
Player Behavior Modeling for Interactive Storytelling in Games

Edirlei Soares de Lima
1 *

Bruno Feijó
2

Antonio L. Furtado
2

Rio de Janeiro State University (UERJ), Department of Computational Modeling, Brazil
1

Pontifical Catholic University of Rio de Janeiro (PUC-RIO), Department of Informatics, Brazil
2

ABSTRACT

Video games add new dimensions to traditional storytelling by
allowing players to change narratives through their own actions.
In modern Role-Playing Games (RPGs), this is usually done by
adopting branching storylines based on key choices presented to
players at certain points of the game. However, such branching
points are usually presented through specific dialog choices or
predetermined actions, which reduces the player’s sense of
agency. Currently, both game industry and game consumers have
great interest in new forms of interactive storytelling that may
provide games with truly interactive stories, in which all in-game
player’s actions and behaviors can affect the development of the
narrative. In this paper, we explore the combination of player
modeling and narrative generation techniques. We propose a
novel approach for interactive storytelling in games based on
player behavior modeling, hierarchical task decomposition and
nondeterministic planning. The proposed method is capable of
generating dynamic and nondeterministic quests that are directly
or indirectly affected by in-game player behavior, which is
modeled in terms of the Big Five factors. The main objective of
this paper is to present this method and to validate its precision and
real-time performance on highly interactive game environments.

Keywords: Player Modeling, Player Behavior, Quest Generation,
Games, Interactive Storytelling.

1 INTRODUCTION

Video games add new dimensions to traditional storytelling by
allowing players to change narratives through their own actions.
In modern Role-Playing Games (RPGs), this is usually done by
adopting branching storylines based on key choices presented to
players at certain points of the game. Some RPGs, such as Mass
Effect 2 (BioWare, 2010), Dragon Age: Inquisition (BioWare,
2014), and The Witcher 3: Wild Hunt (CD Projekt RED, 2015)
perform this so well that they are able to provide the player a real
sense of control over the story. However, such branching points
are usually presented through specific dialog choices or
predetermined actions (e.g. killing or forgiving an enemy,
collecting or not collecting a specific item), which reduces the
player’s sense of agency (i.e. the sense of the player as the agent
of his/her own actions).

Currently, both game industry and game consumers have great
interest in new forms of interactive storytelling that may provide
games with truly interactive stories, in which all in-game player’s
actions can affect the development of the narrative. However,
interpreting and understanding in-game player behavior in real-
time is not an easy task. This problem involves an active topic of
research on artificial intelligence, known as player modeling.

Player modeling is the study and use of artificial intelligence
techniques for the construction of computational models of
players, which includes cognitive, affective and behavioral
characteristics [36]. In general, a player model is an abstract
description of a player in a game environment [2]. Specifically for

the context of behavioral modeling, a player model includes the
description of the player’s behavior in the game environment. The
construction of effective player models involves a multidisciplinary
intersection of the fields of affective computing, experimental
psychology, human-computer interaction, big data, and analytics,
which are part of the so called "game analytics" [27].

In recent years, research on player modeling has attracted a lot
of attention from both industry and academic research [36][2].
Nowadays, analyzing game data is a common practice widely
used in the game industry to validate level design or improve the
player experience [33][27]. Many commercial games are known
for adopting player modeling techniques, such as Silent Hill:
Shattered Memories (Konami, 2009), which dynamically creates
personality models of the players and uses it to adapt gameplay
elements [23]; League of Legends (Riot Games, 2009), which
explores the analysis of gameplay data to design new content
updates [16]; and Left 4 Dead (Valve, 2008), which uses player
modeling to adapt the difficulty of the game’s challenges in
response to the player’s actions. Even though player modeling has
been successfully applied to commercial games and widely
explored by academic researchers, only few works treat the
prediction of actual player behavior.

We consider actual player behavior to be the way in which the
player acts or conducts him or herself in the game. For instance,
the player may behave aggressively, impulsively, or cautiously
when facing dangerous situations. Behavior, in general, is not only
complex, but also dynamic. A behavioral description for one
occasion is likely to be invalid for another occasion. In fact,
behavior is susceptible to variation in consequence of any change in
time, place, emotion, and social context [20]. In addition, a player’s
behavior within a game environment may be very different from the
same person’s behavior when dealing with real world situations.

In this paper, we explore the combination of player modeling
and narrative generation techniques. We propose a novel approach
for interactive storytelling in games based on player behavior
modeling, hierarchical task decomposition and nondeterministic
planning1. The proposed method is capable of generating dynamic
and nondeterministic quests that are directly or indirectly affected
by in-game player behavior, which is modeled in terms of the Big
Five factors [11]. The main objective of this paper is to present
this method and to validate its precision and real-time
performance on highly interactive game environments.

The paper is organized as follows. Section 2 reviews related
work. Section 3 presents an overview of the system architecture and
describes the testbed game used to validate our method. Section 4
presents the proposed player behavior model. Section 5 describes
the proposed method for quest generation based on
nondeterministic planning and player behavior modeling. Section
6 presents an evaluation of our method. Section 7 offers
concluding remarks.

1 We use the term "nondeterministic planning" for planning

problems in which the planning domain is a nondeterministic

state-transition system, i.e. an action may have more than one

possible outcome [10][14]. *e-mail: edirlei.lima@uerj.br

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 1

2 RELATED WORK

There are several works on player modeling in the literature. One
of the earliest attempts to create player models came in 1996
when Richard Bartle [4] proposed his four player types
(Achievers, Socializers, Explorers, and Killers). Following
Bartle’s work, Bateman and Boon [5] created another model using
the Myers-Briggs personality indicator [22] to categorized players
into four classes: Conqueror, Manager, Wanderer and Participant.
However, as previously pointed by Tuunanen and Hamari [32],
type-based approaches are very limited, because types provide
only a superficial information about the player, which can be even
more blurred considering that most players cannot be generally
categorized into a single group.

In recent years there have been several successful
implementations of player modeling in games, whose applications
include the use of player models for adapting player experience,
game balancing, personalized content generation, playtesting
analysis and game authoring. Missura and Gärtner [21] explore
the use of clustering and classification techniques to dynamically
adjust the difficulty of a shooter game. Their method uses k-
means and support vector machines to classify players into
different types based on gameplay data. Weber and Mateas [35]
employ a series of classification algorithms for recognizing player
strategies in StarCraft (Blizzard Entertainment, 1998). Mahlman
et al. [19] use several supervised machine learning algorithms,
trained with a set of player behavior data extracted from the game
Tomb Raider: Underworld (Crystal Dynamics, 2008), in order to
predict when a player will stop playing the game and, if the player
completes the game, how long will it take to do so. Machado et al.
[18] and Spronck and den Teuling [29] explore player modeling in
the context of the game Civilization IV (Firaxis Games, 2005).
Machado et al. [op. cit.] create models of virtual agent’s
preferences using classifiers based on support vector machines,
and Spronck and den Teuling [op. cit.] use a sequential minimal
optimization (SMO) classifier to build a player model to predict
specific preference values. In a recent work, Valls-Vargas et al.
[33] propose a player modeling framework to capture and predict
play style using episodic segmentation of gameplay traces and
sequential machine learning techniques. Their framework utilizes
multiple models that include predictions from previous time
intervals to identify how players change play style over time.

The use of player modeling has also been explored in
interactive storytelling systems. Barber and Kudenko [3] present
an interactive story generator system that learns the personality of
its users by applying predefined increments or decrements to a
vector of personality traits, such as honesty and selfishness, in
response to the users’ decisions. Seif El-Nasr [26] presents an
interactive storytelling system called Mirage, where both player
behavior and personality are modeled in order to allow users to
participate in a more engaging drama. The system tracks user’s
actions to adjust a vector of values representing tendencies toward
character traits (heroism, violence, self-interestedness, and
cowardice). Sharma et al. [28] present an interactive storytelling
system that combines past captured game traces and player survey
data to create player models, which are used to dynamically
determine the next plot point that is best suited to specific users.
Thue et al. [31] present PaSSAGE, an interactive storytelling
system that uses player modeling to automatically learn a model
of the player’s preferences through observations of the player in
the virtual world, and then uses the model to dynamically select
the content of an interactive story. The player is modeled as a
vector, where each dimension is the strength of one of the Laws’
stereotypes [15]. As the player performs actions, dimensions are
increased or decreased in accordance to predefined rules. Ramirez
and Bulitko [25] use this player model with a reward function in

such a way that when several narratives are generated, the one that
maximizes this function is automatically selected.

The Big Five model was used in some previous works on player
modeling. Van Lankveld et al. [34] investigate whether a
personality profile can be determined by observing the player’s
behavior in a customized scenario for the game Neverwinter
Nights (Bioware, 2002). They adopted the Big Five model to
define the player’s personality profile. In a recent work, Nagle et
al. [23] explore the application of the Big Five model for
difficulty adjustment in a first-person shooter game. They present
a linear regression model to predict difficulty adaptations that
maximize enjoyment and gameplay duration based on player
personality.

Even though player modeling has been widely explored in
games, little work has been done to use the player's behavior to
adapt game narratives. In addition, most previous works on
behavior modeling are based on very simplified models of player
archetypes, which fail in representing blended behaviors, as well
as in providing more detailed information about the actual player
behavior. The few previous works that explore the Big Five model
for player modeling use it only to establish personality profiles.

3 SYSTEM OVERVIEW

The player behavior model proposed in this paper was built as an
extension of our previous work on hierarchical quest generation
[17]. In our system, the structure of the game’s narrative is
represented as a hierarchy of quests where the entire game can be
described as a single quest composed of several sub-quests –
which may also have their own sub-quests (Figure 1). A quest can
be decomposed into primitive events (shaded rectangles in Figure
1) and/or sub-quests. In Figure 1, the dotted lines indicate the
decomposition and the arrows indicate the direction of the events.
When the story is completed we have a total order of the events
(Event1 to Event7 in the example of Figure 1). We use the term
event to indicate a primitive action that was executed by the game
controller or imposed by the player.

Figure 1: Hierarchy of quests.

Quests are logically modeled to have multiple goal states, so
they can be completed in different ways depending on the player’s
actions. Consequently, the results of sub-quests can influence the
progression of their parent quests and dynamically change the
entire storyline of the game. This dynamism is archived by
modeling each quest as a nondeterministic planning problem.

3.1 System Architecture

Figure 2 illustrates the architecture of our system, which is based
on the conceptual model for dynamic planning presented by
Ghallab et al. [10]. In our implementation, the Quest Manager is

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 2

responsible for controlling multiple instances of planners and plan
monitors. The Quest Planner is responsible for generating a
logical plan of actions to achieve an authorial goal of the quest
from the current state of the world. The Quest Monitor is
responsible for monitoring the execution of the plan to verify the
occurrence of changes introduced by the player. The Game
Manager manages the game world by updating the current World
State according to the events produced by actions performed by
the Player during the gameplay. In addition, the Game Manager
maintains the Player Model, which is updated with input data
extracted from the World State. While the World State aggregates
all information about the events that occur in the game as result of
direct player actions, the Player Model maintains a more general
description of the actual in-game player behavior, including the
more recent score of the Big Five factors and the average score
accumulated over time. The observations (events and behaviors)
produced by the Player Model and the World State can directly
affect the active quests. While performing quests, the Player
receives help from the Player’s Assistant, who monitors the player
progression through the generated quest plans, providing him/her
with tips about his/her next objectives and goals. The Quest
Library contains a database of quests and sub-quests specified as
planning problems, which are dynamically solved by the Quest
Planners in real-time. Details of the Player's Assistant can be
found in [17].

Figure 2: Architecture of the quest generator system.

3.2 Prototype Game

The game used to test and validate our method is a 2D RPG

(Figure 3) that uses the proposed architecture to dynamically

generate and control the entire narrative of the game. The

narrative pertains to a zombie survival genre and tells the story of

a family that lives in a world dominated by a zombie plague. The

player controls the brave husband John through several

nondeterministic quests to protect his family and save his own

life. The game is composed of 26 quests (8 deterministic and 18

nondeterministic) with different hierarchical levels and

complexities. In the baseline story, John’s wife is attacked by a

zombie and is saved by John, who finds an antidote. Then, in

order to defend his family, John tries to improve the protection of

his house, but his daughter ends up being attacked by another

zombie. After failing in protecting his house, John and his family

escape to a remote island, where they have to build a house and

find supplies to survive. Unfortunately, some zombies also find

their way to the island and attack John and his family again. John

survives the attack, but the future of his family is still uncertain.

Several different stories with happy, sad, and even dark outcomes

can emerge from this basic storyline depending on the player

behaviour and decisions while performing nondeterministic

quests. John’s wife and his daughter may survive or not, after

being infected by a zombie, depending on whether the player

succeeds in getting an antidote. After escaping to the island, the

player may fail in the quest of finding supplies and one or more

members of his family may starve to death. John can even be

unable to escape to the island if he fails in a quest to get fuel for

his boat. This unfortunate event will force him to escape to a

remote mountain, where a different story takes place.

Figure 3: Prototype game used to test and validate our method.

The gameplay of the prototype game is driven by the story

quests, wherein the player has to collect items, interact with non-

player characters and kill enemies (zombies). In order to fight

against the zombies, the player has a gun with a limited amount of

ammunition, which is reloaded when the player collects

ammunition kits. When the player is attacked by zombies, he/she

loses an amount of life (i.e. of the life energy initially attributed to

the player), which is only restored when he/she collects medic

kits. In addition to the enemies, the player finds through the game

two types of non-player characters: (1) normal non-player

characters, which are characters that talk and interact with the

player; and (2) non-player characters in dangerous situations,

which are characters that can be saved by the player.

4 PLAYER BEHAVIOR MODEL

The process to create a computational model capable of
recognizing the current player behavior using only gameplay data
is a complicate task. Human behavior is the result of complex
reflective-impulsive processes [30], which are influenced by a
series of factors (e.g.: personality traits, beliefs, and cultural
aspects). In addition, behavior is also dynamic, meaning that it is
susceptible to vary with time, place, situation, and context [20]. A
model built to predict player behavior must be able to handle, not
only its complex nature, but also its natural dynamism.

As illustrated in Figure 3, a general player behavior model is
composed of three main components: input, output, and a
function. The model’s input comprises a set of observations
extracted from the gameplay data, which should provide enough
information about the player’s behavior. The model’s output

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 3

represents the set of behaviors that can be predicted by the model
based on the input observations. The model’s function is the core
of the model – it maps the input observations into the output
behaviors. The next sub-sections describe how these general
components are implemented in the proposed behavior model.

Figure 3: Components of a general player behavior model.

4.1 Input

Since behavior is dynamic and time-dependent, the model must be
able to recognize all behavioral changes that occur over time.
Consequently, the system must be constantly capturing gameplay
data and using it as input to the model. This dynamic process is
performed using time windows, which are constant time intervals
where the gameplay data is collected and then used to predict the
current player behavior. The length of the windows is a crucial
variable to determine the precision of the model. Too short time
windows may provide only a limited amount of information about
the player behavior, but too long windows may fail in capturing
transitions between behaviors and produce blurred data. In order
to determine the best length for the time windows, we conducted
several tests with window sizes of varying length. The results of
these experiments are presented in section 6.

The data used as input to a player model is composed of a set of
statistical features extracted from the gameplay during a time
window. Although these features are dependent of the game
mechanics, we selected a collection of general gameplay features
that can be found not only in our prototype game but also in other
game genres, such as shooters, action-adventures, and role-
playing games. In addition, we modeled the features to be
independent of context, meaning that they are computed
according to the context from which they were extracted. For
example, if a time window comprises the player’s actions in a
location with 8 enemies and another window includes his actions
in a location with 2 enemies, all features related with the number
of enemies must take this information into account. If the player
kills all enemies in both time windows, the feature that represents
the number of enemies killed must be the same for both cases.

The gameplay features used as input to our model are described
in Table 1, where T is the length of the time window in seconds, E
is the total of enemies seen by the player during the time window,
A is the total of ammunition kits seen by the player, M is the total
of medic kits seen by the player, N is the total non-player
characters seen by the player, and D is the total non-player
characters in danger seen by the player.

4.2 Output

The next step to create a player behavior model consists in
defining its output, which will represent the possible behaviors
that the model will be able to predict in the future. The majority of
previous works on player modeling adopt very simplified
behavior models based on limited sets of player archetypes [32],
which can be very restricted considering that players can exhibit
interchangeable and unique blended behaviors. In addition, they
often fail in providing more detailed information about the
behaviors, such as their intensity.

Table 1: Gameplay features.

ID Description

F1 Percentage of time that the player is standing still (in relation

with T)

F2 Percentage of time that the player is walking (in relation with T)

F3 Percentage of time that the player is colliding (in relation with

T);

F4 Total of new areas explored by the player

F5 Total of shots fired by the player during the time window

F6 Percentage of shots that hit targets (in relation with F5)

F7 Percentage of shots that miss targets (in relation with F5);

F8 Percentage of enemies killed by the player (in relation with E)

F9 Average time interval between shots fired by the player

F10 Standard deviation of the time intervals between shots fired by

the player

F11 Average distance in which enemies were killed by the player

F12 Standard deviation of the distances in which enemies were

killed by the player

F13 Average distance in which enemies were hit by shots fired by

the player

F14 Standard deviation of the distances in which enemies were hit

by shots fired by the player

F15 Average time spent by the player to kill enemies after seeing

them

F16 Standard deviation of the times spent by the player to kill

enemies after seeing them

F17 Percentage of medic kits collected by the player (in relation

with M)

F18 Percentage of life the player recovered without necessity (i.e.

by using medic kits when the player’s life was almost full)

(percentage calculated in relation with F17)

F19 Average time spent by the player to collect medic kits after

seeing them

F20 Standard deviation of the times spent by the player to collect

medic kits after seeing them

F21 Percentage of ammunition kits collected by the player (in

relation with A)

F22 Percentage of ammunition kits used by the player without

necessity (i.e. by using ammunition kits when the gun clip was

almost full) (percentage calculated in relation with F21)

F23 Average time spent by the player to collect ammunition kits

after seeing them

F24 Standard deviation of the times spent by the player to collect

ammunition kits after seeing them

F25 Percentage of non-player characters with whom the player

interacted and talked (in relation with N)

F26 Average time spent by the player to talk with non-player

characters after seeing them

F27 Standard deviation of the times spent by the player to talk with

non-player characters after seeing them

F28 Percentage of non-player characters in danger saved by the

player (in relation with D)

F29 Average time spent by the player to save non-player characters

in danger after seeing them

F30 Standard deviation of the times spent by the player to save non-

player characters in danger after seeing them

F31 Total damage suffered by the player during the time window

(i.e. total life loss)

F32 Total of times the player changed his direction during the time

window

F33 Average time interval between the moments when the player

changed directions

F34 Standard deviation of the time intervals between the moments

when the player changed directions

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 4

To define a more general and robust output for our behavioral
model, we adopted a widely accepted theory about human
personality: the Five Factor Model (also known as “Big Five”)
[11]. Big Five is a dimensional representation of human personality
structure, which claims that, by using five personality traits, it can
suitably account for personality diversity. The Big Five factors are:

(1) Openness: those who are high on this factor are imaginative,
curious and open to new ideas. In contrast, those who
score low on this factor are indifferent and uninterested;

(2) Conscientiousness: the ones that display high degree of
this factor are meticulous, efficient and systematic. Who
scores low is careless, chaotic and disorderly;

(3) Extraversion: high scorers are characterized by high
indulgence in social activities. On the opposite side, low
scorers are reserved and shy.

(4) Agreeableness: a high score on this factor characterizes
helpful, co-operative and friendly people. In contrast, low
score characterizes selfish and hostile people.

(5) Neuroticism: those who score high on this factor are
emotionally unstable, anxious and aggressive. In contrast,
those who score low are well-adjusted and calm.

The five dimensions of the human personality structure are
supported by several questionnaires, inventories, and adjective
rating scales designed to measure each dimension (e.g.:
[9][8][12]). Personality classification is then achieved by
assigning five numerical scores (one per dimension) that account
for how well each factor describes the person. The attribution of
the scores is typically performed with questionnaires that consider
observable behavior and characteristics of the individual.

Although the Big Five factors are ordinarily used to describe
individual personality, they can also be correlated with specific
behaviors. In fact, past studies have pointed that several human
behaviors can be adequately explained in terms of the Five Factor
Model [24][1]. One example of behavioral taxonomy based on the
Big Five is presented by Back et al. [1], who assigned a multitude
of concrete actual behaviors to each of the five dimensions of the
Big Five on the basis of a systematic investigation of theoretical
and empirical approaches to personality and social behavior.

The output of our model is represented by the Big Five factors,
which are disposed on five behavioral axes (Figure 4), each within
the interval of [-1, 1]. We adopted the taxonomy proposed by

Back et al. [1] to define the general behavioral aspects of each
factor (Table 2), which we divided into positive (+) and negative
(-) behaviors in accordance with the factor’s score. The sign (- or
+) does not mean destructive or constructive behaviors, but simply
indicates the two opposite sides of the Big Five dimensions (i.e.
low and high scores). Each behavioral aspect is also associated
with a set of general in-game player behaviors, which describes
concrete player behaviors within a game environment.

Figure 4: Big Five factors represented as behavioral axes.

4.3 Function

Once we have defined the input and output of our model, we need
to establish a function capable of learning and predicting player
behaviors. Considering that the output of our model comprises
five numerical values representing the Big Five factors, the task to
build this function can be seen as a multi-output regression
problem [7]. Existing methods to handle this type of problem can
be categorized as: (1) problem transformation methods, where the
multi-output problem is converted into independent single-output
problems, which are solved using a single-output regression
algorithm; and (2) algorithm adaptation methods, which adapt
single-output methods to directly handle the multi-output data.
Among these methods are the Artificial Neural Networks [13],
which is a typical multi-output regression algorithm to handle
problems where the outputs are independent of each other.

Table 2: General behavioral aspects of the Big Five factors.

Big Five Factors Behavioral Aspects In-game Player Behavior

Openness

+ curious, interested, inquisitive
 Explores the environment

 Collects all the available items

- indifferent, incurious, uninterested
 Explores only indispensable parts of the environment

 Collects only indispensable items

Conscientiousness

+ meticulous, efficient, systematic

 Rarely gets attacked by enemies

 Rarely misses a shot

 Collects and uses items only when they are needed

- careless, chaotic, disorderly

 Frequently gets attacked by enemies

 Frequently misses shots

 Collects and uses items when they are not needed

Extraversion

+ sociable, talkative, active
 Frequently interacts with non-player characters

 Interacts with non-player characters as soon as possible

- reserved, shy, passive
 Rarely interacts with non-player characters

 Postpones interactions with non-player characters

Agreeableness
+ friendly, altruistic, helpful  Always tries to save non-player characters that are in danger

- selfish, hostile, obstinate  Rarely tries to save non-player characters that are in danger

Neuroticism

+ aggressive, nervous, unstable
 Tries to kill all enemies

 Performs disordered movements

- calm, relaxed, balanced
 Kills only threatening enemies

 Performs only necessary movements

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 5

In the proposed system, we implemented the model’s function
using an Artificial Neural Network trained to predict the values
for the Big Five factors based on the statistical features extracted
from the gameplay (Table 1). We employed a single hidden layer
Neural Network trained by an incremental back-propagation
learning algorithm using a sigmoidal activation function. In our
experiments, we used 64 neurons in the hidden layer. The
algorithm was implemented using the FANN library2.

Since our method employs a supervised machine learning
technique to create the player model, samples of gameplay
sessions need to be captured and annotated by an expert with
labels describing the current player behavior. Considering that our
model characterizes the player behavior with five numerical
scores, each representing one of the Big Five factors, this
annotation process must cover all characteristics of the observable
behavior and measure each score systematically. To standardize
this process and assist the human expert during the annotation
process, we created a simple training questionnaire based on the
general in-game player behaviors that contribute to the scores of
each Big Five factor in accordance with the rating scales of the
Revised NEO Personality Inventory (NEO PI-R) [8]. Our
questionnaire is composed of 10 statements regarding the
observable player behavior. Each statement is followed by a ten-
point Likert scale on which the expert has to rate how much of the
behavior indicated by the statement he/she could observe on the
analyzed gameplay segment. The scale ranges from “not even a
little” (-5) through “neutral” (0) to “a lot” (5). Each statement
contributes to the measurement of at least one of the Big Five
factors used to characterize the player behavior. The full
questionnaire is available in a separate online document3.

In order to gather samples to train our Neural Network, we
recorded the gameplay sessions of 52 players, which generated
approximately 4 hours of gameplay. For all sessions, the system
automatically captured the statistical features used by our model
in five time windows of different lengths (5, 10, 15, 20 and 25
seconds) and recorded a video of the game screen. As previously
mentioned, different time windows are being used in order to
determine the best length for them.

After capturing the data, each sample (the set of features for a
particular time interval) was associated with its respective video
segment (i.e. the video segment extracted from the game screen
video at the exact time interval during which the features were
captured). Then, three voluntary human experts analyzed all video
segments and used the training questionnaire to measure and
annotate the scores of the Big Five factors for the samples of each
time window. Each sample was analyzed by one expert. Five
datasets were created (one for each time window). The numbers
of samples of the datasets are: (1) time window of 5 seconds –
2903 samples; (2) time window of 10 seconds – 1451 samples; (3)
time window of 15 seconds – 967 samples; (4) time window of 20
seconds – 720 samples; and (5) time window of 25 seconds – 562
samples.

After creating and selecting the best dataset, the Neural
Network can be trained offline and then used to predict the player
behavior in real-time. An evaluation of the precision and
performance of the Neural Network is presented in section 6.

5 QUEST GENERATION

Challenges and actions that entertain players are the core of the
gameplay of many games. RPGs in particular deliver challenges
through quests, which are a fundamental mechanism for narrative
progression and provide players with concrete goals that guide the
gameplay. However, most of the current RPGs are still using

2 Fast Artificial Neural Network Library - http://leenissen.dk/fann/
3 http://www.icad.puc-rio.br/~logtell/interactive-quests/quest1.pdf

static quests with plots manually created by game designers. Even
modern RPGs that have quests with multiple outcomes, usually
implement them using predefined branching storylines based on
key choices. This type of quest reduces the player’s sense of
agency if the designers are not able to anticipate all the player’s
actions during the development of the game. In addition,
traditional quests often fail to provide to the player the ability to
interfere in the main plotline of the game.

5.1 Hierarchical Quests and the Quest Planner

We define a quest as a planning problem, expressed by the tuple:

gHSOPQ ,,, 0

where P is a set of atom symbols (also called propositions or

predicates), O is a set of planning operators, S0 is the initial state

(although our planning system uses the current state of the world

as initial state, we keep S0 in the tuple in conformity to the

formalism of planning processes), and Hg is the hierarchical set of

goals, such that: PS 0 is a set of ground literals, where a literal

is an atom p or the negation of an atom, p, letting negation

signify the deletion of the proposition from the current world state

S (i.e. we use the close-world assumption: a proposition that is not

explicitly specified in a state does not hold in that state); Hg is a

totally ordered set of goals:

   nnng GGGGGGGGGH  1322121 ,,,,,,,  ,

where each goal PGi  is a set of ground literals and the order

GjGi  defines the sequence of alternative goals.

An action a is any ground instance of a planning operator

Oo , denoted by the tuple:

    osubqoeffectoprecondonameo),(),(,

where:

 name(o) is an expression of the form  kxxname ,1 , xi

is a variable symbol that occurs anywhere in o;

 An action a is applicable to the current world state S if the

preconditions of a hold in S.

 An action a is relevant for a goal G (i.e. a can produce a

state that satisfies G) if the effects of a hold in G, and the

effects of a hold in any goal of the sub-quest qi  subq(a).

When subq(o) is not empty, o is referred as a compound

operator otherwise it is a primitive operator. An instance of a

compound operator is a total-order plan (i.e. a totally ordered

sequence of actions), resulting from the concatenation of the

resolutions of all sub-quests. Each sub-quest is handled as a

classical planning problem. We consider the cost of doing an

action a in a state s as unitary, i.e.   1,cos sat , Ss .

The following examples in a zombie survival game illustrate

the hierarchical quests:

quest: save-family

s0: character(john), character(anne), place(home),

place(forest), at(john,forest), at(anne,forest),

healthy(john), infected(anne), safe(home),

path(forest,home), path(home,forest)

G1: healthy(anne), protected(house)

G2: escaped(john)

Operator: take(CH1, CH2, PL1, PL2)

precond: healthy(CH1), infected(CH2), at(CH1,PL1),

at(CH2, PL1), path(PL1, PL2), CH1 ≠ CH2

effects: ¬at(CH1, PL1), ¬at(CH2, PL1), at(CH1,PL2),

at(CH2, PL2)

subq: ∅

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 6

http://leenissen.dk/fann/
http://www.icad.puc-rio.br/~logtell/interactive-quests/quest1.pdf

Operator: save(CH1, CH2, PL)

precond: healthy(CH1), infected(CH2), at(CH1, PL),

at(CH2, PL), safe(PL), CH1 ≠ CH2

effects: healthy(CH2), ¬infected(CH2)

subq: save-wife

Operator: protect(CH, PL)

precond: healthy(CH), at(CH, PL)

effects: protected(PL)

subq: protect-house

quest: save-wife

s0: character(john), character(anne),

character(oldman), place(home), place(village),

place(hospital), place(market), item(antidote1),

item(antidote2), at(john,home), at(anne,home),

at(oldman,market), healthy(john),

infected(anne), at(antidote1,hospital),

has(oldman,antidote2), safe(home),

path(home,village), path(village,home),

path(village,hospital), path(hospital,village),

path(market,village), path(village,market)

G1: healthy(anne)

G2: dead(anne)

In the above examples we can notice that john, anne , and

oldman are characters; house, village, market, forest, and

hospital are places; john and anne are both at home; john is

healthy, but anne is infected; antidote is an item that is at the

hospital; and there is a path connecting home with the

hospital (amongst other paths connecting places). Also we can

see that if the compound operator save is instantiated as

save(john,anne,home), the sub-quest save-wife will be

triggered, because one of its goal (i.e. healthy(anne)) is one of

the effects of the action save(john, anne, home).

The game world is logically represented by a state, which

consists of a set of ground propositions S  P defining characters,

objects, locations, and their current situation in the game world. If a

sub-quest is called, the current state of the world will be used as the

initial state of this new sub-quest. Therefore, when the player

causes changes in the world, the planner recalculates the quest plan

using the modified world state as the initial state of a new classical

planning problem. The proposed algorithm can use any classical

planner for this step of a simple quest. In our implementation, we

used the HSP2 planner provided by Bonet and Geffner [6], which

is fully compatible with our STRIPS-like formalism.

Any sub-quest is described as an independent planning problem

in the Quest Library. The Quest Planner adopts a hierarchy of

authorial goals, in the sense that, if the intended goal cannot be

achieved, the planner tries its immediate successor in the

hierarchy. The planner can fail to achieve a desired goal either if

there is no valid sequence of actions that leads from the initial

state to the goal state, or if the prescribed time limit for searching

for a solution is exceeded. In both cases, the planner tries to

achieve the next successor goal from the authorial goal hierarchy.

For example, the hierarchy of goals for the quest save-family

has two different outcomes that can be described as follows:

G1: healthy(anne), protected(house)

G2: escaped(john)

where G1 is the primary goal of the quest that establishes that

anne must be healthy and the house must be protected. If the

player modifies the game world in such a way that G1 becomes

unreachable, the planner will try to find a plan to achieve G2,

which requires john to save himself escaping from the zombies.

above mentioned example, if the first goal of the sub-quest save-

wife fails, then the second goal may be accomplished by the

husband killing his wife to save her from the doom of being a

walking mindless monster forever. As a general authorial rule, the

last successor goal should be always achievable to avoid aborting

the story prematurely.

Compound operators represent nondeterministic events that

may have different effects on the story plot depending on the

player’s interferences and decisions while the quest monitor is

performing the sub-quests. Although the compound operators may

have nondeterministic effects on the quest plan, they are specified

with a default list of deterministic effects according to the primary

authorial goal of its respective sub-quests. The nondeterministic

nature of the compound operators is handled by the Quest Monitor

in real-time during the execution of the quest plan.

Once a quest has started, the planning algorithm proceeds by
searching in the space of world states for a sequence of actions
that leads the player from the current state of the world to one of
the quest’s goals. However, differently from a traditional HTN
planning algorithm, and to improve the performance of the
planner, our algorithm does not decompose the compound
operators during the generation of the initial plan for the quest,
which significantly the performance of the planner significantly.
The planner interprets compound operators as primitive, and uses
their predefined deterministic effects to generate a plan without
instantiating the events of sub-quests. When the player reaches a
compound operator, the plans for sub-quests are generated by new
instances of quest planners. In this way, our algorithm deals with
non-determinism efficiently and gracefully.

The player behavior can be used as precondition for both
primitive and compound operators. Two sets of five especial
propositions are used to represent the players’ recent and average
scores of the Big Five factors. While the first set of propositions
(openness, conscientiousness, extraversion, agreea-
bleness, and neuroticism) refers to the last player behavior
observed (predicted by the model), the second set (avg-
openness, avg-conscientiousness, avg-extraversion,
avg-agreeableness, and avg-neuroticism) represents the
average scores accumulated over time for the current player.

The following examples illustrate the usage of the player
behavior as precondition for operators:

Operator: give(CH1, CH2, IT, PL)

precond: at(CH1,PL), at(CH2,PL), healthy(CH2),

has(CH1,IT), avg-agreeableness(CH2,X), X > 0.5

effects: has(CH2,IT), ¬has(CH1,IT)

subq: ∅

Operator: not-give(CH1, CH2, IT, PL)

precond: at(CH1,PL), at(CH2,PL), healthy(CH2),

has(CH1,IT), avg-agreeableness(CH2,X), X < 0.5,

avg-neuroticism(CH2,Y), Y < 0.5

effects: ¬has(CH2,IT)

subq: ∅

Operator: kick-out(CH1, CH2, IT, PL)

precond: at(CH1,PL), at(CH2,PL), healthy(CH2),

has(CH1,IT),avg-agreeableness(CH2,X),X < -0.5,

avg-neuroticism(CH2,Y), Y > 0.5

effects: ¬has(CH2,IT)

subq: ∅

The examples show three different operators that can occur
after an ask event, where the player (CH2) asks another character
(CH1) for an item (IT) in a specific place (PL). The operator give

can only occur if the player has been behaving in a friendly
manner towards the others (with an average score of the
agreeableness factor higher than 0.5). Otherwise, if the average
score of the agreeableness factor be lower than 0.5 and the
average score of the neuroticism factor also be lower than 0.5
(meaning that the player is not being very friendly, but is not
behaving aggressively), the operator not-give can occur.
However, if the player has been hostile (agreeableness factor
lower than -0.5) and aggressive (neuroticism factor hither than
0.5) with others, the kick-out is the only operator available.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 7

5.2 Quest Monitor

The Quest Monitor is based on a planning approach that integrates

planning, execution, and monitoring. The Quest Monitor works

together with the Quest Planner to generate and maintain the

coherence of quests in the dynamic and nondeterministic

environment of the game.

For each instance of a Quest Planner, there is a Quest Monitor

in charge of monitoring the execution of its respective quest plan.

Its job is to verify the occurrence of changes introduced by the

player in the game world that violate preconditions of the quest

events generated by the planner. In addition, the Quest Monitor is

also responsible for instantiating new Quest Planners and

Monitors to handle sub-quests described by the compound

operators present in its respective quest plan.

The algorithm for monitoring the execution of quests

continuously checks the current state of the world and the player

behavior model to verify the consistency of the quest plan. If it

detects that the current world state is different from the expected

state described in the quest plan, it requests a new plan for the

Quest Planner using the current state of the world as the initial

state for the planning problem. Similarly, if changes in the current

or in the average player behavior are detected, a new plan is

requested. In this way, a new plan to achieve one of the quest

goals will be generated. In this plan, new tasks may be added in

order to make the player return to the previous storyline of the

quests or a completely different sequence of events may be

created to guide the quests towards a different outcome.

During the execution of the quest plan, the monitoring

algorithm also verifies the occurrence of compound operators in

the plan. If the next expected event of the quest is defined by a

compound operator, a new Quest Planner and a new Quest

Monitor are instantiated to handle the execution of the sub-quest

independently. While the player is performing a sub-quest, the

Quest Monitor of its parent quest waits until the player has

finished the sub-quest to resume the monitoring process.

The process of monitoring the execution of quests, with the

capacity of replanning the quest’s events whenever necessary,

allows the system to directly support nondeterministic sub-quests

with multiple endings so as to influence the whole narrative of the

game. In nondeterministic sub-quests, player’s actions can induce

the quest to an outcome that may affect the world state in a way that

does not match the state produced by the predefined deterministic

effects of its respective compound operator. Consequently,

nondeterministic sub-quests can introduce inconsistencies in the

plan of their parent quests depending on the way they end. Such

inconsistencies will be automatically detected by the Quest

Monitor, which will request a new plan to its respective Quest

Planner, in order to correct inconsistencies and maintain the flow

and coherence of the game. In this way, while performing a sub-

quest, the choices made by the player are propagated through the

hierarchy of quests, effectively modifying the game’s narrative.

Figure 5 illustrates how player actions and behaviors can

modify the plot of quests, and how the combination of planning

and monitoring can support nondeterministic quests and handle

inconsistencies introduced by player’s interventions in the plan of

quests. In this example, the player is in a quest to save the life of

his family, after his wife was attacked and infected by zombies.

Plan 1 describes the initial plan generated to solve the quest

“Save family”, which consists of taking his wife back home,

saving her from the Zombie disease, and protecting his house. The

sub-quest “Save wife” consists of going to the city hospital,

getting the antidote, going back home, and using the antidote to

save the wife’s life. Suppose that when the player is trying to go

back home with the antidote, he is attacked by a zombie and

breaks the antidote bottle. In this case, the fact has(player,

antidote)will be removed from the current state of the world.

When this happens, the Quest Monitor of this quest will detect an

inconsistency in the quest plan (i.e. the player cannot give the

antidote to his wife if he does not have it). In order to solve this

inconsistency, a new plan will be requested to the Quest Planner,

which finds an alternative plan to achieve the same goal of the

previous plan.

Figure 5: Example of dynamic quest plans generated by the

planner while the player is performing actions and progressing

through the quest “Save family”.

In Plan 2, after breaking the bottle of the first antidote, the

player has to go to the market and ask an old man for another

antidote, get the antidote, and go back home to save his wife.

However, in this new sequence of events, the event where the old

man gives an antidote to the player has a precondition that

indicates it can only occur if the player has been behaving in a

friendly manner – which was true when Plan 2 was generated. But

suppose that before asking the old man for an antidote, the player

starts to behave in a more hostile manner (e.g. by not helping

other characters). This behavioral change will cause the player

model to be updated and the score of Big Five factor that

represents the agreeableness dimension will be decreased. When

this happens, the Quest Monitor of this quest will detect this

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 8

inconsistency and trigger another replanning procedure. But now

the previous quest goal will no longer be achievable, because

there are more antidotes available in the game world. This will

force the planner to try another authorial goal.

In the resulting plan (Plan 3), after trying all the alternatives to

get an antidote, the only choice the player has is to go home and

see his avatar John kill his wife to save her from a dreadful

destiny. This new sequence of events affects the resulting world

state of the quest “Save wife”, which introduces an inconsistency in

the plan of its parent quest. In this case, the quest “Protect house”

cannot be executed anymore, because it requires the player’s wife

to be alive. In order to correct this inconsistency, the Quest

Monitor of the parent quest will request a new plan, where the

quest “Protect House” ends up being replaced by the quest “Escape”.

6 EVALUATION AND RESULTS

Considering that our general approach for hierarchical quest
generation was already evaluated in our previous work [17], we
focus here on the evaluation of the player behavior model. For this
evaluation, we performed two tests: (1) a precision test to check
the accuracy of the proposed model; and (2) a performance test to
evaluate the real-time performance of the Neural Network used to
predict the player behavior.

For the precision test, we used five datasets of different time
windows to train and test our Neural Network. As described in
section 4.3, these datasets were created with data collected from
52 gameplay sessions (approximately 4 hours of gameplay) and
include samples with all the gameplay features used as input to
our model, as well as the scores of the Big Five factors used to
characterize the player behavior (model’s output). In all the
experiments, we used a 10-fold cross-validation strategy.

Three statistical criteria were applied to evaluate the precision
of our model: (1) the root-mean-square error (RMSE), which is
the square root of the average squared distances between the
actual score and the predicted score (prediction error); (2) the
correlation coefficient (r), which measures the linear association
between the actual score and the predicted score; and (3) the
coefficient of determination (R2), which represents the proportion
of the variance in the actual score that is predictable. The
correlation coefficient (r) is represented in the interval of [-1, +1].
While an r of +1 indicates that the actual score and the predicted
score are perfectly related, an r of -1 indicates that the two scores
are totally unrelated. The coefficient of determination (R2  [0,1])
can be thought of as a percentage that indicates the extent to
which the scores are predictable. A higher R2 is an indicator of
better fitness for the observations. For the RMSE criteria, low
values indicate low prediction errors.

The results of the precision tests are shown in Figures 6, 7 and
8, where each bar represents the average value (10-fold cross-
validation) for the evaluation criteria (r, R2, and RMSE) calculated
for each Big Five factor obtained by Neural Networks trained with
datasets of different time windows (5, 10, 15, 20 and 25 seconds).
The results indicate that the best length for the time window is 10
seconds (average r of 0.97, average R2 of 0.96, and average RMSE
of 0.06). The second best length is 15 seconds (average r of 0.94,
average R2 of 0.91, and average RMSE of 0.08).

To evaluate the performance of our model, we performed the
prediction of the player behavior during 5 gameplay sessions,
wherein a total of 120 behavior predictions were performed (time
window of 10 seconds). For each prediction, we computed the
time necessary to calculate the input features and predict the Big
Five factors using the Neural Network. The computer used to run
the experiment was an Intel Core i7 2630QM, 2.0 GHZ CPU, 16
GB of RAM using a single core to process the Neural Network.
As a result, we got an average time of 4.2 milliseconds (standard

deviation of 1.2 milliseconds), which indicates the applicability of
the proposed method in highly interactive game environments
without noticeable delays.

Figure 6: Average correlation coefficient (r) for the Big Five factors

(Openness (O), Conscientiousness (C), Extraversion (E),

Agreeableness (A), and Neuroticism (N)) obtained for different time

windows.

Figure 7: Average coefficient of determination (R
2
) for the Big Five

factors (Openness (O), Conscientiousness (C), Extraversion (E),

Agreeableness (A), and Neuroticism (N)) obtained for different time

windows.

Figure 8: Average root-mean-square error (RMSE) for the Big Five

factors (Openness (O), Conscientiousness (C), Extraversion (E),

Agreeableness (A), and Neuroticism (N)) obtained for different time

windows.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 9

7 CONCLUDING REMARKS

In this paper we present a new method for interactive storytelling
in games based on player behavior modeling, hierarchical task
decomposition, and nondeterministic planning. The proposed
method is capable of generating dynamic and nondeterministic
quests that are directly or indirectly affected by in-game player
behavior.

Our approach provides game designers with new ways of
imagining and creating narratives for games using dynamic and
nondeterministic quests. We believe that this form of interactive
narratives can expand the boundaries of traditional games towards
new forms of interactive storytelling, allowing players to create
their own narrative experiences.

As further research, we intend to conduct more tests in more
complex game scenarios and genres. Also we plan to evaluate in
depth a number of key aspects of the authoring process, especially
authoring expressiveness, the complexity issues involved in the
process, and the level of control the human author may have over
the game’s narrative. Furthermore, we consider that more
extensive user studies are needed to evaluate our method from the
player’s perspective. Improvements to the behavioral model are
also a paramount commitment in our research agenda.

REFERENCES

[1] M. D. Back, S. C. Schmukle, B. Egloff. Predicting Actual Behavior From

the Explicit and Implicit Self-Concept of Personality. Journal of

Personality and Social Psychology, volume 97 (3), pages 533-548.

American Psychological Association, 2009.

[2] S. C. Bakkes, P. H. Spronck, and G. van Lankveld. Player Behavioural

Modelling for Video Games. Entertainment Computing, volume 3, pages

71-79. Elsevier, 2012.

[3] H. Barber, and D. Kudenko. A User Model for the Generation of

Dilemma-Based Interactive Narratives. In AIIDE 2007 Workshop on

Optimizing Player Satisfaction, pages 13-18. AAAI Press, 2007.

[4] R. Bartle. Hearts, clubs, diamonds, spades: Players who suit muds.

Journal of MUD Research, volume 1 (1), 1996.

[5] C. M. Bateman, and R. Boon. 21st Century Game Design. Charles River

Media Game Development, Cengage Learning, 2005.

[6] B. Bonet, and H. Geffner. Planning as Heuristic Search. Artificial

Intelligence, volume 129 (1), pages 5-33. Elsevier, 2001.

[7] H. Borchani, G. Varando, C. Bielza, P. Larrañaga. A survey on multi-

output regression. Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, volume 5 (5), pages 216-233. John Wiley, 2015.

[8] P. T. Costa, and R. R. McCrae. Revised NEO Personality Inventory

(NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) professional

manual. Psychological Assessment Resources, 1992.

[9] B. de Raad, and M. Perugini. Big Five assessment. Hogrefe & Huber, 2002.

[10] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and

Practice. Morgan Kaufmann Publishers, San Francisco, 2004.

[11] L. R. Goldberg. An alternative "description of personality": The Big-Five

factor structure. Journal of Personality and Social Psychology, volume

59 (6), pages 1216-1229. APA Press, 1990.

[12] S. D. Gosling, P. J. Rentfrow, W. B. Swann. A very brief measure of the

Big-Five personality domains. Journal of Research in Personality,

volume 37 (6), pages 504-528. Elsevier, 2003.

[13] S. Haykin. Neural Networks and Learning Machines. Prentice Hall, 2008.

[14] U. Kuter, D. S. Nau, E. Reisner, and R.P. Goldman. Using classical

planners to solve nondeterministic planning problems. In Proceedings of

the International Conference on Automated Planning and Scheduling,

2008, pages 190-197. AAAI, 2008.

[15] R. Laws. Robin’s Laws of Good Game Mastering. Steve Jackson, 2002.

[16] M. Lewis and K. Dill. Game AI Appreciation, Revisited. In S. Rabin,

editor, Game IA Pro
2
: Collected Wisdom of Game AI Professionals,

pages 3-17. A K Peters/CRC Press, 2015.

[17] E. S. Lima, B. Feijó, and A. L. Furtado. Hierarchical Generation of

Dynamic and Nondeterministic Quests in Games. In Proceedings of the

11th International Conference on Advances in Computer Entertainment

Technology, Article N. 24. ACM, 2014.

[18] M. C. Machado, G. L. Pappa, and L. Chaimowicz. A Binary

Classification Approach for Automatic Preference Modeling of Virtual

Agents in Civilization IV. In Proceedings of the 2012 IEEE Conference

on Computational Intelligence and Games, pages 155-162, IEEE, 2012.

[19] T. Mahlman, A. Drachen, A. Canossa, J. Togelius, and G. N. Yannakakis.

Predicting Player Behavior in Tomb Raider: Underworld. In Proceedings

of Computational Intelligence in Games, pages 178-185. IEEE, 2010.

[20] B. K. Mishra. Psychology: The Study of Human Behaviour. PHI

Learning, 2008.

[21] O. Missura and T. Gärtner. Player modeling for intelligent difficulty

adjustment. In Proceedings of the 12th International Conference on

Discovery Science, pages 197-211. Springer, 2009.

[22] I. B. Myers. The Myers-Briggs type indicator manual. The Educational

Testing Service, Princeton, 1962.

[23] A. Nagle, P. Wolf, and R. Riener. Towards a system of customized video

game mechanics based on player personality: Relating the Big Five

personality traits with difficulty adaptation in a first-person shooter game.

Entertainment Computing, volume 13, pages 10-24. Elsevier, 2016.

[24] S. V. Paunonen. Big Five Factors of Personality and Replicated

Predictions of Behavior. Journal of Personality and Social Psychology,

volume 84, pages 411-422. NCBI, 2003.

[25] A. Ramirez, and V. Bulitko. Automated planning and player modeling for

interactive storytelling. IEEE Transactions on Computational Intelligence

and AI in Games, volume 7 (4), pages 375-386. IEEE Press, 2015.

[26] M. Seif El-Nasr. Interaction, Narrative, and Drama Creating an Adaptive

Interactive Narrative Using Performance Arts Theories. Interaction

Studies, volume 8 (2). John Benjamins Publishing Company, 2007.

[27] M. Seif El-Nasr, A. Drachen, and A. Canossa, A. (eds.). Game Analytics:

Maximizing the Value of Player Data. Springer-Verlag, London, 2013.

[28] M. Sharma, S. Ontañón, M. Mehta, and A. Ram. Drama Management and

Player Modeling for Interactive Fiction Games. In Computational

Intelligence, volume 26 (2), pages 183-211. Wiley Periodicals, 2010.

[29] P. H. M. Spronck, F. den Teuling. Player modeling in civilization IV.

In Proceedings of the Sixth Artificial Intelligence and Interactive

Digital Entertainment Conference, pages 180-185. AAAI Press, 2010.

[30] F. Strack, and R. Deutsch. Reflective and impulsive determinants of

social behavior. Personality and Social Psychology Review, volume 8,

pages 220-247. Sage Press, 2004.

[31] D. Thue, V. Bulitko, M. Spetch, and E. Wasylishen. Interactive

Storytelling: A Player Modelling Approach. In Proceedings of the 3rd

Artificial Intelligence and Interactive Digital Entertainment Conference,

pages 43-48. AAAI Press, 2007.

[32] J. Tuunanen, and J. Hamari. Meta-Synthesis of Player Typologies. In

Proceedings of Nordic Digra 2012 Conference: Local and Global -

Games in Culture and Society, 2012.

[33] J. Valls-Vargas, S. Ontañón, and J. Zhu. Exploring Player Trace

Segmentation for Dynamic Play Style Prediction. In Proceedings of the

Eleventh AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment, pages 93-99. AAAI Press, 2015.

[34] G. Van Lankveld, P.H.M. Spronck, H.J. Van den Herik, A. Arntz. Games

as personality profiling tools. In Proceedings of the 2011 IEEE

Conference on Computational Intelligence in Games, pages 197-202.

IEEE Press, 2011.

[35] B. Weber and M. Mateas. A Data Mining Approach to Strategy

Prediction. In 2009 IEEE Symposium on Computational Intelligence in

Games (Milano, Italy), pages 140-147. IEEE, 2009.

[36] G. N. Yannakakis, P. Spronck, D. Loiacono, and E. André. Player

Modeling. In Artificial and Computational Intelligence in Games, pages

45-55. Dagstuhl Publishing, Saarbrücken Wadern:, 2013.

SBC – Proceedings of SBGames 2016 | ISSN: 2179-2259 Computing Track – Full Papers

XV SBGames – São Paulo – SP – Brazil, September 8th - 10th, 2016 10

	156281
	156281

