limited to 10 resources so that dying does not create more and more
resources, creating an unwanted positive feedback loop). Although
this solution helped prevent the deadlock, it also requires a player

3available at www.joridormans.nl/machinations

Figure 7: The three new mechanisms.

Figure 8: Solving the deadlock.

to destroy more energy items as soon as he died in order to get the
life resource back. This practice is known as farming and can lead
to frustration especially if it is require right after a player failed a
challenge (died in a combat situation).

Figure 9: Creating a new basic structure.

The base structure originally proposed in order to simplify the
internal economy for players was proving to be difficult to balance.
Based on that fact, it was created a new basic structure for the me-
chanic, as shown in Figure 9. To prevent the unwanted incentive to
farm resources through death, it was created a maximum amount of
life resources.

With this new approach, the game over condition was not needed
anymore, since the fight could trigger a life loss, instead of a game
over condition. This is represented by Figure 10. The new fighting
punishment is lighter than before, which enabled the game to push
a player’s skill further. Now, when the life resources reaches zero,
it simply triggers a source and get it back to one. Although this new
system made farming less needed, it was still implicitly encouraged

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Art & Design Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 318



Figure 10: The new game over condition.

if a player failed the same challenge many times. In this case, he
would have to destroy more items than before in order to try the
same challenge.

Figure 11: Adding a negative constructive feedback loop.

To solve this problem, we created a negative constructive feed-
back loop, as shown in Figure 11. This feedback loop is triggered
by a player’s death and causes the number of energy points per de-
stroyed item to increase. Although the return of the feedback loop
was low and its range was long, it was needed a mechanism to pre-
vent a player from stacking up deaths counts and making the feed-
back loop permanent. It was included in the checkpoint mechanic
a simple drain to remove all the death count resources when it was
activated. In order to prevent this diagram from getting too confus-
ing, we decided to abstract the whole checkpoint mechanic into one
interactive drain, keeping the focus on the energy mechanic.

This feedback loop was great to help players that were dying
often to get through the challenge without needing to farm energy
points. This, however, is a type of Dynamic Difficulty Adjustment
(DDA) that is, the game adapting itself based on player perfor-
mance in order to present the right amount of difficulty for that
player’s specific skills. Although DDA is a great tool for design-
ers to make sure all types of players will enjoy the game, as Jesse
Schell points out in [9], there are several problems associated with
it. For one, players may find that it spoils the reality of the world,
they may exploit the system or they may be outright insulted by this
system.

In order to avoid these problems, we changed the amount of en-
ergy gained per energy item destroyed to a random value. Accord-

Figure 12: Adding randomness to the mechanic and the new feed-
back loop.

Figure 13: Elaborating on the destroy item mechanism.

ing to [3], random values in internal economies makes it difficult
for players to assess the strength of the feedback loop. Figure 12
represents these changes. There is another problem associated with
this feedback loop: players who upgrade their avatar skills (increas-
ing the maximum number of possible life resources or decreasing
the amount of energy needed to be converted) may quickly reach
a high number of life points. To counter that, we created a posi-
tive destructive feedback loop, also shown in Figure 12. The feed-
back loop causes the number of energy points per destroyed item
to decrease the more life points a player has. This makes sure that
players will not stack up a large number of life points and make the
game easier. These two important feedback loops balance them-
selves and creates a promising scenario for emergent behavior to
occur, because according to Jochen Fromm in [6], systems with
multiple feedback loops display more emergent behavior than sys-
tems with only one.

As with the first base model, we elaborated on the destroy item
mechanism in order to represent more faithfully the dynamic of the
game. In Figure 13, the source labeled “destroy items” is replaced
with a converter that takes in the EI Available resource (amount of
available energy items) and creates a random number of resources
that is influenced by the two feedback loops. Just like the previous
system, there is a source that refills the pool to its maximum (10
resources) when a player dies. However, because in this new system
the respawn action will occur less often than in the previous one,

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Art & Design Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 319



Figure 14: Creating a new energy source.

this situation still contains a deadlock: the number of energy items
available will quickly run out, and a players’ only option would be
fight until there is no more lives and respawn.

Figure 15: Balancing the constructive feedback loops.

In order to prevent this deadlock, another energy source was cre-
ated. As shown in Figure 14, when players fight they will now
activate a bonus energy source that creates resources for the en-
ergy pool. In the complete fight mechanic, this source would be
triggered by a player killing a monster and the amount of energy
generated would depend on the strength of the monster. The new
source and connections represent another feedback loop, positive
and constructive: The more energy (that would turn into lives) that
a player has, the more he will fight, which will give him more en-
ergy and so on.

In order to keep the new feedback loop balanced, the two pre-
vious ones (or at least the destructive one) should also act on the
amount of energy generated by the source. Figure 15 represents
these changes. Another mechanism was created to balance the new
constructive feedback loop: when a player respawns, the energy

Figure 16: The complete diagram of the energy mechanic.

pool is emptied (also represented in Figure 15).
In Figure 16, it is presented the entire energy mechanic of

Eliosi’s Hunt. Note that there are other mechanics abstracted in this
diagram, such as the checkpoint and the fight mechanics in order to
keep the diagram understandable. With this holistic view, we can
properly analyze and understand the needs of the mechanic, such as
two deadlock situations that emerged and we can act to improve the
mechanic, like adding the random element to the first two feedback
loops in order to make the DDA less apparent for players. Visualiz-
ing feedback loops in the diagram makes it simple to understand its
profile and easy to balance the game. For instance, when we added
that last feedback loop (which was constructive) there was a clear
need to add new mechanisms to balance the now easier mechanic.

6 CONCLUSION

The game mechanics design process is difficult for designers to it-
erate on and balance with the current widespread design methods.
The Machinations Framework was designed by Joris Dormans as
a way to allow designers a complete and simple view on their sys-
tems. This paper proposed the application of this framework to
model and design Eliosi’s Hunt’s energy mechanic.

By using the Machinations Framework, it was possible to
quickly identify deadlocks and iterate on the solution. Without a
formal mechanics design method, it is difficult to identify and cre-
ate complex systems involving feedback loops, because they get
obscured in the game code itself. The framework allowed us to
identify the need of a feedback loop and its characteristics, as well
as how they should interact with one another in order to create bal-
anced mechanisms.

The Machinations Framework only models the mechanics of a
game, focusing on the internal economy. In the light of that, the
main approach for future work is the study of tools that helps a
designer to create the dynamics and the aesthetics of a game and
also the other types of mechanics that the Machinations does not
model very well, such as physics, tactical maneuvering and social
interaction mechanics. After the study of those frameworks, it is
important to use them to model real games, and test how much it
helped the design of a game.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Art & Design Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 320



REFERENCES

[1] E. Adams. Designer’s notebook: Positive feed-
back. Gamasutra 2002. Available online at:
http://www.gamasutra.com/view/feature/131426/designers notebook
positive .php.

[2] E. Adams. Fundamentals of Game Design (3rd Edition). New Riders,
2013.

[3] E. Adams and J. Dormans. Game Mechanics: Advanced Game Design
(Voices That Matter). New Riders, 2012.

[4] J. Dormans. Engineering emergence: Applied theory for game design.
PhD thesis, University of Amsterdam, 2012.

[5] J. Dormans. Simulating mechanics to study emergence in games. In
Proceedings of AI and Interactive Digital Entertainment Conference,
Palo Alto CA, October 2011.

[6] J. Fromm. Types and forms of emergence, June 2005.
[7] R. Hunicke, M. Leblanc, and R. Zubek. Mda: A formal approach to

game design and game research. In In Proceedings of the Challenges
in Games AI Workshop, Nineteenth National Conference of Artificial
Intelligence, pages 1–5. Press, 2004.

[8] M. Leblanc. Feedback systems and the dramatic struc-
ture of competition. GDC 1999. Available online at:
http://algorithmancy.8kindsoffun.com/cgdc99.ppt.

[9] J. Schell. The Art of Game Design: A Book of Lenses, Second Edition.
A K Peters/CRC Press, 2014.

[10] K. S. Tekinbas and E. Zimmerman. Rules of Play: Game Design
Fundamentals (MIT Press). The MIT Press, 2003.

[11] N. Wiener. Cybernetics, Second Edition: or the Control and Commu-
nication in the Animal and the Machine. The MIT Press, 1965.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Art & Design Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 321


	157015



