
A Comparative Study on a Novel Drawcall-Wise Visibility Culling and
Space-Partitioning Data Structures

Yvens Rebouças Serpa1 ∗ Ygor Rebouças Serpa2 † Maria Andréia Formico Rodrigues1 ‡

1Universidade de Fortaleza (UNIFOR), Programa de Pós-Graduação em Informática (PPGIA), Brazil
2Universidade de Fortaleza (UNIFOR), Centro de Ciências Tecnológicas (CCT), Brazil

ABSTRACT

Computer games and animations often require high frame rates per
second, which motivates the study of increasingly efficient and ro-
bust solutions in visibility culling, particularly in terms of process-
ing time of 3D scenes. In this paper, we present a comparative
analysis focused on the number of triangles and drawcalls neces-
sary for the generation of varied scenes, taking into account combi-
nations of features such as positioning, organization and partition of
geometric elements. Furthermore, from the above analysis, we per-
formed tests with different Space-Partitioning Data Structures (Oc-
tree, KDtree and Grid) and different visibility culling techniques
(View-Frustum Culling and Backface Culling). The contributions
of our work are therefore twofold: (1) a performance impact analy-
sis of drawcall counts generated by several Space-Partitioning Data
Structures for visibility culling; and (2) a novel approach to visibil-
ity culling that is drawcall-wise optimized. The results show that
more competitive frame rates can be obtained if there is an opti-
mum balance between visibility culling precision and number of
drawcalls.
Keywords: visibility culling, space-partitioning data structures,
walkthroughs.

1 INTRODUCTION

The increasing demand for games and graphical applications, spe-
cially digital games, with high frame rates has fostered the study of
techniques to improve the efficiency and robustness of the render-
ing pipeline [8] [10] [19]. Among the pipeline stages, the visibility
culling process [5] has attracted notorious attention in this regard,
being responsible for discarding geometrical primitives unseen by
the viewer [11] [15]. However, a more fine-grained culling, per
se, does not necessarily implies a better performance [4] [19]. Of-
ten, the more precise this process is, the more rendering calls to
the graphical API are required. Such calls are known as drawcalls.
Drawcalls are associated with a fixed-cost and, thus, should be kept
to a minimum [19]. On the other hand, a coarser visibility culling
may submit too many unseen triangles, degrading the overall per-
formance.

Traditionally, different techniques exist for visibility culling.
Among these, we highlight View-Frustum Culling and Backface
Culling [2] [21]. The former concerns with the culling of geometri-
cal primitives that lie outside of the viewing frustum [1] [2], while
the latter focuses on culling primitives within the frustrum, but that
present their back face to the viewer, i.e., with the normal vector
pointing to the same direction as the view vector [21]. Optimization
strategies have been proposed to accelerate these tasks. Basically,
they employ Space-Partitioning Data Structures (SPDS) to solve

∗e-mail: yvensre@gmail.com
†e-mail: ygor.reboucas@gmail.com
‡e-mail: andreia.formico@gmail.com

the problem in a divide-and-conquer manner [3] [14] [20]. How-
ever, although several distinctive approaches have been explored,
to the best of our knowledge, the role of drawcalls in the context
of visibility culling is so far scarcely mentioned on the academic
literature, being treated mostly on the industrial domain [19]. In
the light of this context, the contributions of our work are twofold:
(1) a performance impact analysis of drawcall counts generated by
several SPDS for visibility culling; and (2) a novel approach to vis-
ibility culling that is drawcall-wise optimized.

We divide our work into three main parts: (1) an analysis of the
relationship between triangles and drawcalls counts to the frames-
per-second (FPS) metric, using a geometry generator; (2) the defi-
nition of three data-structures (Grid, Octree and KDtree) and three
culling approaches, including our novel Drawcall-Wise method,
which combined produce 9 different culling strategies; and (3) a
case-study of these strategies applied to a walkthrough on three-
dimensional complex scenes (taken from a known computer game),
which extensively evaluates the solutions on both the traditional
FPS metric and the number of drawcalls metric.

2 RELATED WORK

Samet and Webber [14] present a comprehensive study on the main
algorithms for visibility culling: View-Frustrum Culling, Backface
Culling, Occlusion Culling and several SPDS used in this context.
Later on, Cohen et al. revisited this theme, updating it to more
recent contributions [5]. On the theoretical side, Laakso [11] con-
tributed with a reformulation of the problem as determining the con-
cept of the potentially visible set (PVS) of triangles. Based on it,
several authors employed this terminology for a more mathematical
foundation [1].

More specifically to the View-Frustrum Culling, studies have
been performed on spatial optimizations [2] [3], such as the use of:
bounding boxes, e.g., AABBs and OBBs [7]; SDPS construction
algorithms [1] [13]; and temporal optimization techniques, such as
temporal coherency [6] [17], which preconizes that the PVS of the
next frames of an animation sequence will usually keep the visibil-
ity status of the current frame during a short amount of time [12].

More in depth on the SPDS side, Naylor [13] presents a SPDS
construction algorithm based on probability theory. In another di-
rection, Andrysco and Trichoche [1] present an approach to out-
source the SPDS construction to graphics processing units (GPUs),
obtaining significant results for both dense and sparse geometrical
meshes. Finally, some works make a distinction between aggres-
sive and conservative culling, i.e., if the technique is suitable for
culling visible primitives or not, respectively [9] [15] [20].

In parallel, several works have been developed on the Backface
Culling and Occlusion Culling [21] [22]. Zhang and Hoff proposed
an approach in which the Backface Culling algorithm is performed
in a discrete way, partitioning triangles on usually 8 major view-
ing directions based on bit masks [21]. Given the view-vector, it
is possible to safely exclude at least 3 of such directions, as being
backfaced to the user, by testing the view-vector bit mask against
the viewing-direction bit masks. On the other hand, the Occlusion
Culling algorithm proposed by Zhang et al. uses a hierarchical tech-

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 36



nique for discarding triangles occluded by others [22]. In common,
both works share the use of bit masks to optimize several look-up
operations, leading to fast running time.

Exploring all these approaches combined and how they relate,
Silva and Rodrigues [15] present a comparative study on several
algorithms for Visibility Culling paired with Grids, BSP-Trees, Oc-
trees and Portal-Octrees applied to 3D scenes on mobile devices.
Moreover, the authors focus on a conservative Visibility Culling.
Wald et al. explore a novel way for using Grids for the visibil-
ity culling problem, however, focused on ray-tracing and dynamic
scenes [18].

Applied directly to digital games, Gregory [8] reinforces the
need for an optimized graphical rendering pipeline, thus, most of its
time should be spent on triangles that will be effectively seen by the
player. To the same end, Wloka [19] stresses the importance of min-
imizing the number of drawcalls to maximize the visual throughput.
Intuitively, both remarks should be followed. However, to the best
of our knowledge, works regarding the Visibility Culling problem
seldom address the number of additional drawcalls generated by
their approaches or its impact on the FPS metric. Furthermore,
hierarchical structures, if used, can easily increase the number of
drawcalls exponentially, aggravating this issue. On this path, this
work proposes both an analysis and solution strategies for the Visi-
bility Culling problem in the context of drawcall minimization.

3 VISIBILITY CULLING ALGORITHMS

For digital games and other interactive graphical applications, the
process of discarding triangles unseen by the viewer must occur at
each frame, updating what is considered visible and what is not,
in terms of the viewing vector and position. In this work, we sim-
plify this task by excluding the Occlusion Culling algorithm, leav-
ing only the View-Frustrum and Backface Culling algorithms. This
simplification by no means reduces the generality of the work and
was carried out to avoid too many combinations of algorithms. In
the following subsections, we describe in more detail the two main
culling approaches and how they were implemented.

3.1 View-Frustum Culling and Backface Culling

The View-Frustum Culling algorithm is responsible for determining
the portions of the scene that lie outside the view frustum. Com-
monly, a SPDS is employed to query which portions are inside the
frustum, solving the task in a divide-and-conquer manner. While
sophisticated solutions for this task exists, they are out of the scope
of this paper. Thus, we have developed three SPDS: Grid, Octree
and KDtree. These SPDS will be further explained in Section 3.2.

Executed after the View-Frustum Culling, the Backface Culling
algorithm is responsible for excluding primitives that face the same
direction as the viewer. Such primitives are backfacing the user,
thus, shall not be rendered. In comparison to the earlier task, this
is a much more fine grained process, since backfaced triangles are
likely scattered all over the viewing frustum. For this task, we de-
veloped a single solution, based on the Zhang Backface Culling
algorithm[21]. Both these methods are illustrated in Figure 1.

The Zhang Backface Culling algorithm processes the scene and
divides it into N groups. Each group contains all triangles that are
facing 1/N of all possible directions. For instance, considering only
the x− z plane and taking N as 8, the groups correspond to the fol-
lowing angle ranges [0◦, 45◦], [45◦, 90◦], ..., [315◦, 360◦]. This is
shown in Figure 2. To cull triangles, the viewing vector is consid-
ered. Let Gi be the group the viewing vector belongs to, we can
safely discard all triangles of the groups Gi−1, Gi and Gi+1.

When paired with the View-Frustum Culling, the Zhang Back-
face Culling algoritm partitioning strategy is pushed down to a per-
cell or per-leaf scale. For instance, on a KDtree, the geometry of
each leaf is partitioned into the N Zhang’s partitions. Finally, in the

Figure 1: Illustrative representation of the View-Frustum and Back-
face Culling algorithms.

Figure 2: Zhang masks inside an unity circle. Given that the view
vector is one of the eight groups, the given group and its two neigh-
bours can be safely discarded. For instance, if the view vector lies on
section IV, we can discard sections III, IV and V.

context of drawcalls, for each visible cell/node, there can be up to
N −1 drawcalls, i.e., all groups are non-empty.

In our implementation, we disregarded the x−y plane for gener-
ating groups, focusing only on the x− z plane. As a consequence,
faces in which the normal vector are not sufficiently aligned to the
x− z plane are grouped into a special partition, called Non-Zhang
Partition, that is ignored by the Zhang Backface Culling algorithm
and are always rendered with one drawcall.

3.2 Space-Partitioning Data Structures
In the present work, we have implemented the following SPDS:
Grid [18] [20], Octree [15] and KDtree [1]. In the following sec-
tions, we discuss in details the main features of these SPDS.

3.2.1 Grid

Figure 3: Illustration of the Grid implementation on the x− z plane.

Among the implemented structures, the Grid is the simplest one,
being the less flexible and less expressive in terms of partitioning
capabilities. This structure divides the entire scene in equally sized

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 37



cells divided over a number of rows and columns. Three dimen-
sional Grids are possible, but seldom used within the visibility con-
text. For simplicity, we only allow square Grids, i.e., same number
of rows and columns, as show in Figure 3.

The Grid visibility culling consists in identifying all cells that
intercept the viewing frustum. These cells, are considered visible
while the others are discarded. When compared to the other struc-
tures, while unable to cull on the y axis, the Grid is able to achieve
a higher precision on the remaining x and z axes. Therefore, it is
recommended for scenarios where the y component is not really
explored, such as outdoors scenes with huge open areas.

3.2.2 Octree

Figure 4: Illustration of the Octree implementation.

While the Grid is a flat structure, the Octree presents a hierarchi-
cal relationship of cells. Starting from the root node, which encom-
passes the entire scene, each sub-sequent level divides the scene in
all three axes on 8 sub-regions, as shown in Figure 4.

The Octree visibility culling process is performed by exploiting
the hierarchical nature of the structure. If a node and the frustum
have an intersection the process is recursed to all 8 children nodes,
if they do not, then we can safely discard the node and all its chil-
dren nodes. At the end of the recursive process, the algorithm re-
turns the list of visible leaf nodes. Compared to the other SPDS, the
Octree excels at scenarios where all three axes are equally well dis-
tributed, since it is unable to favor one axis over the other. Examples
include dense urban scenes with lots of buildings and architectural
structures.

3.2.3 KDtree

Figure 5: Illustration of the KDtree implementation.

Finally, the KDtree is the most expressive and flexible of all three
structures, consisting of a binary tree where each level selects an
axis and a point to build a splitting plane. For that, a heuristic is
employed to guide the splitting process. For instance, one sim-
ple heuristic would be to alternately choose the x and z axes and
split them on their midpoint. This heuristic generates a partitioning

equivalent to a Grid on the x− z plane. Likewise, it is possible to
build an Octree-equivalent partitioning by alternating between all
three axes. However, the strength of this structure is the possibility
to express a partitioning that lies in-between the two approaches. In
this work, at each level, we chose as splitting axis the one with the
highest variance on its triangles and we use the mean axis compo-
nent value of all triangles as the splitting point (Figure 5).

Given a node and the frustrum, a KDtree performs the visibility
culling considering three cases: the frustrum is completely to the
left; the frustum is completely to the right; or, it is intercepting
the plane. If it is located to the left, we recurse to the left sibling.
Likewise, if it is to the right, we recurse to the right. In case it
is intercepting the plane, we have no option but to recurse to both
children nodes. As for the Octree, by the end of the procedure,
the algorithm yields the list of all visible leaf nodes. Finally, when
comparing this algorithm to the others, it presents more overhead,
since it needs to be much deeper to express the same amount of
regions. However, it is able to shift its focus from axis to axis,
suiting itself to the scenario’s properties. This SPDS is a good all-
around choice and stands out on the range of scenarios between the
preferred ones for the Grid and the ones for the Octree.

3.3 Triangles Redundancy
During the SPDS construction, triangles may end up intercepting
a partitioning plane when a region is subdivided, not belonging
uniquely to neither left nor right side. For instance, consider an
Octree of height 2 processing a scene with a triangle as big as
the scene itself, such triangle would inevitable belong to all of its
nodes, which would all reference and draw it. While such a triangle
rarely exists, it is actually pretty common for a triangle to cross two
or three nodes. This redundancy affects the overall performance.
However, in the structures we have developed, this was not identi-
fied as a significant issue and, thus it is out of scope of this work.

4 DRAWCALL MINIMIZATION

For each SPDS, we have developed 3 variant implementations,
combining the SPDS with the use or not of Backface Culling and
the Drawcall minimization strategy. These combinations are: Sim-
ple SPDS; Drawcall-Wise SPDS; and Zhang Drawcall-Wise SPDS.

4.1 Simple SPDS
The simple approach basically ignores the drawcalls issue,
employing the SPDS normally. When computing the SPDS, all
the vertex information that should go on a certain cell, is likely
scattered throughout the entire vertices lists. Therefore, each cell
has to perform several drawcalls, rendering each contiguous set of
vertex one at a time. For that reason, it generates several drawcalls
per node. For a deep structure, this is prohibitive. On the other
hand, only one copy of the entire geometry is needed, saving up
memory.

4.2 Drawcall-Wise SPDS
Unlike the Simple approach, the Drawcall-Wise strategy maintains
no global copy of the entire geometry, but several subsets of it, one
for each node in the structure. When visible, the node only has
to submit its share of the model, yielding a single drawcall. As a
drawback, some of the geometry ends up replicated, since some
primitives are shared over a couple of nodes. This leads to a higher
memory footprint, at the expense of a greatly reduced number of
drawcalls.

4.3 Zhang Drawcall-Wise SPDS
Finally, the Zhang Drawcall-Wise SPDS works similarly to the
Drawcall-Wise SPDS. However, each leaf node divides its mesh in

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 38



9 submeshes, 1 for the Non-Zhang partition and 8 for the Zhang
partition, according to the Zhang Backface Culling algorithm.
When rendered, each leaf node does 1 drawcall for the Non-Zhang
partition and 1 drawcall for each visible partition based on the
view vector. The Zhang Drawcall-Wise SPDS is the more precise
in terms of culling than the others. While still more efficient
than Simple in terms of drawcalls, this approach performs some
trade-off of additional drawcalls per node in exchange for a more
fine-grained culling.

5 TRIANGLES, DRAWCALLS AND FPS
To stress the importance of correlating both triangles and drawcalls
counts to the FPS metric simultaneously, we generated a dataset of
half a million triangles and subjected it to several rendering settings
to assess the performance, independently of any application and
prior/posterior optimizations.

Each test consists of taking the first N triangles of the dataset,
splitting it into D equally sized groups and, then, for each frame,
render all groups sequentially, e.g., for N = 10.000 and D = 10,
we generate 10 drawcalls per frame of a thousand triangles each.
Table 1 presents several combinations of number of triangles and
drawcalls with their respective FPSs.

Table 1: Mean FPS for several combinations of triangle and draw
counts, generated from a dataset of 500.000 randomly generated
triangles.

Number of Drawcalls
Triangles 1 10 100 1000 10000 100000

100k 577,03 528,54 496,21 465,59 233,28 47,19
150k 372,10 348,93 296,58 273,56 178,52 47,44
200k 279,89 246,21 222,36 208,47 152,74 41,06
250k 222,98 202,46 187,30 181,78 129,13 41,36
300k 188,79 179,01 149,34 138,93 106,63 38,65
350k 161,04 151,23 126,91 118,00 108,92 38,89
400k 143,09 103,33 115,66 115,94 94,94 38,76
450k 126,02 118,80 100,35 92,16 84,97 38,42
500k 115,14 104,58 89,84 85,07 75,09 38,79

Considering only the number of triangles, an almost linear rela-
tionship to the FPS measure can be seen in column 1 of Table 1.
However, as we increase the number of drawcalls, the relative im-
portance of the number of triangles to the final FPS value gradually
decreases, as the overhead of more drawcalls increases. Numeri-
cally, for a single drawcall, 100.000 triangles are drawn at 570 FPS
and 500.000 triangles at 115 FPS, i.e., a 5 times lower FPS for a 5
times bigger 3D mesh. For a hundred thousand drawcalls, 100.000
triangles are drawn at 47 FPS and 500.000 triangles are drawn at
38 FPS, only 20% slower. Furthermore, when drawing the entire
dataset, i.e., 500.000 triangles, with one single drawcall, it still per-
forms better than when drawing only a fifth of it with one hundred
thousand drawcalls. Figure 6 shows the graphs representing this
behavior.

From the perspective of optimization analysis, several possibili-
ties exist to improve the FPS in terms of triangle counts and draw-
calls. Consider the case of 300,000 triangles with 100 drawcalls.
Obviously, lowering either the number of triangles, drawcalls or
both, will result on a better performance. However, two other op-
tions exist: (1) the culling can be relaxed up to 50,000 triangles
as long as drawcalls are reduced by 90, and (2) the culling can be
tightened up to remove more 50,000 triangles under the budget of
900 drawcalls. In other words, the performance can be improved
by moving diagonally on the triangle-drawcalls space.

While this is just an example, it is pretty much a best-case sce-
nario according to Wloka [19]. In a real-world application, such
as digital games, several user operations are performed for each

Figure 6: Polynomial regression of triangle, drawcall and FPS data
displayed in Table 1. From top-to-bottom, the increased number of
drawcalls gradually decreases the performance. For 105, the over-
head completely dominates the execution time, insensible to the
number of triangles.

drawcall, aggravating this issue, such as what occurs when deal-
ing with skinning meshes or texture/shader changes. Furthermore,
many drawcalls are hard to avoid, such as those that are typical
of dynamic objects. Therefore, a significant amount of drawcalls
is an inevitable reality. For instance, a naive Octree of height H
for View-Frustrum Culling algorithm can yield up to 8H drawcalls.
While the goal is to cull as many unseen primitives as possible, it is
prohibitive to do so in a completely drawcall unaware fashion.

6 TESTS AND RESULTS

This section deals with the type of tests we have conducted and the
results obtained.

6.1 Scenarios and Walkthroughs
To comprehensively analyse the drawcall issue within a real-world
dataset, we have selected and used 3D scenes from the critically
aclaimed Team Fortress 2 game [16]. The scenes, named Coal-
town, Manor and Coldfront, were chosen due to their for having
distinctive dimensions, triangle counts, irregular and rocky terrain
and mixed indoor and outdoor scenery. We show these 3D game
scenes and their respective number of triangles in Figure 7.

For each scenario, a different walkthrough was developed to be
used as a test case. Each walkthrough covers important regions of
the scenario, getting in and out of indoor zones and exposing the un-
derlying algorithms to several stressing settings, such as balconies
with view to most of the outdoor scenery.

6.2 Framework
We composed several ensembles of algorithms by combining the
SPDS, the use or not of the Zhang Backface Culling and the draw-
call minimization strategy. For comparative purposes, we added the
“None” algorithm, which consists in no culling usage, i.e., plainly
drawing the entire geometry with a single drawcall.

All paths were executed for all algorithm compositions and the
FPS metric, drawcall numbers and number of triangles sent to the
rendering pipeline were accounted. The tests were run using a
AMD FX 8320 Eight-Core Processor, 3.50 GHZ with 8.00 GB
RAM memory, running on a GeForce GTX 960 4.00 GB GPU.

6.3 Results
On all carried out tests, it is possible to visualize that the Simple
approach is always the least efficient among the tested approaches.
When compared to the others, the Simple variation reaches up to
100 times more drawcalls than all other approaches. We can note

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 39



(a) Coaltown: 25,894 triangles.

(b) Manor: 89,132 triangles.

(a) Coldfront: 142,678 triangles.

Figure 7: 3D game scenes taken from the Team Fortress 2 game and
their respective number of triangles. Outdoor regions were shaded
in blue while the indoor regions were shaded in black.

that the Drawcall-Wise and Zhang Drawcall-Wise attempting to
minimize the drawcall counts, perform far better, reaching more

Figure 8: Mean FPS comparison of all 6 combinations of SPDS,
using the Backface Culling algorithm and the drawcall minimization
strategy.

than twice the FPS, when compared to the Simple approach. On av-
erage, the Zhang Drawcall-Wise approach performs better than the
pure Drawcall-Wise. However, in a real-world application, where
the cost to render each triangle is usually higher than on our testing
framework (that is, due to more demanding shaders and effects) the
Zhang approach is expected to perform better, since it culls a higher
number of triangles.

Regarding the impact of the structure size, results show that the
height of 4 is the most suitable height for all scenarios. The sig-
nificant exceptions are the Octree on Coaltown, which performed
better with a height of 2, and the Zhang Drawcall-Wise Grid on
Coldfront, which performed better with a size of 5.

6.3.1 FPS and Triangles

Collectively, all scenarios presented distinctive results, favouring
one technique over the others. Additionally, there is a strong corre-
lation between a high FPS and a high culling precision. However,
plainly maximizing the culling has shown to be the worst approach
(Simple), confirming the importance of weighting the number of
drawcalls when designing culling algorithms.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 40



(a)

(b)

(c)

Figure 9: Combined FPS and triangle counts for the best performing
approaches in each scene and the baseline None approach.

Individually, each scenario is either biased to the Zhang or non-
Zhang approach. This can be explained by analysing their geome-
tries one by one. The first, Coaltown, is composed by simple houses
and walls, with a overall simple geography. Due to its smaller di-
mension, often, most of the scenery is considered visible for the
Viewing-Frustrum Culling algorithm, increasing the importance of
the Backface Culling. Thus, it favors Zhang approaches over no
Backface Culling.

The Manor scene is also biased towards Zhang approaches.
However, unlike the previous scene, this is not an implication of
its size, but of its topology. As the name suggests, the scene con-
tains a mansion, thus, many walls and other x−y aligned geometry,
i.e., triangles with normal vectors on the x− z plane. Therefore, a
significant share of its triangles belong to one of the 8 Zhang parti-
tions, allowing the Backface Culling to be more effective.

Finally, the biggest and most complex of all three scenes, Cold-
front, favors the non-Zhang methods. Again, this is a result of its
topology. Similar to Manor, this scene presents a mixture of in-
door and outdoor regions, yet, it has a much higher presence of non
x− y aligned geometry, reducing the amount of culling opportuni-
ties available to Zhang approaches. For instance, a significant por-
tion of this scene corresponds to an irregular rocky terrain. Addi-
tionally, due to its large dimensions on all 3D axes and significantly
higher triangles count, the Octree approach was the best solution
because of its higher amount of nodes.

6.3.2 Walkthrough Analysis

We have analyzed each walkthrough individually, as shown in Fig-
ure 10. The walkthrough on Coaltown starts near the edge of the
scene, with the observer looking directly to the outside, hence, most
of the scene is discarded by the algorithms. This is the highest FPS
peak of the entire walkthrough for all algorithms. For almost the
entire path, due to the scene limited dimensions and number of far
triangles, the Octree solutions become rather excessive, generating
too many drawcalls for a not so significant additional culling, when
compared to the KDtree, for instance. The same applies to the Grid.
For this reason, the best Octree height for this scene was 2, unlike
all other scenes, where it was 4.

The walkthrough on Manor scene starts at the center of the scene,
where a huge amount of triangles are visible. At this point, the
methods that more accurately cull triangles excel. In sequence, the
viewer moves towards the Manor, where the Backface Culling is the
most effective. For this reason, the Zhang methods have outstand-
ing performance during most of this path, even though they gener-
ate more drawcalls. As an example, the Zhang Drawcall-Wise Oc-
tree exhibits the highest FPS of all approaches for most of this test.
Numerically, this approach takes about 60 more drawcalls more in
exchange for culling about a thousand triangles more, in average.
On the worst algorithms side, the None approach, again, exhibits
the lowest FPS, followed by the Simple approaches. Besides FPS,
we analysed the SPDS usage for this scenario. As we mentioned
previously, the best performing size for all structures was found to
be four. The Octree, for instance, produces 84 or 4096 nodes. How-
ever, most of these are empty. In more practical terms, only about
256 nodes are actually created. Moreover, in average, only 50 nodes
are visited per frame, considering both internal and leaf nodes.

Finally, on Coldfront, the observer starts at the middle of the
scene, between the two main buildings. During the initial moments,
the observer does a complete turn around itself, visualizing the en-
tire scene and, thus, demanding a very good culling from the al-
gorithm. Additionally, most of the landscape around the viewer is
highly irregular and rocky, inadequate for a good action of Zhang-
based approaches. After that, the observer starts to move towards
the left building. From that moment, the KDtree starts to obtain a
higher FPS metric since its space-partitioning technique is able to
cull almost half of the scene on fewer steps than the other SPDS.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 41



Since the scene has a good distribution on triangles, the initial split-
ting planes of the KDtree approaches are located near the scene’s
center, explaining the good performance while the observer moves
towards the edge. With the exception of the Grid, which performed
better with a height of 5, all other SPDS had a better performance
at a height of 4, like the previous scene. The Drawcall-Wise Octree
achieved the better FPS metric among the other SPDS, even with
the highest number of nodes, thus drawcalls, testing a mean of 51
nodes per frame. The Zhang Drawcall-Wise Octree performed a
mean of 126 drawcalls per frame, culling approximately 150 more
triangles per frame, but performed worse than the Drawcall-Wise
Octree, since its culling have not improved enough to counter-
act the higher number of drawcalls. Differently than the previous
scenes, on this the Zhang Drawcall-Wise Grid outperformed the
Zhang Drawcall-Wise and Drawcall-Wise KDtree, culling more ef-
fectively, by sending over seven thousand triangles less and per-
forming approximately 23 drawcalls, on average, compared to the
KDtree approaches.

7 CONCLUSIONS AND FUTURE WORK

In this work, we presented a comparative study of the number of tri-
angles, drawcalls and FPS on a graphical application, showcasing a
direct correlation between the three mentioned variables, thus im-
plying its importance to the decision-making process of Visibility
Culling design.

Following these footsteps, we presented the design of several
culling approaches without drawcalls in mind and a novel approach
on drawcall-wise visibility culling, which were compared to each
other in three real-world problems for benchmarking. When run-
ning the approaches for each scene, the drawcall-unaware solution
was strictly worse than its drawcall-aware counterparts. Moreover,
not always the extra drawcalls related to Backface Culling provided
enough extra culling to outweight its overhead. Actually, a strong
relationship exists between the scene topology and the presence or
not of profit in performing the additional Backface Culling step.

Finally, and most important, the findings of our later analy-
sis corroborated our prior observations on the triangles-drawcalls
trade-off to achieve maximum throughput. Furthermore, as ex-
pected, on a more complex setting, such as a digital game, the
impact of drawcalls is much higher than on our original sample
dataset. In this work, besides the API overhead itself, the visibility
lookup(s) operation is part of the drawcall impact, e.g., when in-
creasing the level of an Octree, not only a higher number of draw-
calls occur, but a higher number of nodes are tested. On a full-
fledged digital game, this is even worse, since many other opera-
tions besides a structure look-ups may be tied to increased drawcall
amounts.

As future work, we anticipate that drawcall counts can be pushed
even further down by employing either smarter SPDS and mem-
ory locality. Additionally, the idea of a parametric structure that
is able to adapt its culling precision in runtime is appealing in this
context. Besides further SPDS improvements, the impact of Oc-
clusion Culling algorithm and a Zhang Backface Culling algorithm
extended to both x− y and x− z planes needs to be investigated to
generate a more complete picture of the problem. In the same line,
the number of testing scenarios could be extended to delve on much
more deeply and effectively into higher triangle counts, in the order
of tens of millions.

ACKNOWLEDGMENTS

Yvens R. Serpa, Ygor R. Serpa, and Maria Andréia F. Rodrigues
would like to thank the Brazilian Agencies FUNCAP-CE (Process
Number PEP-0094-00005.01.09/2014) and CNPq (SWG Process
Number 212628/2014-3), as well as the Universidade de Fortaleza
- UNIFOR (Process Number 2038) for the financial support.

REFERENCES

[1] N. Andrysco and X. Tricoche. Implicit and dynamic trees for high
performance rendering. In Proceedings of the 2011 Graphics Inter-
face, pages 143–150. Canadian Human-Computer Communications
Society, 2011.

[2] U. Assarsson and T. Moller. Optimized view frustum culling algo-
rithms for bounding boxes. Journal of Graphics Tools, 5(1):9–22,
2000.

[3] J. Bittner. Hierarchical techniques for visibility computations. PhD
thesis, Faculty of Electrical Engineering, Czech Technical University
in Prague, 2002.

[4] A. Chandak, L. Antani, M. Taylor, and D. Manocha. Fastv: From-
point visibility culling on complex models. Computer Graphics Fo-
rum, 28(4):1237–1246, 2009.

[5] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand. A survey
of visibility for walkthrough applications. Visualization and Computer
Graphics, IEEE Transactions on Visualizations and Computer Graph-
ics, 9(3):412–431, 2003.

[6] N. K. Govindaraju, A. Sud, S.-E. Yoon, and D. Manocha. Interactive
visibility culling in complex environments using cclusion-switches. In
Proceedings of the 2003 Symposium on Interactive 3D graphics, pages
103–112. ACM, 2003.

[7] D. Green and D. Hatch. Fast polygon-cube intersection testing.
Graphics Gems V, pages 375–379, 1995.

[8] J. Gregory. Game engine architecture. CRC Press, 2009.
[9] S. Gummerus. Conservative from-point visibility. Master’s Thesis,

University of Tampere, 77:22, 2003.
[10] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang.

Accelerated occlusion culling using shadow frusta. In Proceedings of
the XIII Annual Symposium on Computational Geometry, pages 1–10.
ACM, 1997.

[11] M. Laakso. Potentially visible set (pvs). Helsinki university of tech-
nology, 2003.

[12] O. Mattausch, J. Bittner, and M. Wimmer. Chc++: Coherent hierar-
chical culling revisited. In Computer Graphics Forum, volume 27,
pages 221–230. Wiley Online Library, 2008.

[13] B. Naylor. Constructing good partitioning trees. Graphics Interface,
pages 181–181, 1993.

[14] H. Samet and R. E. Webber. Hierarchical data structures and algo-
rithms for Computer Graphics I - Fundamentals. Computer Graphics
and Applications, IEEE, 8(3):48–68, 1988.

[15] W. B. Silva and M. A. F. Rodrigues. Interactive rendering of indoor
and urban environments on handheld devices by combining visibil-
ity algorithms with spatial data structures. International Journal of
Handheld Computing Research, 2(1):55–71, Jan. 2011.

[16] VALVE. Team Fortress 2. http://www.teamfortress.com/.
Accessed: 2016-06-07.

[17] G. van den Bergen. Collision detection in interactive 3D environ-
ments. 2004.

[18] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray tracing
animated scenes using coherent grid traversal. ACM Transactions on
Graphics (TOG), 25(3):485–493, 2006.

[19] M. Wloka. Batch, batch, batch: What does it really mean? Presenta-
tion at Games Developer Conference, 2003.

[20] T. Yılmaz and U. Güdükbay. Conservative occlusion culling for ur-
ban visualization using a slice-wise data structure. Graphical Models,
69(3):191–210, 2007.

[21] H. Zhang and K. E. Hoff III. Fast backface culling using normal
masks. In Proceedings of the 1997 Symposium on Interactive 3D
Graphics, pages 103–ff. ACM, 1997.

[22] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff III. Visibil-
ity culling using hierarchical occlusion maps. In Proceedings of the
24th Annual Conference on Computer Graphics and Interactive Tech-
niques, pages 77–88. ACM Press/Addison-Wesley Publishing Co.,
1997.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 42



(a) Coaltown walkthrough and its SPDS.

(b) Manor walkthrough and its SPDS.

(c) Coldfront walkthrough and its SPDS.

Figure 10: Walkthroughs on all 3D scenes.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 43


	156994
	156994




