SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259

Computing Track — Full Papers

Cristina: A tool for refactoring source codes of game prototypes into
reusable codebases

Wolmir Nemitz!'*

'Universidade Federal do Pampa, Software Engineering Department, Brazil

ABSTRACT

Game engines are expensive. One of its biggest hidden costs is in
adapting its features to suit a particular game. Therefore, ease of
modification is a key requirement in game engine selection. Even
so, traditional game development studios prefer to develop most of
their technology. In both cases, code reuse is an important factor.
Prototyping, as a software process model, is used extensively in the
game development industry. Game jams are rapid game develop-
ment events. They are equivalent to the game prototyping process
and, generally, have a source code submission archive on the Web.
This means a good supply of non-reusable code. As per the objec-
tive of this work, we built an application that transforms the source
codes of a set of game prototypes into a reusable codebase. We
researched automated refactoring techniques to use in the applica-
tion. We also looked for reusability metrics to validate the tool’s
effectiveness in producing reusable classes from the original code.
The application was successful in transforming the source codes of
a set of prototypes submitted to the game jam PyWeek. An ex-
periment confirmed that the extracted codebase was more reusable
than the original code. It also validated the proposed refactoring
method. This work is important because it shows the recycling of
development by-products to reduce costs.

Keywords: Game Engine. Game Jam. Iterative Process. Game
Prototyping. Game Development.

1 INTRODUCTION

Game engine is an open and extendable software system on which
a game can be built [1]. Game studios that acquire these systems do
so at a great cost [8]. In his research, DeLoura found that a one year
license of a high level engine may be priced above one million dol-
lars. Of his interviewees, 86% agreed that the biggest hidden cost
is in adapting the engine’s code to suit specific games. That is why
they consider ease of modification and availability of source code
as the main criteria when choosing a game engine. Still, DeLoura’s
results shows that most traditional game developers use their own
game technology.

Code reusability is an important factor in both cases. In the first
scenario, developers need to adapt the engine source to their own
technology. To avoid costs they need to modify as little code as
possible. In the second scenario, they need to reuse past projects to
avoid effort redundancy.

Prototyping is a software process model [19]. Pressman states
that developers use it when there are uncertainties about the objec-
tives and requirements of a system. It is an iterative model with
the following steps: defining the overall objectives of the client;
rapidly build a prototype; test it with the client in order to refine the
objectives for the next iteration. However, Pressman points out two
problems with this methodology. The first is when the client ignores
the bad quality of the prototype in favor of development speed. The

*e-mail: wolmir.nemitz@gmail.com

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

second is when developers decide tho keep the prototypes as legacy
code, compromising the quality of the end product. This process
should be used when clients and developers agree about the illus-
trative and disposable nature of the prototypes.

Game development is an area that conforms to the Pressman’s
criteria for Prototyping [14]. Manker says that game prototypes
are communication tools that bid attention to a subset of a design
space. This space is represented by all the possible decisions a
designer can make along the course of a project. Manker, Callele,
Neufeld and Schneider [6], and Fullerton [11] show that the require-
ments engineering in game development is difficult and sensitive to
changes. Generally, the addition of rules to any complex system
can produce effects difficult to anticipate [14] [11]. Game devel-
opers must reduce the risks of adding complexity to a game before
the project goes into production, when the cost of making changes
is higher [14]. Thus, short iterations are important, which explains
the adoption of rapidly buildable prototypes in game development
to test scope decisions.

A pragmatical application of this technique is often seen in game
jams [16]. Musil et. al define game jams as events in which small
teams must develop a game within a set of restrictions. The authors
approach game jams as a solution to the problem of identifying
requirements in the early phases of a game project. They use the
fact that game jams constraints are the same as game prototyping
constraints to establish an equivalency between a game jam and the
prototyping process. The submission of games to most of these
events is done on a web platform. A side effect of this is the online
availability of these source codes.

Our motivation is the gap between a demand for very reusable
code, as shown by DeLoura’s research, and the supply of very un-
usable code on the web. Our objective is a software application to
bridge this gap. We conjecture that the results of the application on
a set of source files from game jam submissions is a more reusable
code base. To support this claim, we use object oriented metrics to
compare the output code with the original source code.

The rest of this paper is organised as follows. Section 2 presents
the related literature. Section 3 presents the theory behind the al-
gorithm we propose. We outline the application architecture in sec-
tion 4 and the empirical experiment methodology in section 5. We
finally present the results of our empirical validation in section 6.

2 RELATED WORK

We categorize the related literature in two areas: refactoring au-
tomation and reusability metrics. The first concerns the automated
identification of refactoring opportunities as well as the automa-
tion of the refactoring techniques. The second is about quantitative
measures for code reusability.

2.1 Refactoring Automation

Bavota, Lucia and Oliveto [4] propose a graph-based algorithm for
automatically performing Extract Class [10] refactorings in Java
source code. The method uses a combination of structural and se-
mantic metrics as weights in a graph partition algorithm. The pur-
pose is to extract two classes with a higher cohesion value than the

SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259

original class. They confirmed the methods efficacy with an experi-
ment. In this experiment they merged the classes of a system known
by its design quality. The objective was to apply the algorithm on
this modified class and show that the results were the two original
classes. The authors concluded that a combination of semantic and
structural metrics is more effective. However, their work assume a
semantic relevance in the source code that is not present in game
prototypes. Other problems with the method are: not considering
class hierarchies; and not performing more than two extractions per
class.

Fokaefs et al.[9] use a clustering algorithm to perform Extract
Class refactorings. Their approach considers structural dependen-
cies between the entities (methods and attributes) of a target class.
Using this information, the algorithm builds an entity set for each
attribute (containing the class methods which use that attribute) and
for each method (containing the class properties this method uses,
including the other methods it calls). Next, it computes the distance
between pairs of entity sets in order to group entities by their cohe-
sion values. These groups are the extracted classes. Their method,
like the one we propose, use only structural metrics. However, it
requires the user to manually define a threshold to discern between
all the possible configurations of extracted classes. To find the right
threshold without prior knowledge of the class being refactored is a
difficult problem.

Simon et al. [20] implemented a visual metric-based tool to aid
the software engineer in choosing refactoring candidates. Specifi-
cally, their tool allows the user to identify candidates for four types
of refactoring: Move Method, Move Field, Extract Class and Inline
Class [10]. Their algorithm also uses only structural metrics.

Bavota et al. [3] propose a new method for automatically per-
forming Extract Class refactorings that addresses some problems
of their old approach. The methods uses the same metrics to build a
method-by-method matrix. The cells of the matrix are the probabil-
ity that the line and column methods belong in the same class. This
matrix represents a graph. The algorithm calculates a threshold and
cuts the edges of this graph. The resulting subgraphs are called
method chains. Trivial chains are chains with a number of nodes
below a given boundary. Then, the algorithm merges trivial chains
with the non-trivial chains with which they are most coupled. The
resulting graphs are assembled into new classes. They validate the
method with six open-source systems and a number of professionals
of the area, who judged the usefulness of the refactorings. However,
their work still ignores class hierarchies and dynamic programming
languages, and assumes a semantically relevant code.

O’Keeffe and O’Cinneide [17] approach the automatisation of
refactorings as a search problem. The authors test different opti-
mization algorithms to improve the quality of two Java programs.
They consider quality in three factors: understandability, flexibil-
ity and reusability. They measure quality with a linear combination
of eleven metrics. Each factor represents a different combination
of weight coefficients. They obtained positive results in improving
understandability and flexibility. The negative results in reusabil-
ity were attributed to the incompatibility of this factor with search
methods. The authors conclude that their tool has potential for
complex reengineering tasks. However, opposed to Bavota et al.,
their algorithm only manipulates class hierarchies. The method also
didn’t focus on reusability, which might explain the negative results
due to the trade-offs between this and the other factors. As well as
the other works we considered concerning this area, O’Keffe and
O’Cinneide worked with a strong-typed language.

2.2 Metrics

For Bansya and Davis [2] the literature, at the time, validated
object-oriented design metrics with small and unrealistic data sets,
which raises some doubts about the applicability of those met-
rics in an industrial setting. They also point to the inexistence of

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

Computing Track — Full Papers

proven connections between the individual metrics and the qual-
ity attibutes they are supposed to measure. Furthermore, the au-
thors state that the measurements apply only to implemented pro-
grams, which highlights the need for design-phase metrics. The
authors propose a quality model composed of four levels and three
mappings between these levels. The levels are: design quality at-
tributes; object-oriented design properties; object-oriented design
metrics; object-oriented design components. Bansya and Davis em-
pirically identify the quality attributes: functionality, effectiveness,
understandability, extendibility, reusability and flexibility. Design
properties are tangible characteristics of design components. The
authors identify eleven properties, such as cohesion and polymor-
phism. The authors derive eleven metrics from these properties and
define components as classes, methods objects and relationships be-
tween classes. Finnally they map each quality attribute to a linear
combination of the metrics. Bansya and Davis validate their model
with several versions of two commercial systems. They test the
model’s ability to predict design quality and observed a positive
correlation between the model’s predictions and the evaluation of
specialists. However, O’Keeffe and O’Cinneide [17] point out that
the definitions of the metrics by Bansya and Davis lack formal-
ism. They state that the definitions are done in natural language
and are often ambiguous. Furthermore, the work of Bansya and
Davis concerns the design phase of a project, while ours concerns
implemented prototypes.

Goel and Bhatia [12] argument that reusability is a key attribute
for reducing costs. They state that the Department of Defense of the
United States would save U$$300 million annually if they improved
their reuse by 1%. They also affirm that reusing software compo-
nents improves productivity and reduce costs by up to 20%. How-
ever, quality improvement is only understood if measured objec-
tively [12]. The authors use a combination of Chidamber and Ke-
merer [7] metrics to predict the reusability of software. They mea-
sure three systems with different inheritance strategies and compare
the results with a reuse analysis. The results prove the efficacy of
the metrics when it indicates that multilevel inheritance is the best
reuse strategy. Goel and Bhatia do not provide a clear definition of
Chidamber and Kemerer’s metrics. For example, their interpreta-
tion of the Lack of Cohesion Between Methods is subjective. Our
work, in the other hand, propose deterministic expressions for per-
forming these measurements.

3 THEORY
3.1 Game Prototypes

For Manker [14], the possible decisions of a game designer along
the course of a project are represented in a design space. In this
context, prototypes are communication tools with the purpose of
addressing a region in this space. They also allow shorter itera-
tions, because they can be quickly implemented. A low iteration
period is important, because, according to Manker, Callele et al.[6]
and Fullerton[11], requirements engineering in game development
is difficult and sensitive to changes.

According to Fullerton[11], prototypes find design problems
before the game goes into production, when the cost of making
changes is higher. They are implemented with a specific design
issue in mind. The objetive is to reduce the costs of adding com-
plexity to the game. Fullerton and Manker explain that adding rules
to a complex system produce effects that are hard to anticipate.

3.2 Game Jams

Game jams are events in which small teams must develop a game
under a set of constraints. According to Musil et al.[16] the pur-
pose of a game jam is to quickly prototype small games and, in
doing so, inject new ideas into the industry. Their work approaches
these events with a prototyping perspective. Their motivation is the
difficulty of requirement elicitation in the early phases of a game

SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259

development project [6]. They justify this approach with the fact
that game jams were established over a decade ago, and that suc-
cessful games can trace their origins to one of these events. The
objective of the authors is to shape the elements that give a game
jam its accelerating effect in new product development and to iden-
tify new research opportunities.

Musil et al. study game jams under three different perspectives:
design paradigms, systems engineering processes and existing col-
laboration systems. For the authors, game jams deny the traditional
paradigm of design as the product of a rational process, guided by
rules and scientific laws. They are better framed in a pragmatic vi-
sion, according to which the design emerges from a self-organizing,
reflective, know-how bricoleur system based on experience.

The authors classify game jams in no known development pro-
cess, but they identify a basic systems engineering process. The
team solves a problem in a recursive and iterative way, where re-
quirements are balanced against the available development time and
the team’s profficiency with the tools. Iterative, because this pro-
cess repeats for each feature. Recursive, because each step of an
iteration may include the same steps. Tests are of the usability kind,
scenario-based and focused on the final product’s evaluation [16].

Musil et al. observe that each team implement their own vision
of the proposed theme. Consequently, the final set of products is
a thorough approximation of the scenario suggested by the theme.
They conclude that, under a macroperspective, game jams are a
pragmatical approach to game prototyping and identifying innova-
tion opportunities.

Then, to analyze game jams at a lower level, they divide them
in eight elements, shown in Figure 1. From the point of view of
the selection of new products for development, game jams are prac-
tical because they offer executable prototypes, instead of abstract
concepts. From a participatory design perspective, game jams
are safe events for suggesting ideas, because of the low risk of hi-
erarchical or role-based decisions. The team select ideas focused
on product-value because of the time constraints, and will choose
to discard them quickly, if their perceived cost is too high. They
also favor a lightweight construction of the project, using avail-
able codebases, which reduces the product complexity and speeds
up development [16].

[New Product “
Development

[Participatory |

\ Multidisciplinarity

.

1 S——
Concurrent Game Jam Lightweight |
Development (Innovation Factory) ‘Construction
Aesthetics & | [Product-Value
Technology | Focused
[Rapid
‘ Experience
|_Prototyping

Figure 1: Elements of a Game Jam [16]

Rapid experience prototyping, because they favor subjective
experiences and aesthetical integrity over technical qualities. These
subjective experiences determine the balance between aesthetics
and technology. Teams prioritize the product’s utility rather than
its reusability, for example. Musil et al. characterize game jams as
set-based concurrent development. This means that the results of
the event are a set of solutions that approximate a given problem
domain. The team components come from different backgrounds,
such as designers, programmers and artists. This introduces multi-
disciplinarity to the event.

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

Computing Track — Full Papers

3.3 Reusability Metrics

Goel and Bhatia[12] set a precedent when they use object-oriented
metrics to perform reusability analysis. The six metrics, put for-
ward by Chidamber and Kemerer[7], are:

1. Depth of Inheritance Tree (DIT): measures the depth of a
given class down its inheritance tree.

2. Number of Children (NOC): measures the number of direct
descendants of a class.

3. Coupling Between Objects: Number of distinct classes to
which a class is coupled.

4. Lack of Cohesion of Methods (LCOM): Number of disjoint
sets of local methods. In this context, two sets of methods are
disjoint when they share no instance variables. In a class with
total cohesion, all methods share all instance variables.

5. Weighted Methods per Class (WMC): Is the sum of the
complexities of the methods. It can be any complexity metric,
but it’s usually McCabe’s cyclomatic complexity [15].

6. Response for Class (RFC): Number of methods of a class
plus the number of calls to method and functions in the class
body.

Goel and Bhatia organized these metrics in three sums. The
authors state that these combinations have direct impact on the
reusability of a class. They are:

1. DIT + NOC: Have positive impact on reusability.

2. CBO + LCOM: Have negative impact. Both metrics indicate
a possible class subdivision.

3. WMC + RFC: Have negative impact. Complex methods are
harder to modify for reuse.

3.4 Automation of Extract Class

Our method is a modified version of the one proposed by Bavota et
al [3]. The method identifies classes with low cohesion and divide
each class in two or more classes with higher cohesion. However,
Bavota et al. show that this process can increase coupling between
the classes. The authors explain this relation with the fact that both
cohesion and coupling metrics are based on the similarity between
methods. For this reason, the method uses these two metrics to
produce a balanced solution. Figure 2 shows an overview of the
method.

method-by-method matrix construction

E)

N .
@ v method methoct ||| __method similarity "
Sxiacion Cormpuation
. method-by-method
Biob Ciass Gy

Chain, <‘/>{2 Chain,

[Class €T}
(Candidate Class 1 identifying chains.
create merging trivial chains Cos of methods
new classes o
Chain, Chain, *3
ods _ Chain,

o . Trivial chain
Candidate Class 2 Chain,

Figure 2: Class extraction process [16]

The first part of this approach is to build a n x n matrix, where
n is the number of methods in the subject class. A cell ¢; ; of this
matrix represents the probability that the methos i and j belong to

20

SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259

the same class. This matrix is the representation of a graph whose
edges are bonds between methods. A given threshold will filter
these edges. The result is an initial set of method chains that will
become the extracted classes. Method chais with a low number of
methods are trivial chains. The method merges trivial chains with
the non-trivial chains with which they are most coupled.

The probability that two methods belong in the same class is
given by a combination of metrics. In Bavota et al. [3] and Bavota,
Lucia and Oliveto [4], they are three: Structural Similarity Between
Methods (SSM) [13], Call Based Dependence Between Methods
(CDM) [4] and Conceptual Similarity Between Methods (CSM)
[18]. These metrics are orthogonal [4]. That means they capture
different dimensions of coupling between methods. However, the
authors stated that the third metrics depends on the quality of the
comments, and the names of the variables and methods. These
two characteristics are often ignored in favor of development speed
when building prototypes, as suggested by Pressman [19], Musil et
al. [16] and Fullerton [11]. We’ll ignore semantic metrics because
of this fact.

Structural Similarity Between Methods is a measure of the over-
lapping use of instance variables between two methods of a class.
Let [; be the set of instance variables referenced by the method m;.
The SSM of methods m; and m; is given by the ratio between the
number of variables they share and the number of variables they
reference [3]:

[0l/I BT .
SSM (m;,m;) = o> WV 0;
0, otherwise

Bavota, Lucia and Oliveto proposed CDM, which measures sim-
ilarity by the method calls made by methods. Let calls(m;,m;)
be the number of calls made by method m; to method m; and let
calls;,(m) be the total number of calls to m; throughout the class.
Then, CDM,;_, j is defined as [3]:

alls(m;,m; .
7L;Z;§:1(m;’>> . ifcallsi,(mj) #0;

CDM;_,; =
o { 0, otherwise

If CDM;_, j = 1, then m; is only called by m; and must belong to
the same class. If CDM;_, j = 0, then m; never calls m; and, there-
fore, can be in different classes without increasing the coupling in
the system. So there is no ambiguity in the method matrix, all met-
rics must be commutative. Then, Bavota et al. define CDM as:

CDM(m,-.,mj) = max(CDMi_U‘,CDMj_)i)

After assembling the matrix, we identify subgraphs that repre-
sent weak structural relationships between the methods. For that
we define a lower boundary (minCoupling) and filter the edges:

g Cip
Cij = { 0,

Bavota et al. studied two definitions for the minCoupling thresh-
old. The first is to manually set it as a constant. It is easier to im-
plement, but difficult to know beforehand which value is best for
the codebase being refactored. The second is a variable threshold
approach, which depends on the class bein refactored. The authors
calculate it as the median of the values in the method matrix. The
variable threshold produced better results in their experiments. The
resulting subgraphs of this filtering are called method chains.

This set of method chains may include chains with a low num-
ber of methods, called trivial chains. We apply a new filter, us-
ing a minLength threshold, which identifies them. Next, we cal-
culate the coupling between each trivial chain and each non-trivial
chain. Then, we merge each trivial chain to the non-trivial chain

if ¢; j > minCoupling;
otherwise

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

Computing Track — Full Papers

with which it is most coupled. The formula for the coupling be-
tween two method chains C; and C; is [3]:

1
eI

m;eC;,m;eC;

Coupling(C;,C;)

)

where |Ci| is the number of methods of the chain Cy.

The last step is to reassemble the resulting chains into classes.
This involves distributing the fields of the original class to each ex-
tracted class according to their use by the methods. In this point
out work differs from Bavota er al.. We relocate the extracted
classes within the inheritance tree of the original class, ordered by
their dependencies on the attibutes. The purpose is to increase the
DIT measure which, according to Goel and Bhatia [12], increases
reusability.

4 APPLICATION ARCHITECTURE

We wrote the application in Python. The tool’s design follows the
Pipes and Filters pattern, proposed by Buschmann et al [5]. He
defines the pattern as a chain of messages in which the output of
a processing unit is the input of the next. We justify this decision
with the nature of the method exposed in Section 3.4. Filters are
components that manipulate data in a specific way. Pipes are com-
ponents that connect filters. The source code of the prototypes are
our data stream. Each step of the Extract Class algorithm is a Filter
component.

The initial data stream are the source codes for the prototypes.
The first filter transforms the plain text source code into abstract
syntax trees that are easier to manipulate programmatically. The
second filter identifies the class nodes. This step is necessary be-
cause Python is not a fundamentally object-oriented language, and
one often finds different programming paradigms within the same
codebase. The third filter wraps these raw nodes into a utilitary
class. The purpose of this class is to abstract tree manipulations
into an interface for accessing method nodes and attributes.

The fourth component builds the method by method matrix.
Each cell of the matrix holds the probability that the two methods
belong in the same class. The metrics SSM and CDM determine
these values. This matrix represents a graph. The fifth filter applies
the minCoupling threshold to the matrix, effectively isolating sub-
graphs by removing edges. The median of the values in the matrix
determines the minCoupling threshold. The sixth component in-
spects the filtered matrix and outputs method chains. The seventh
component identifies and merges the trivial chains with the non-
trivial chains. The resulting chains are reassembled into class nodes
and finally transformed into Python code by components eight and
nine, respectively.

We created a subsystem called pypeline that implements a paral-
lel version of the Pipes and Filters pattern. The purpose is to avoid
processing bottlenecks when reading the source files or calculating
the matrix. Figure 3 shows the UML class diagram of this subsys-
tem.

The Pipeline class manages the connection and processing order
of the filter components. The connection between filters is done by
the Pipe class. The objects of this class feed the next filter with the
data returned by the previous filter. They also buffer this data until
the next filter is ready to process them.

The application is called Cristina and has eleven components.
Each one is a Filter of the Pipes and Filters pattern. The project’s
class diagram can be seen in figures 4 through 8.

The class CrisDataSource reads a single Python source file or a
directory and pushes the raw text source into its exit pipe. Then,
CrisCodeToAstTransformer converts the text source into abstract
syntax trees which figure 9 illustrates. CrisClassNodeFinder tra-
verses these trees looking for class definition nodes (ClassDef
nodes, seen in figure 9). The next filter, CrisAstClassWrapper

21

SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259

(©) ripeiine

list filters
DataSource data_source
DataSink data_sink

threading \

void connect(filter)

wvoid set_data_source(data_source)
void set_data_sinkldata_sink)

void run()

— T —
S —

@) Fitter

Pipe in_pipe
Pipe out_pipe

(&) patasink

object filter_process(data) abstract void close_sink()
void run) abstract void hand/e_outputioutput)
void set_input_pipatin_pipe)

void set_output_pipe(out_pipe)

(B) patasource

abstract bool has_nextl)
abstract object next()

© Pipe

Queue queue
Event register

void open_register()
woid close_register()
woid push(data_packet)
waid pull()

bool has_flow()

bool is_opent)

Figure 3: pypeline module diagram

@ CrisDataSource

g /

7
©Filter

@ CrisCodeToAstTransformer

Figure 4: The first two stages of the app pipeline: the stream source
and the ast parser.

wraps these nodes into utilitary classes designed to abstract raw
node manipulations and provide an easy interface for accessing
method nodes and symbol tables. CrisMethodByMethodMatrix
uses this interface to build the method-by-method matrix described
by Bavota et al.[3].

The component CrisChainsOfMethodsFilter, calculates
minCoupling and filters the matrix. This filtered matrix is the
input for CrisMethodChainsAssembler, which uses an algorithm
for detecting isolated graphs within the matrix. These graphs are
the method chains. The next step is to identify the trivial chains,
which is done by the component CrisTrivialChainMerger, which
also calculates the coupling between chains and merges the trivial
with the non-trivial chains.

At this point, the method chains are represented as a list of func-
tion definition nodes, or FunctionDef in figure 9. These lists are the

© CrisClassMNodeFinder

\W

L~

~
©Filter

@ CrisAstClassWrapper

Figure 5: The third and fourth stages: the class node filter, and the
ast utils decorator

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

Computing Track — Full Papers

©CrisMethodByMethodMatrix ©CrisMethodChainsFilter

Figure 6: The fifth and sixth stages: the method matrix builder, and
the method chains filter

©CrisMethodChainsAssembler ©CrisTriviaIChainMerger

ipypeline

L

iy
©Filter

Figure 7: The seventh and eigth stages: assembling and merging the
method chains.

input for CrisClassAssembler, that creates class definition nodes
and appends the methods to them. This component also identi-
fies the fields used by each method and, based on this information,
inserts the extracted classes in the inheritance line of the original
class. CrisAstToCodeTransformer transforms these nodes into raw
source code and pushes them down the pipeline to CrisDataSink,
that saves these codes into a file.

5 EXPERIMENT

We validate the application through an experiment designed to test
the efficacy of the application in extracting classes more reusable
that the original. We split the experiment in three steps. First, we
measure the original source code using Goel and Bhatia’s measure-
ment technique [12]. This codebase is a sample of 30 Python source
files, randomly selected from a poplulation of 322 files. These files
come from submissions to the game jam PyWeek. The purpose is
to establish a baseline against which we compare our results.

Next, we execute the application once for each combination of
weights for the metrics SSM and CDM, and the minCoupling pa-
rameter. And, finally, we execute the application with a random
cohesion metric, instead of SSM and CDM, to validate the useful-
ness of the algorithm. In short, we execute the following script:

1. For each minCoupling value:

(a) Execute the application with SSM weight 0.0 and CDM

weight 1.0;
‘@Cnsc\assAssembler ‘©CnsAstToCodeTransformer |©CnsDataSink
[[I
L L L
pvr@&e\\ /
L
ﬁ@ﬁ\tar ‘@Dataswnk
I [
L L

Figure 8: The last three stages: assembling the classes, transform-
ing the asts into source code, and writing the codebase source file.

22

SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259

Figure 9: Example of an Abstract Syntax Tree

(b) Execute the application with SSM weight 0.2 and CDM
weight 0.8;

(c) Execute the application with SSM weight 0.5 and CDM
weight 0.5;

(d) Execute the application with SSM weight 0.8 and CDM
weight 0.2;

(e) Execute the application with SSM weight 1.0 and CDM
weight 0.0;

(f) Execute the application with a random cohesion metric;

2. Measure the resulting codebase using reusability metrics and
compare these with the original measurements.

We obtain our control values when we execute the application
with a metric that returns random cohesion values. The primary
objective is to verify if the simple division of the methods of a
class significantly enhances reusability. The secondary objective,
although a consequence of the first, is to test the metrics efficiency
in optimizing reusability.

To obtain Goel and Bhatia’s reusability metrics we must calcu-
late Chidamber and Kemerer’s OO metrics first. We calculate DIT
in a recursive way, beginning in the leaf class and up the tree until
the root class or until we find a reference error. This error can occur
because the superclass may not be in codebase being refactored.
Python supports multiple inheritance. Therefore, we consider the
highest path until the root class as the DIT value. NOC is relatively
easy to obtain, since we just count the number of direct subclasses
of the target class.

Coupling Between Objects is a little difficult to calculate from
a dynamic language standpoint. In most implementations, the cou-
pling is determined by the types referenced in a class. In Python,
and other weak-typed languages, we only know the type of an ob-
ject in runtime. We learned that it doesn’t make sense to talk of
coupling by types, when dealing with dynamic languages. Instead,
in Python, at least, we must consider that an object is coupled only
with the foreign methods and attributes it expects in runtime. In
other words, its coupling measure is the number of different inter-
faces it needs to run properly. We implement this by building a
graph whose nodes are the external references a given class makes,
and the edges are the number of local and instance variables that
share this reference. Then, we identify the disconnected graphs
within this matrix and the number of such graphs is equal to the
coupling of the class.

We implement Cohesion of Methods (COM) by taking the num-
ber of pairs of methods that share instance variables and dividing
it by the total number of pairs of methods. The Lack of Cohesion
of Methods is simply 1.0 — COM. Weighted Methods per Class is
implemented as the sum of the complexity of the class methods.
And Response For Class is the sum of the number of class meth-
ods with the number of calls the class makes to external methods.
The last step of the experiment is to calculate the average of the
measurements of each codebase and compare them.

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

Computing Track — Full Papers

6 RESULTS

The application was successful in extracting classes that are more
reusable than the original. We illustrate the results of class extrac-
tion in figures 7 and 8. Figure 7 is a class taken directly from one
of the prototypes being refactored. Figure 8 is one of the classes
extracted from it. We observe that it is a subclass of CarbonScreen-
Mode0, which was the first extracted class. This shows our mecha-
nism of inheritance tree preservation.

class (ScreenMode) @
def __inmit__(N N H
(CarbonScreenMode, self).__init__(screen)
self.mode = mode
self.width = self._get_long('Width')
self.height = self._get_long('Height')
self.depth = self._get_long('BitsPerPixel')
self.rate = self._get_long('RefreshRate')
def _get_long(N):
kCFNumberLongType =
cfkey = create_cfstring(key)
number = carbon.CFDictionaryGetValue(self.mode, cfkey)
if (not number):
return
value = c_long()
carbon.CFNumberGetValue (number, kCFNumberLongType, byref(value))
return value.value

Figure 10: Original class

class (CarbonScreenMode®) :

mode =

def _get_long(N):
KCFNumberLongType =
cfkey = create_cfstring(key)
number = carbon.CFDictionaryGetvalue(self.mode, cfkey)
if (not number):

return

value = c_long()
carbon. CFNumberGetValue (number, kCFNumberLongType, byref(value))
return value.value

' —=> EXTRACTED <-- '

Figure 11: Extracted class

Our results are in the following three tables. Table 1 contains the
measurements of the original codebase. Figures 9 and 10 show the
measurements of the extracted codebases for each combination of
parameters. mC is the minCoupling parameter, and w —ssm and w —
cdm are the weigths for SSM and CDM. Table 2 holds the results
of the control group.

Original Codebase

Metric Value

DIT 0.1489
NOC 0.1915
CBO 2.9433
LCOM 0.0319
WMC 6.8582
RFC 8.5745

Table 1: Measurements of the original codebase.

First, we must observe the increase in the NOC value relative to
our baseline. The minimum value we obtained from this metric af-
ter the extraction was 0.4899, with mC set to 0.1, and both weights
at 0.5. Even so, it represents a 155% increase. According to Goel
and Bhatia, high NOC values are good for reusability.

Coupling Between Objects (CBO), on the other hand, has nega-
tive impact on reusability. We observe in figures 2 and 3 that this
measure decreased with the extractions, but we can see a slight in-
crease in some cases. The best case was 0.4457, with mC at 0.9 and
weights at 0.5. It is a 20% improvement in class decoupling, from
the baseline.

23

SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259

BC Ext.

mC w-ssm w-cdm dit noc lcom wmec rfc

0.0000 0.0000 1.0000 0.000000 0.7873
0.0000 0.2000 0.8000 0.000000 0.7870
0.0000 0.5000 0.5000 0.000000 0.8125 0.0000 2.5182 3.1484
0.0000 0.8000 0.2000 0.000000 0.7715 0.0063 3.0266 3.7840
0.0000 1.0000 0.0000 0.001555 0.7729 24495 0.0062 3.0078 3.7605
0.1000 0.0000 1.0000 0.000000 0.7530 2.6261 0.0000 3.3173 4.1475
0.1000 0.2000 0.8000 0.000000 0.6408 2.8908 0.0073 4.6942 5.8689
0.1000 0.5000 0.5000 0.000000 0.4899 3.1520 0.0068 6.5338 8.1689
0.1000 0.8000 0.2000 0.000000 0.5065 209 0.0065 6.3203 7.9020
0.1000 1.0000 0.0000 0.000000 0.5929 2.8142 0.0055 5.2842 6.6066
0.2000 0.0000 1.0000 0.000000 0.7584 2.6225 0.0000 3.2450 4.0570
0.2000 0.2000 0.8000 0.000000 0.7596 2.6093 0.0000 3.2287 4.0367
0.2000 0.5000 0.5000 0.000000 0.6074 2.9098 0.0106 5.1300 6.4138
0.2000 0.8000 0.2000 0.000000 0.6508 2.6865 0.0095 4.5938 5.7435
0.2000 1.0000 0.0000 0.000000 0.6294 2.7164 0.0075 4.8109 6.0149
0.3000 0.0000 1.0000 0.000000 0.7604 2.6106 0.0000 3.2180 4.0233
0.3000 0.2000 0.8000 0.000000 0.7677 2.5823 0.0000 3.1194 3.9000
0.3000 0.5000 0.5000 0.000000 0.6884 2.7495 0.0063 4.0716 5.0905
0.3000 0.8000 0.2000 0.000000 0.6920 2.6667 0.0105 4.0802 5.1013
0.3000 1.0000 0.0000 0.000000 0.6689 2.6892 0.0090 4.3559 5.4459
0.4000 0.0000 1.0000 0.000000 0.7700 2.5751 0.0000 3.0895 3.8626
0.4000 0.2000 0.8000 0.000000 0.7791 2.5475 0.0000 2.9663 3.7086
0.4000 0.5000 0.5000 0.000000 0.7121 2.6848 0.0058 3.7626 4.7043
0.4000 0.8000 0.2000 0.000000 0.7483 25414 0.0069 3.3345 4.1690
0.4000 1.0000 0.0000 0.000000 0.7120 2.6233 0.0099 3.8146 4.7692

0.0000 2.8567 3.5716
0.0000 2.8609 3.5769

Figure 12: Measurements of the extracted codebase

B. Ext. Cont.

mC w-ssm w-cdm dit noc lcom wmc

0.5000 0.0000 1.0000 0.000000 0.7867 0.0000 2.8652

0.5000 0.2000 0.8000 0.000000 0.7864 0.0000 2.8694

0.5000 0.5000 0.5000 0.000000 0.8123 0.0000 2.5215

0.5000 0.8000 0.2000 0.000000 0.7583 0.0066 020

0.5000 1.0000 0.0000 0.000000 0.7595 0.0066 3.1862

0.6000 0.0000 1.0000 0.000000 0.7867 0.0000 2.8652

0.6000 0.2000 0.8000 0.000000 0.7879 0.0000 2 3

0.6000 0.5000 0.5000 0.000000 0.8151 0.0000 827

0.6000 0.8000 0.2000 0.000000 0.7660 0.0064 3 4

0.6000 1.0000 0.0000 0.000000 0.7630 0.0065 3.1396

0.7000 0.0000 1.0000 0.000000 0.7879 0.0000 2.8483

0.7000 0.2000 0.8000 0.000000 0.7879 0.0000 2.8483

0.7000 0.5000 0.5000 0.873116 0.8191 0.0000 2.4296

0.7000 0.8000 0.2000 0.000000 0.7750 2.4838 0.0062 2.9800

0.7000 1.0000 0.0000 0.007874 0.7701 39 0.0063 457

0.8000 0.0000 1.0000 0.000000 0.7879 5361 0.0000 483

0.8000 0.2000 0.8000 0.000000 0.8127 2.4603 0.0000 150

0.8000 0.5000 0.5000 0.011111 0.8222 2.4457 0.0000 877

0.8000 0.8000 0.2000 0.000000 0.8220 2.4462 0.0000 906 2.9889
0.8000 1.0000 0.0000 0.000000 0.7747 2.4815 0.0062 846 3.7315
0.9000 0.0000 1.0000 0.000000 0.7879 2.5361 0.0000 183 3.5611
0.9000 0.2000 0.8000 0.000000 0.8220 2.4462 0.0000 3 6 2.9889
0.9000 0.5000 0.5000 0.000000 0.8222 2.4457 0.0000

0.9000 0.8000 0.2000 0.000000 0.8222 2.4457 0.0000 2 Y
0.9000 1.0000 0.0000 0.000000 0.7754 24831 0.0062 2.9754 3.7200

Figure 13: Continuation

Like CBO, lack of cohesion between methods indicate too much
responsibility within a class, which is bad for reusability. Our re-
sults show that, in many cases, the extraction produced completely
cohese classes. Our worst result was still only 67% of the LCOM
measured in the baseline. It is in figure 9, with mC at 0.2 and both
weights at 0.5.

The metrics Weighted Methods per Class (WMC) and Response
for Class (RFC) are both directly proportional to the number of
methods in a class. Our application is based on redistributing the
methods of class between the extracted classes. So it makes sense
that these measurements significantly decreased from the baseline,
which is good, from a reusability perspective. However, observing
the control results in table 4 we see that the random extraction of
methods has little impact on reusability as a whole.

That is because, for a class with n methods there are many ways
to combine them in different classes. For each configuration of ex-
tracted classes, there is a correspondent set of CK measurements
that may not be better than those of the original class. This can
happen, for example, when a minority of the extracted classes in a
configuration hold most of the more coupled or less cohesive meth-
ods. This proves the optimizing factor of Bavota et al.’s choice of
metrics, because they help find the most reusable configuration.

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

Computing Track — Full Papers

V. de Controle

mC dit noc cbo Icom wme rfc

0.00 0.000000 03260 3.9163 0.0264 8.5198 10.6520
0.10 0.000000 0.0253 5.0253 0.0506 12.2405 15.3038
0.20 0.000000 0.0723 4.8313 0.0361 11.6506 14.5663
0.30 0.000000 0.0778 4.8383 0.0539 11.5808 14.4790
0.40 0.000000 0.1250 4.6307 0.0341 10.9886 13.7386
0.50 0.000000 0.2165 43763 0.0361 9.9691 12.4639
0.60 0.000000 03108 3.9865 0.0315 8.7117 10.8919
0.70 0.003559 04733 35765 0.0320 6.8826 8.6050
0.80 0.002967 0.5608 3.2522 0.0267 5.7389 7.1751
0.90 0.006342 0.6913 29767 0.0085 4.0888 5.1121

Table 2: Control values

6.1 Limitations and Generalisability

A unit of code is one or more valid statements of source code. The
first limitation of our approach is that we consider only classes as
units of code. Reuse has two dimensions: effort and usefulness.
Reuse effort is the amount of work a developer has to do to reuse a
unit of code. Usefulness is how much that unit of code is applicable
to what the developer is doing. In a reusability context, semantic
metrics measure how much that code is semantically related to a
developer’s needs. So they can, to some extent, measure the use-
fullness of a unit of code. In a reusability context, structural metrics
measure how much a unit of code is cohesive and coupled to, or
dependent on, other units of code. They provide insight into the ef-
fort dimension of reuse, because a developer will have to manually
resolve missing couplings or dependencies and cut off unecessary
parts when reusing a unit of code. The second and third limita-
tions of our approach is that it concerns only the effort dimension
of reuse, and a specific reuse scenario, respectively. In this scenario,
the developers already have a codebase of games that are not neces-
sarily compilable/executable. Their primary requirement is that the
extracted codebase is reusable, not functional. The fifth limitation
is that we are assuming that the relationship between structural met-
rics and reuse effort is constant. This may be the general case, but
there are specific areas in software development where architectural
constraints would favor a unit of code with a lesser measurement,
as long as that unit of code is better suited to those architectural
constraints.

7 CONCLUSION

Game engines are important tools for the game development in-
dustry. However, their prohibitive price is the main cause for the
preference of most developers to reuse their own code. Therefore,
reusability is an important factor for this market segment. Our re-
search of the related literature revealed that prototyping is more
than a communication tool for interative concepts. It assumes a
constructive role when used to explore a design space that, until
then, would be abstract. We confirmed this exploratory role with
academic works that establish an equivalency between the proto-
typing process and game jams. A consequence of this equivalency
is the high online availability of source code for game prototypes.
This availability, and the need for code reuse, was the motivation
for our work. We built a tool that tranforms game prototypes in
reusable code.

For that, we researched automated refactoring techniques that
improve reusability. The works we studied, however, approach
refactoring as a tool for improving quality as a whole. But we also
observed that the quality factors under scrutiny are connected. For
example, reducing the code complexity of a game project will re-
duce its defect rate, but will also increase its reusability. Based
on this fact, we selected the work of Bavota et al.[3], that presents
an automated refactoring technique based on class extraction by

24

SBC — Proceedings of SBGames 2016 | ISSN: 2179-2259

method cohesion. The authors motivation was to increase the over-
all quality of a system, but we conclude that the technique had a
significant impact on reusability as well.

We observe this same effect in the utilization of object oriented
metrics. They capture several quality dimensions at the same time,
including reusability. We explore this effect to use the Chidamber
and Kemerer [7] metrics suite to validate our application, a prece-
dent set by the work of Goel and Bhatia [12]. Our results show
the application’s effectiveness in extracting more reusable classes
from a prototype codebase. Therefore, our main conclusion is that
this tool has economic potential, because it recycles development
by-products to decrease costs. This fact is based on the work of
Goel and Bhatia, and DeLoura’s game engine survey [8]. This cost
decrease is closely related with the decrease in reuse effort of the
extracted classes. However, as discussed in the end of the section 6,
it’s not possible to know beforehand if the refactored codebase will
be useful. Also, the application does not take into account architec-
tural constraints that may affect reuse effort.

In future works we may explore the impact of the minLength
paramaters on the results. We can also improve the refactoring
method and organize the extracted classes into a game engine ar-
chitecture. We can also study the impact of semantic metrics on
reusability. And, finnally, validate the usefulness of the application
in a case study with actual game developers.

REFERENCES

[11 E. E Anderson, L. McLoughlin, J. Watson, S. Holmes, P. Jones,
H. Pallett, and B. Smith. Choosing the infrastructure for entertain-
ment and serious computer games - a whiteroom benchmark for game
engine selection. In Games and Virtual Worlds for Serious Applica-
tions (VS-GAMES), 2013 5th International Conference on, pages 1-8,
2013.

[2] J. Bansiya and C. Davis. A hierarchical model for object-oriented de-

sign quality assessment. /EEE Transactions on Software Engineering,

28(1):4-17, Jan. 2002.

G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto. Automating ex-

tract class refactoring: an improved method and its evaluation. Em-

pirical Software Engineering, 19(6):1617-1664, 2014.

[4] G.Bavota, A. D. Lucia, and R. Oliveto. Identifying extract class refac-

toring opportunities using structural and semantic cohesion measures.

Journal of Systems and Software, 84(3):397-414, 2011.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.

Pattern-Oriented Software Architecture: A System of Patterns. John

Wiley & Sons, New York, 1996.

D. Callele, E. Neufeld, and K. Schneider. Requirements engineering

and the creative process in the video game industry. In Requirements

Engineering, 2005. Proceedings. 13th IEEE International Conference

on, pages 240-250, Aug 2005.

[7]1 S.R.Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6):476-493,
1994.

[8] M. DeLoura. Game engine survey 2011. Game Developer Magazine,
18(5):7-14, 2011.

[9] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander. Decom-
posing object-oriented class modules using an agglomerative cluster-
ing technique. pages 93—101, 2009.

[10] M. Fowler. Refactoring - Improving the Design of Existing Code. Ad-
dison Wesley object technology series. Addison-Wesley, 1999.

[11] T. Fullerton. Game Design Workshop, Second Edition: A Playcentric
Approach to creating Innovative Games. Morgan Kaufmann, 2008.

[12] B. M. Goel and P. K. Bhatia. Analysis of reusability of object-oriented
systems using object-oriented metrics. ACM SIGSOFT Software En-
gineering Notes, 38(4):1-5, 2013.

[13] G. Gui and P. D. Scott. New coupling and cohesion metrics for evalu-
ation of software component reusability. In ICYCS, pages 1181-1186.
IEEE Computer Society, 2008.

[14] J. Manker. Game design prototyping. Games and Innovation Research
Seminar 2011 Working Papers, 1(1):41-48, 2011.

[3

[t}

[5

=

[6

=

XV SBGames — Sao Paulo — SP — Brazil, September 8th - 10th, 2016

[15]

[16]

(17]

(18]

[19]

[20]

Computing Track — Full Papers

T. J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, 2(4):308-320, 1976.

J. Musil, A. Schweda, D. Winkler, and S. Biffl. Synthesized essence:
what game jams teach about prototyping of new software products. In
J. Kramer, J. Bishop, P. T. Devanbu, and S. Uchitel, editors, Proceed-
ings of the 32nd ACM/IEEE International Conference on Software En-
gineering - Volume 2, (ICSE) 2010, Cape Town, South Africa, 1-8 May
2010, pages 183-186. ACM, 2010.

M. K. O’Keeffe and M. O. Cinnéide. Search-based refactoring for
software maintenance. Journal of Systems and Software, 81(4):502—
516, 2008.

D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimthy. Using infor-
mation retrieval based coupling measures for impact analysis. Empir-
ical Software Engineering, 14(1):5-32, Feb. 2009.

R. S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, New York, NY, eighth edition edition, 2014.

F. Simon, F. Steinbrckner, and C. Lewerentz. Metrics based refactor-
ing. Sept. 14 2001.

25

	156931
	156931

