
Evolvestone: An evolutionary generator of balanced
digital collectible card games

Tiago Zaidan1∗ Luı́s Fabrı́cio W. Góes2

1TDZ Games, Research and Development Department, Brazil
2PUC Minas, Computer Science Department, Brazil

ABSTRACT

Automated game generation has become desirable to keep up with
the ever increasing demand for new and fun digital games. This is a
challenging task that requires a huge amount of creativity from dif-
ferent domains, such as game design, art, programming and audio.
In recent years, computational creativity on games has been han-
dling this task by studying and proposing several systems capable
of producing, if not an entire, at least part of a game content, that is
novel and playable. However, no matter how different these games
are, the nitty-gritty of their success relies on their balance. For ex-
ample, a game cannot be too hard or too easy, otherwise a player
might lose his interest on it. This paper proposes Evolvestone, an
evolutionary generator of balanced digital collectible card games
(DCCG), inspired on Hearthstone. It creates Hearthstone-like card
games by exploring the space of parameters, building sets of new
cards and applying different metrics to ensure game balance. Our
main contributions are a genetic algorithm-based system that cre-
ates new card games, a full card game simulator and the proposal of
balance metrics. Compared to a random approach, results showed
that Evolvestone creates card games that are up to 51% more bal-
anced.

Keywords: Computational creativity, Digital games, Digital col-
lectible card games, Game rules, Game evaluation metrics, Evolu-
tionary algorithm, Game balance.

1 INTRODUCTION

Computational Creativity is the field which studies the creation of
systems that are capable of producing creative artifacts that are new,
useful and of quality [23, 5, 10, 2, 1, 22, 7, 3, 18]. In the last
years, this research area experienced great advances with the de-
velopment of systems that are capable of telling stories, composing
music, writing poetry and creating pieces of art [5]. In particular,
automated game generation is a fertile territory for creativity since
digital games are very interdisciplinary and interactive [10, 12, 11].

A digital game is a system in which players engage in an artifi-
cial conflict, defined by rules, that results in a quantifiable outcome
[21, 11, 17, 6]. There are several game genres, among them the
digital collectible card games (DCCG) [19]. Hearthstone: Heroes
of Warcraft 1 and Magic: The Gathering 2 are examples of DCCG
that have millions of players. These games have a lot of similarities
which enables to define a basic common set of parameters for the

∗e-mail: tiagozaidan@gmail.com

1available at us.battle.net/hearthstone/en
2available at http://magic.wizards.com/content/download

generation of new DCCG. Although several different DCCG can
be automatically created by manipulating these parameters, they
should be also balanced, otherwise its abstinence can be considered
harmful to the game quality or value [12]. Another important factor
to be considered about the balance of a game is that all the play-
ers must have the same chance to win, assuming that they have the
same skills [11].

The main goal of this paper is to propose and implement an
evolutionary generator of balanced digital collectible card games,
called Evolvestone, which creates Hearthstone-like card games by
exploring the space of parameters, building sets of new cards and
applying different metrics to ensure game balance. It is important
to note that having in mind the requirements for an artifact to be
creative, the balancing of a game ensures only its quality. The main
contributions of this paper are:

• The implementation of a genetic algorithm capable of gener-
ating balanced digital collectible card games.

• The development of a digital collectible card games full-
simulator.

• The combination of three metrics to measure how much a
game is balanced.

This paper is organized as follows. Section 2 presents the back-
ground, elucidating the main concepts and related work. Section
3 presents the Evolvestone. Section 4 presents the experimental
methodology and results. Finally, Section 5 concludes and dis-
cusses future work.

2 BACKGROUND AND RELATED WORK

Automatically generated games are commonly created by evolu-
tionary algorithms [13]. These algorithms are very efficient to solve
optimization problems with a large solution space, such as the cre-
ation of new games [4]. They are guided by a fitness function which
is used to evaluate the quality of each possible solution.

In card games, game balance is an essential feature to make it
playable. Thus several metrics have been proposed to be used as
part of fitness functions. For example, the difference between the
number of wins of different players in simulated games is quite
often used as a standard balance metric [13, 8]. However, the play-
ers winning difference is not enough to ensure that a game is fully
balanced, it is necessary to combine other game balance metrics re-
lated to uncertainty and changes in leadership [8]. Uncertainty aims
to delay the moment that a player gets a big advantage, it can be
measured, for example, by the players’ life difference. On the other
hand, the change in leadership aims to measure how many times

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 11

Figure 1: Hearthstone battlefield example3.

happened a change of the winning player, in order to maximize that
value [12].

Although balance makes a game playable, it does not necessarily
makes a game interesting to be played. For this reason, other met-
rics related to idleness and game length can also be used. Idleness
measures how many turns occurred no action, that is, the player nei-
ther made a move or played a card. A game that has a lot of turns
that players can not perform any actions, tends to be less interesting.
In addition to it, the metric game length defines the ideal number of
turns for a game. A game that is too long or too short might not be
so interesting. For this last metric, it is defined an ideal number of
rounds and it aims to get as close as possible to that number [8].

In the computational creativity field, automated game generators
have been developed specifically to create new and valuable card
games [12, 8]. In particular, [8] proposed a system that generates
complete card games using evolutionary algorithms with some of
the aforementioned metrics. The authors used a context-free gram-
mar to describe and generate versions of known games such as
Blackjack and UNO. The generated games were playable, balanced
and rewarded the player with greater skills.

Another important work is the generation of novel balanced rules
for the card game Dominion proposed in [12]. The authors’ main
focus was the balancing of different strategies, and for that, it was
created three artificial players with different skills capable of play-
ing the game’s simulator. In order to generate balanced card sets
was used a genetic algorithm that evolves a card set based on three
fitness functions with the goal of making the game more interesting.
According to those authors, this method could be used more widely
to automate the game design and the balancing of other games.

In [14], a recurrent neural network (RNN) was used to generate
creative cards for the card game Magic the Gathering. The RNN
was able to generate even new effects and most cards were gram-
matically correct.

Finally, in [9], a computational creativity system, called Hon-
ingStone, was proposed. It automatically generates creative card
combos for Hearthstone based on the Honing theory of creativity.
HoningStone used a creativity metric based on surprise and effi-
ciency to generate and evaluate the generated combos. Differently,
our work creates new full Hearthstone-like card games based on
balance metrics.

3Source: http://hearthstone.gamepedia.com/Battlefield

Figure 2: Hearthstone card example5.

3 EVOLVESTONE

Evolvestone is an evolutionary generator of balanced digital col-
lectible card games4. The chosen game parameters for the gener-
ation of new DCCG’s was inspired mainly in Hearthstone, since it
has a simple set of rules. In this section, we present Hearthstone
and the selected game parameters to build Hearthstone-like games.
Then we introduce our full DCCG simulator, the balance metrics
and the genetic algorithm guided by those metrics.

3.1 Hearthstone

Hearthstone is a DCCG in which players compete in one versus one
turned based matches until one of the players is defeated [9]. In
each turn, a player draws a card from his 30-cards deck and plays
some of the cards in his hand to the battlefield. The battlefield is
where the combat happens. It can take up to seven cards of each
player at the same time. The cards that are not destroyed in the
current turn, usually stays in the battlefield for the next turn. Figure
1 shows all the components of a battlefield.

There are three types of cards in Hearthstone, minions, spells and
weapons. These cards can have attack points, health points, mana
points and effects. The attack points refer to the amount of damage
that a card can cause and the health points represent the amount
of damage a card can take until it is destroyed. The mana points
represents the amount of resources (mana crystals) that a card needs
to be played in the battlefield. The card’s effects are rules that are
triggered by some game’s event, for example, a card being played.
Figure 2 shows a Hearthstone card example, where the “Card Text”
represents the card’s effect.

Once a games starts, each player has 30 life points and one is
defeated when his life points gets down to 0. In his turn, each player
can play any card in his hand to the battlefield. He also draw one
card from his deck on each turn. The limitation of the amount of
cards a player can play into the battlefield is dictated by the mana
pool. This pool starts with only 1 mana crystal and it increases by
1 per turn up to 10 mana crystals.

4available for download at https://github.com/tzaidan/evolvestone
5Source: http://www.digitaltrends.com/gaming/hearthstone-strategy-

guide

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 12

3.2 Game Parameters

In order to develop Evolvestone, the first step was the definition of
which parameters would be used to determine the basic structure
of digital collective card games. Those parameters and its range
of values were defined based on a study of Hearthstone. Table 3.2
shows the chosen parameters and their range of values.

Parameters are divided in two main groups: game params (1 to
10) and cards params (11 to 17). The game params are related to
the rules and thresholds of the game, while the cards params are
related to the cards attributes and effects. Among the possibilities
of values for cards params, the value 0 means that the parameters
won’t be used, with exception for parameter card last, that values
from 0 to 4 and represent the amount of rounds a card will last.
For the game parameters, their values are the same represented in
the game. For example, suppose a game in which the value for
parameter life points is 30. It means that in this game both of the
players will have starting life points equal to 30.

The game params from 1 to 8 influence both players. The param-
eters extra mana and extra cards are exclusive to player 2. Those
parameters have the goal to give some advantage to player 2, in
order to minimize the impact of the player 1 be the first to play.

Parameters Description Values
1. max mana Max amount of mana 5-14
2. mana rate Mana rate 1-3
3. life points Starting life points 16-52
4. max card deck Max no cards in the deck 18-45
5. max card hand Max no cards in player’s hand 5-14
6. max card field Max no cards in the battlefield 5-14
7. withdraw Deck withdraw rate per turn 1-3
8. cards 1st turn No cards withdraw in the first turn 3-12
9. extra mana Extra mana for player 2 in first turn 0-9
10. extra card Extra cards for player’s 2 first draw 0-4
11. max attack Max card attack 4-22
12. max health Max card health 4-22
13. attack twice Attack twice per turn 0-1
14. attack turn Attack in the same turn it was played 0-1
15. must attack Enemy player must attack this card 0-1
16. card last This card will last at max X turns 0-4
17. card cant This card can’t be attacked 0-1

Table 1 - Parameters and their range of values.

Once defined the values for the parameters card attack and
card health, the attack and health of the card is randomly generated
in the interval 1 to the chosen value. Therefore, regarding these pa-
rameters, each card can be different, so players will have different
decks.

In order for parameters 13 to 17 not to be the same for every
card, it was adopted the use of cards subsets. The game cards were
divided in 3 subsets of the same size. For example, if each player
has 30 cards in their deck, only the first 10 cards might have the
parameter attack twice with the value 1. It means that in the first 10
cards, each player will be able to attack twice per turn with those
cards. However, cards 11 to 20 have the parameters attack turn and
must attack enabled, it means that those cards will have the rules
that those 2 parameters represent, etc. The subsets goal is to bring
a more dynamic behavior to the game, because if all the cards have
the same parameters 13 to 17 values, the game might be repetitive.
Each subset will have its own parameters 11 to 17 values.

In order to determine the mana cost of each card, in this paper,
we propose a simple formula that takes into account only the cards

attack and health. All game cards use the same formula, so the big-
ger the attack and health, the bigger is the mana cost. The mana cost
is defined in Equation 1, where, atk and hth represent respectively
the value of parameters max attack and max health.

mana = (atk+hth)/2 (1)

3.3 Full DCCG Simulator

In order to test and evaluate DCCG games generated by Evolve-
stone, a full DCCG simulator was implemented that simulates all
of the defined parameters. The simulator was written in JAVA and
is only executed in batch mode. Each class of the simulator repre-
sents an existent object in a DCCG. For example, there are classes
that represent players, cards, decks and battlefields. The simula-
tor’s main class is the gameplay. It works as a judge and structures
the players iteration with the rules of the game. These rules are im-
plemented in the class rules, which describes the behavior of each
structural limitation of the game. All possible players moves are
implemented in the turn method, within the gameplay class. On ev-
ery turn, each player draws a card from its deck, gains mana points,
plays cards in the battlefield, attacks the enemy and then verifies if
he is dead. The class players has a deck, cards in hand and cards in
the battlefield. It also has variables that control the amount of life
and mana.

The simulator’s input is a list containing the parameters as shown
in Table 1 with a fixed value within each parameter’s range and
the number of games to be simulated. The simulator’s output is a
log containing all the information that feed the genetic algorithm.
Figure 3, shows the diagram of the simplified simulator’s execution
flow.

As the attack and health points of the cards are generated ran-
domly within a defined interval, for each simulated play, new cards
and decks are generated for each player to avoid favoring a particu-
lar player.

The artificial players (bots) were programmed to represent a hu-
man player. There is in the literature [24, 15, 16, 20] several algo-
rithms to implement bots that can compete against human players.
In particular, the Monte Carlo tree search (MCTS) is a classical al-
gorithm that uses a heuristic to analyze the most promising moves
based on an expanding tree that explores only samples of the search
space. However, MCTS is still a computing intensive algorithm.
For this reason, in this paper, it was developed a bot that plays
only based on the current turn, making it possible to run faster than
MCTS and consequently more simulations. As both of the bots
play with the same algorithm, the choice of using a simple one will
not have a significant impact in the simulated games because of the
metrics proposed in this paper.

The developed bot actions are two-fold: to play a card and to
attack an enemy. First, it chooses the cards on the player’s hand that
causes most damage to the enemy, based on the amount of available
mana crystals. Then, it seeks to attack directly the enemy with
the available cards, respecting the rules of the game and the cards.
When attacking, the player can use all the cards in his battlefield,
with the exception of cards that have been played in the battlefield
in the same turn. It is important to note that when enabled, the
parameter attack turn allows a player to use a card to attack in the
same turn it was played in the battlefield (i.e. charge effect).

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 13

Figure 3: Diagram of the simplified simulator’s execution flow.

3.4 Balance Metrics

Evolvestone uses three metrics to create balanced games: win,
win rnd and win rnd life. These metrics seek to provide fair
matches between players with the same skills, so that they have the
same probability of winning. Moreover, the three proposed metrics
are build on top of each other, so for instance, the win rnd life met-
ric is composed of the previous two metrics plus an additional one.
The metrics are defined as follows:

win = |(w1−w2)| (2)

win rnd = win+ |(r−16)| (3)

win rnd li f e = wind rnd + |(l1−30)|+ |(l2−30)|
+2∗ (p f c1+ p f c2)

(4)

where,

• win, win rnd and win rnd life are the proposed metrics;

• w1 and w2 represent the percentage of the wins in the simu-
lated games from players 1 and 2 respectively;

• r represents the average number of rounds (turns) of the sim-
ulated games;

• l1 and l2 represents the average final life percentage of player
1 and 2, respectively, in the games they won;

• pfc1 and pfc2 represent the average amount of rounds (turns)
it took for players 1 and 2, respectively, to play the first card
in the battlefield.

The win metric measures the difference between both players’
winrate in the simulated games, as shown in Equation 2. Comple-
mentary, the win rnd metric adds up another term which measures
the difference between the average number of rounds in the simu-
lated games and a desirable number of rounds. As mentioned in the
previous sections, games that are too short or too long are usually
not so interesting. There is no consensus on which it is the optimal
average number of rounds. Therefore, it was defined 16 rounds as
the average number for each game. It is important to note that this
threshold can be also varied.

The win rnd life also adds up two new terms. The first one is
the winner player’s final life percentage. It stems from the fact that
games where the winner player finishes with his life closer to its
initial state, tends to be less interesting, because the game seems to
be too easy. Therefore, for a game to become more challenging, the
winner player has to face a more balanced match, which means that
he has to also lose life during the battle. In this paper, we defined
that in a challenging match the winner has to win with an average
of 30% of his initial life. This threshold can also be altered, since
there is no consensus about it.

The second term added to the win rnd life metric was related the
average number of rounds that each player has to wait before he
plays his first card in the battlefield. Games where players spend
many rounds without playing his first card tends to be less interest-
ing in general, although there are some specific handlock strategies
in which a player deliberately hold cards in hand until play them in
a certain turn. The number of rounds is normalized by multiplying
it by two.

3.5 Genetic Algorithm

The last step in the implementation of Evolvestone was the use of
genetic algorithm to generate game instances. It was decided to use
the Watchmaker6 as the genetic algorithm framework. It is writ-
ten in JAVA and has all the needed functions already implemented.
Therefore, it is necessary only to adapt those functions for the prob-
lem presented in this paper.

The individuals in the population are represented as a 17-position
array, where each position represents a different parameter, that is,
each individual represents a possible game. Each position in the
array takes in only the value of the parameter it represents. For
example, the first position of the array represents the parameter
max mana that defines the maximum amount of mana and can have
values of the interval 5 to 14. Those individuals are evaluated by a
fitness function that is represented by one of the metrics aforemen-
tioned. The most adapted individuals are those that minimizes the

6Available at http://watchmaker.uncommons.org/

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 14

Figure 4: Percentage of wins difference.

fitness function, the best individuals are the ones with the output
equal to 0.

It is used elitism in the most adapted individuals, so that the best
game instances move to the next generation without suffering any
changes in their genetic code. Crossover is applied to the rest of
the individuals to generate new individuals in the population. Dur-
ing crossover, two individuals combine the value of each position
of their array in order to generate a new individual. Mutation is
implemented by randomly changing the value of some position in
the array of an individual, becoming a new mutated one. The new
generated individuals and the ones that did not change because of
the elitism are evaluated again by the fitness function in the next
generation. This cycle repeats until an individual that matches the
requirements of a balanced game, dictated by the fitness function,
is found.

4 EXPERIMENTAL RESULTS

In this section, we evaluate each proposed metric compared to a
random approach as a baseline in three sets of experiments, namely:
same rules, different rules and parameters individual influence. In
the first two experiments, we observe four factors: i) the differ-
ence between players wins; ii) the average number of rounds; iii)
the winner’s final life and iv) the average number of turns before a
player plays his first card. They differ only in the fact that in the
first one, the rules are the same for both players and in the latter
each player plays by different rules. The third experiment was de-
signed to identify which parameters most impact the game balance.
In all experiments, the number of simulations per game instance
was set to 1000 and the number of games per metric/approach to
10. All results were averaged by a simple arithmetic mean, with a
95% confidence level.

Figure 4 shows the module of the difference of players 1 and 2
wins. It shows that all the three metrics had a value less than 1%. It
stems from the fact that all of them includes the win metric which
evaluates the number of wins between players. On the other hand,
the random baseline achieves 22.5%, which is very unbalanced.

Regarding the number of rounds per match, Figure 5 shows that
both metrics win rnd and win rnd life were able to reach the desir-
able number of 16 rounds. Since the metric win and the random ap-

Figure 5: Average number of rounds.

Figure 6: Winning player’s final life.

proach do not evaluate the average number of rounds, both of them
did not reach the average of 16 rounds. On average, the random
approach generated shorter games while the win metric generate
longer ones.

Figure 6 shows the average final life percentage of the winner
player. The win rnd life metric had the value of 29.9%, that is, it
was able to reach the determined value of 30%. On the other hand,
Figure 7 shows the average number of turns needed for each player
to put his first card in the battlefield. It is important to note that the
value 0 means that the player was able to put a card in the battlefield
in his first turn. It can be observed that the win rnd life metric
was the only one able to minimize this value, so all the players
on average are able to put at least one card in the battlefield in their
first turn.

An interesting result that emerged from Figures 4 to 7 is that all
factors presented on each metric are independent but they need to
be together to make a game more balanced. For example, a game
in which players have the same average amount of wins does not
guarantee that it will be more challenging and fair, since most wins
will be easy and straightforward, probably determined by the early

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 15

Figure 7: Average number of turns for the first card in battlefield.

game. Thus only the full set of all factors together, represented by
the win rnd life metric, can make a game more balanced and in-
teresting. In summary, the random approach generated games that
have an average value of 51% when evaluated by the win rnd life
metric. It means that the games generated by Evolvestone using the
win rnd life metric are 51% more balanced than the games gener-
ated randomly.

The second set of experiments was based on a recent game mode
created by Hearthstone, called Tavern Brawl. In this game mode,
on each week, a new match with different set of rules is gener-
ated. In some matches, there is even the possibility that each player
plays with a different set of rules, which brings a more dynamic
experience to the game. In this paper, in order to generate games
with a different set of rules, it was considered that each player can
have different values for each of the 17 parameters. It was applied
the same process of the first experiment with this single difference.
The obtained results were very close to the ones shown in Figures
4 to 7, so they are not presented. This interesting result shows that
even with players governed by different rules, it is still possible to
generate games that are balanced.

The last set of experiments has the goal of determining how
much each parameter impacts the game balance. For this exper-
iment, we used the win rnd life metric which is the most robust
one. In order to determine the influence of each single parameter,
we used a single factor experimental design where each parame-
ter is changed from the minimum to its maximum value at a time
and compared with its optimal value (the value determined by the
genetic algorithm when it generated a game using the win rnd life
metric as fitness function). For example, if the variation of a pa-
rameter’s value does not differ from the simulation optimal output,
that is, the win rnd life metric output is still the same, this particu-
lar parameter has no influence in the game balance. The influence
of each parameter was calculated based on the difference between
its minimum and maximum values arithmetic mean result on the
win rnd life metric output and the optimal win rnd life metric out-
put that was close to 0.

Figure 8 shows the percentage of influence of each parameter in
the game balance. The parameter 9, extra mana, is the most influ-
ential one with more than 20% impact. This parameter determines
the player’s 2 amount of extra mana in one round. The minimum

Figure 8: Each parameter’s influence in the game’s balancing.

parameter of this rule does not give any extra mana for player 2,
causing that the player 1, that already has the advantage of play-
ing first, increases both his number of wins and his final life in the
matches he won. In turn the parameter’s maximum number allows
the player 2 to play what is equivalent to two turns in a row, giving
him a greater advantage.

After extra mana, the parameters 15, 16, 14 and 12, respec-
tively must attack, card last, attack turn and max health, are the
ones that influences the most. Those four parameters refer to the
cards params and can give a great advantage for one of the play-
ers, winning more games faster and with a higher final life. Dif-
ferently, parameters 1, max mana, and 3, life points, that refer to
the maximum amount of mana and life, respectively, do not affect
significantly the game balance, since they mainly alter the number
of game rounds.

On the other hand, parameters 6, max card field, and 17,
card cant, do not influence the balancing of the games, so it is
possible to use any value for those parameters. In particular,
max card field determines the maximum number of cards in the
battlefield. This parameter does not have any influence because its
parameter’s minimum value is 5, which is relativity high. In turn,
card cant in which the player’s card can not be attacked, does not
have any influence because of the bot behavior. As it always seeks
to attack the opponent when possible, it will not make any differ-
ence the fact the it is not allowed to attack with a card with this
effect.

Finally, parameters 7, withdraw, and 10, extra card, almost do
not influence the game balance. They determine the amount of
cards in the first draw and player’s 2 extra amount of cards in the
first draw, respectively. Those rules do not influence too much be-
cause the players start with only 1 mana crystal. It means that at
the beginning of the game the players cannot put many cards in the
battlefield.

In summary, these final results revealed many insights that can
be used in practice when designing balanced card games. For in-
stance, the amount of extra mana given to player 2 showed to have
a significant impact in the game balance, while the initial number
of card draws does not seem to be so decisive.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 16

5 CONCLUSION

Despite the last decade’s great advance in the field of computational
creativity, digital games have not yet been so explored. In the light
of this scenario, it was proposed in this paper, the creation of an
evolutionary generator of balanced digital collectible card games,
called Evolvestone. The balance of Hearthstone-like card games
generated by Evolvestone was assured by the use of three metrics.
The results showed that the generated games were up to 51% more
balanced than games randomly generated.

The main approach for future work is the creation of metrics to
evaluate if the generated games are fun to play. For this goal, it
is mandatory the creation of an interface so that players can eval-
uate those games gameplay. This analysis can also confirm if the
games are balanced for human players. It could further determine
others aspects to be considered for the creation of other metrics.
The balance influence of each parameter calculated in this paper
can be used to create a new mana formula. Another approach for
future work is the creation of new parameters and the use of a big-
ger parameter’s range for the existing parameters. Finally, it can
be developed more complex bots and compare their performance to
the one used in this paper.

6 ACKNOWLEDGMENT

We would like to thank FIP PUC Minas, FAPEMIG, CNPq and
CAPES to support this work.

REFERENCES

[1] T. Besold. Computational creativity research: towards creative ma-
chines. Atlantis Press, Amsterdam, 2015.

[2] M. Boden. The creative mind myths and mechanisms. Routledge,
London New York, 2004.

[3] S. Colton. Creativity versus the perception of creativity in compu-
tational systems. In AAAI Spring Symposium on Creative Intelligent
Systems, Technical Report SS-08-03, pages 14–20, 2008.

[4] S. Colton, A. Pease, J. Corneli, M. Cook, and T. Llano. Assess-
ing progress in building autonomously creative systems. In Interna-
tional Conference on Computational Creativity (ICCC), pages 137–
145, 2014.

[5] S. Colton and G. A. Wiggins. Computational creativity: The final
frontier? In European Conference on Artificial Intelligence (ECAI),
pages 21–26, 2012.

[6] T. M. Connolly, E. A. Boyle, E. MacArthur, T. Hainey, and J. M.
Boyle. A systematic literature review of empirical evidence on com-
puter games and serious games. Computers and Education, 59:661–
686, 2012.

[7] M. Cook and S. Colton. Ludus ex machina: Building a 3d game de-
signer that competes alongside humans. International Conference on
Computational Creativity (ICCC), pages 54–62, 2014.

[8] J. M. Font, T. Mahlmann, D. Manrique, and J. Togelius. Towards the
Automatic Generation of Card Games through Grammar-Guided Ge-
netic Programming. In Proceedings of Foundations of Digital Games
(FDG), pages 360–363, 2013.

[9] L. F. W. Goes, A. R. da Silva, J. Rezende, A. Amorim, C. Franca,
T. Zaidan, B. Olimpio, L. Ranieri, H. Morais, S. Luana, and C. A.
P. S. Martins. Honingstone: Building creative combos with honing
theory for a digital card game. IEEE Transactions on Computational
Intelligence and AI in Games, PP(99):1–1, 2016.

[10] A. Liapis, G. N. Yannakakis, and J. Togelius. Computational game
creativity. In International Conference on Computational Creativity,
pages 46–53, 2014.

[11] T. Mahlmann. Modelling and Generating Strategy Games Mechanics.
PhD thesis, ITU Copenhagen, December 2012.

[12] T. Mahlmann, J. Togelius, and G. Yannakakis. Evolving card sets to-
wards balancing dominion. In IEEE Congress on Evolutionary Com-
putation (CEC), pages 1–8, 2012.

[13] J. Marks and V. Hom. Automatic design of balanced board games. In
Artificial Intelligence and Interactive Digital Entertainment Confer-
ence (AIIDE), pages 25–30, 2007.

[14] R. M. Milewicz. Generating magic cards using
deep, recurrent neural networks, 2015. Disponvel em
http://www.mtgsalvation.com/forums/creativity/custom-cardcreation/
612057- generating-magic-cards-using-deep-recurrent-neural.

[15] I. Millington. Artificial intelligence for games. Morgan Kauf-
mann/Elsevier, Burlington, MA, 2009.

[16] I. Millington. Artificial Intelligence for Games. CRC Press, 2009.
[17] J. Novak. Game development essentials : an introduction. Delmar,

Clifton Park, N.Y, 2012.
[18] H. G. Oliveira and A. Cardoso. Poetry Generation with PoeTryMe.

Computational Creativity Research: Towards Creative Machines,
7:243–266, 2015.

[19] S. Rogers. Level up! the guide to great video game design. Wiley,
Hoboken, 2014.

[20] N. Sephton, P. I. Cowling, E. J. Powley, and N. H. Slaven. Heuristic
move pruning in monte carlo tree search for the strategic card game
lords of war. In IEEE Conference on Computational Intelligence and
Games (CIG), pages 1–7, 2014.

[21] K. Tekinbas. Rules of play : game design fundamentals. MIT Press,
Cambridge, Mass, 2003.

[22] L. Varshney, F. Pinel, K. Varshney, A. Schorgendorfer, and Y.-M.
Chee. Cognition as a part of computational creativity. In IEEE Inter-
national Conference on Cognitive Informatics Cognitive Computing
(ICCI*CC), pages 36–43, 2013.

[23] O. Vartanian. Neuroscience of creativity. MIT Press, Cambridge, MA,
2013.

[24] C. Ward and P. Cowling. Monte carlo search applied to card selec-
tion in magic: The gathering. In IEEE Symposium on Computational
Intelligence and Games (CIG), pages 9–16, 2009.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 17

	156888
	156888

