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ABSTRACT 

Video games add new dimensions to traditional storytelling by 
allowing players to change narratives through their own actions. 
In modern Role-Playing Games (RPGs), this is usually done by 
adopting branching storylines based on key choices presented to 
players at certain points of the game. However, such branching 
points are usually presented through specific dialog choices or 
predetermined actions, which reduces the player’s sense of 
agency. Currently, both game industry and game consumers have 
great interest in new forms of interactive storytelling that may 
provide games with truly interactive stories, in which all in-game 
player’s actions and behaviors can affect the development of the 
narrative. In this paper, we explore the combination of player 
modeling and narrative generation techniques. We propose a 
novel approach for interactive storytelling in games based on 
player behavior modeling, hierarchical task decomposition and 
nondeterministic planning. The proposed method is capable of 
generating dynamic and nondeterministic quests that are directly 
or indirectly affected by in-game player behavior, which is 
modeled in terms of the Big Five factors. The main objective of 
this paper is to present this method and to validate its precision and 
real-time performance on highly interactive game environments. 

Keywords: Player Modeling, Player Behavior, Quest Generation, 
Games, Interactive Storytelling. 

1 INTRODUCTION 

Video games add new dimensions to traditional storytelling by 
allowing players to change narratives through their own actions. 
In modern Role-Playing Games (RPGs), this is usually done by 
adopting branching storylines based on key choices presented to 
players at certain points of the game. Some RPGs, such as Mass 
Effect 2 (BioWare, 2010), Dragon Age: Inquisition (BioWare, 
2014), and The Witcher 3: Wild Hunt (CD Projekt RED, 2015) 
perform this so well that they are able to provide the player a real 
sense of control over the story. However, such branching points 
are usually presented through specific dialog choices or 
predetermined actions (e.g. killing or forgiving an enemy, 
collecting or not collecting a specific item), which reduces the 
player’s sense of agency (i.e. the sense of the player as the agent 
of his/her own actions).   

Currently, both game industry and game consumers have great 
interest in new forms of interactive storytelling that may provide 
games with truly interactive stories, in which all in-game player’s 
actions can affect the development of the narrative. However, 
interpreting and understanding in-game player behavior in real-
time is not an easy task. This problem involves an active topic of 
research on artificial intelligence, known as player modeling. 

Player modeling is the study and use of artificial intelligence 
techniques for the construction of computational models of 
players, which includes cognitive, affective and behavioral 
characteristics [36]. In general, a player model is an abstract 
description of a player in a game environment [2]. Specifically for 

the context of behavioral modeling, a player model includes the 
description of the player’s behavior in the game environment. The 
construction of effective player models involves a multidisciplinary 
intersection of the fields of affective computing, experimental 
psychology, human-computer interaction, big data, and analytics,
which are part of the so called "game analytics" [27]. 

In recent years, research on player modeling has attracted a lot 
of attention from both industry and academic research [36][2]. 
Nowadays, analyzing game data is a common practice widely 
used in the game industry to validate level design or improve the 
player experience [33][27]. Many commercial games are known 
for adopting player modeling techniques, such as Silent Hill: 
Shattered Memories (Konami, 2009), which dynamically creates 
personality models of the players and uses it to adapt gameplay 
elements [23]; League of Legends (Riot Games, 2009), which 
explores the analysis of gameplay data to design new content 
updates [16]; and Left 4 Dead (Valve, 2008), which uses player 
modeling to adapt the difficulty of the game’s challenges in 
response to the player’s actions. Even though player modeling has 
been successfully applied to commercial games and widely 
explored by academic researchers, only few works treat the 
prediction of actual player behavior. 

We consider actual player behavior to be the way in which the 
player acts or conducts him or herself in the game. For instance, 
the player may behave aggressively, impulsively, or cautiously 
when facing dangerous situations. Behavior, in general, is not only 
complex, but also dynamic. A behavioral description for one 
occasion is likely to be invalid for another occasion. In fact, 
behavior is susceptible to variation in consequence of any change in 
time, place, emotion, and social context [20]. In addition, a player’s 
behavior within a game environment may be very different from the 
same person’s behavior when dealing with real world situations.   

In this paper, we explore the combination of player modeling 
and narrative generation techniques. We propose a novel approach 
for interactive storytelling in games based on player behavior 
modeling, hierarchical task decomposition and nondeterministic 
planning1. The proposed method is capable of generating dynamic 
and nondeterministic quests that are directly or indirectly affected 
by in-game player behavior, which is modeled in terms of the Big 
Five factors [11]. The main objective of this paper is to present 
this method and to validate its precision and real-time 
performance on highly interactive game environments. 

The paper is organized as follows. Section 2 reviews related 
work. Section 3 presents an overview of the system architecture and 
describes the testbed game used to validate our method. Section 4 
presents the proposed player behavior model. Section 5 describes 
the proposed method for quest generation based on 
nondeterministic planning and player behavior modeling. Section 
6 presents an evaluation of our method. Section 7 offers 
concluding remarks. 

1 We use the term "nondeterministic planning" for planning 

problems in which the planning domain is a nondeterministic 

state-transition system, i.e. an action may have more than one 

possible outcome [10][14]. *e-mail: edirlei.lima@uerj.br
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2 RELATED WORK 

There are several works on player modeling in the literature. One 
of the earliest attempts to create player models came in 1996 
when Richard Bartle [4] proposed his four player types 
(Achievers, Socializers, Explorers, and Killers). Following 
Bartle’s work, Bateman and Boon [5] created another model using 
the Myers-Briggs personality indicator [22] to categorized players 
into four classes: Conqueror, Manager, Wanderer and Participant. 
However, as previously pointed by Tuunanen and Hamari [32], 
type-based approaches are very limited, because types provide 
only a superficial information about the player, which can be even 
more blurred considering that most players cannot be generally 
categorized into a single group. 

In recent years there have been several successful 
implementations of player modeling in games, whose applications 
include the use of player models for adapting player experience, 
game balancing, personalized content generation, playtesting 
analysis and game authoring. Missura and Gärtner [21] explore 
the use of clustering and classification techniques to dynamically 
adjust the difficulty of a shooter game. Their method uses k-
means and support vector machines to classify players into 
different types based on gameplay data. Weber and Mateas [35] 
employ a series of classification algorithms for recognizing player 
strategies in StarCraft (Blizzard Entertainment, 1998). Mahlman 
et al. [19] use several supervised machine learning algorithms, 
trained with a set of player behavior data extracted from the game 
Tomb Raider: Underworld (Crystal Dynamics, 2008), in order to 
predict when a player will stop playing the game and, if the player 
completes the game, how long will it take to do so. Machado et al. 
[18] and Spronck and den Teuling [29] explore player modeling in 
the context of the game Civilization IV (Firaxis Games, 2005). 
Machado et al. [op. cit.] create models of virtual agent’s 
preferences using classifiers based on support vector machines, 
and Spronck and den Teuling [op. cit.] use a sequential minimal 
optimization (SMO) classifier to build a player model to predict 
specific preference values. In a recent work, Valls-Vargas et al. 
[33] propose a player modeling framework to capture and predict 
play style using episodic segmentation of gameplay traces and 
sequential machine learning techniques. Their framework utilizes 
multiple models that include predictions from previous time 
intervals to identify how players change play style over time. 

The use of player modeling has also been explored in 
interactive storytelling systems. Barber and Kudenko [3] present 
an interactive story generator system that learns the personality of 
its users by applying predefined increments or decrements to a 
vector of personality traits, such as honesty and selfishness, in 
response to the users’ decisions. Seif El-Nasr [26] presents an 
interactive storytelling system called Mirage, where both player 
behavior and personality are modeled in order to allow users to 
participate in a more engaging drama. The system tracks user’s 
actions to adjust a vector of values representing tendencies toward 
character traits (heroism, violence, self-interestedness, and 
cowardice). Sharma et al. [28] present an interactive storytelling 
system that combines past captured game traces and player survey 
data to create player models, which are used to dynamically 
determine the next plot point that is best suited to specific users. 
Thue et al. [31] present PaSSAGE, an interactive storytelling 
system that uses player modeling to automatically learn a model 
of the player’s preferences through observations of the player in 
the virtual world, and then uses the model to dynamically select 
the content of an interactive story. The player is modeled as a 
vector, where each dimension is the strength of one of the Laws’ 
stereotypes [15]. As the player performs actions, dimensions are 
increased or decreased in accordance to predefined rules. Ramirez 
and Bulitko [25] use this player model with a reward function in 

such a way that when several narratives are generated, the one that 
maximizes this function is automatically selected.  

The Big Five model was used in some previous works on player 
modeling. Van Lankveld et al. [34] investigate whether a 
personality profile can be determined by observing the player’s 
behavior in a customized scenario for the game Neverwinter 
Nights (Bioware, 2002). They adopted the Big Five model to 
define the player’s personality profile. In a recent work, Nagle et 
al. [23] explore the application of the Big Five model for 
difficulty adjustment in a first-person shooter game. They present 
a linear regression model to predict difficulty adaptations that 
maximize enjoyment and gameplay duration based on player 
personality.  

Even though player modeling has been widely explored in 
games, little work has been done to use the player's behavior to 
adapt game narratives. In addition, most previous works on 
behavior modeling are based on very simplified models of player 
archetypes, which fail in representing blended behaviors, as well 
as in providing more detailed information about the actual player 
behavior. The few previous works that explore the Big Five model 
for player modeling use it only to establish personality profiles.  

3 SYSTEM OVERVIEW 

The player behavior model proposed in this paper was built as an 
extension of our previous work on hierarchical quest generation 
[17]. In our system, the structure of the game’s narrative is 
represented as a hierarchy of quests where the entire game can be 
described as a single quest composed of several sub-quests – 
which may also have their own sub-quests (Figure 1). A quest can 
be decomposed into primitive events (shaded rectangles in Figure 
1) and/or sub-quests. In Figure 1, the dotted lines indicate the 
decomposition and the arrows indicate the direction of the events. 
When the story is completed we have a total order of the events 
(Event1 to Event7 in the example of Figure 1). We use the term 
event to indicate a primitive action that was executed by the game 
controller or imposed by the player.  
 

 

Figure 1: Hierarchy of quests. 

Quests are logically modeled to have multiple goal states, so 
they can be completed in different ways depending on the player’s 
actions. Consequently, the results of sub-quests can influence the 
progression of their parent quests and dynamically change the 
entire storyline of the game. This dynamism is archived by 
modeling each quest as a nondeterministic planning problem. 

3.1 System Architecture 

Figure 2 illustrates the architecture of our system, which is based 
on the conceptual model for dynamic planning presented by 
Ghallab et al. [10]. In our implementation, the Quest Manager is 
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responsible for controlling multiple instances of planners and plan 
monitors. The Quest Planner is responsible for generating a 
logical plan of actions to achieve an authorial goal of the quest 
from the current state of the world. The Quest Monitor is 
responsible for monitoring the execution of the plan to verify the 
occurrence of changes introduced by the player. The Game 
Manager manages the game world by updating the current World 
State according to the events produced by actions performed by 
the Player during the gameplay. In addition, the Game Manager 
maintains the Player Model, which is updated with input data 
extracted from the World State. While the World State aggregates 
all information about the events that occur in the game as result of 
direct player actions, the Player Model maintains a more general 
description of the actual in-game player behavior, including the 
more recent score of the Big Five factors and the average score 
accumulated over time. The observations (events and behaviors) 
produced by the Player Model and the World State can directly 
affect the active quests. While performing quests, the Player 
receives help from the Player’s Assistant, who monitors the player 
progression through the generated quest plans, providing him/her 
with tips about his/her next objectives and goals. The Quest 
Library contains a database of quests and sub-quests specified as 
planning problems, which are dynamically solved by the Quest 
Planners in real-time. Details of the Player's Assistant can be 
found in [17]. 

 

 

Figure 2: Architecture of the quest generator system. 

3.2 Prototype Game 

The game used to test and validate our method is a 2D RPG 

(Figure 3) that uses the proposed architecture to dynamically 

generate and control the entire narrative of the game. The 

narrative pertains to a zombie survival genre and tells the story of 

a family that lives in a world dominated by a zombie plague. The 

player controls the brave husband John through several 

nondeterministic quests to protect his family and save his own 

life. The game is composed of 26 quests (8 deterministic and 18 

nondeterministic) with different hierarchical levels and 

complexities. In the baseline story, John’s wife is attacked by a 

zombie and is saved by John, who finds an antidote. Then, in 

order to defend his family, John tries to improve the protection of 

his house, but his daughter ends up being attacked by another 

zombie. After failing in protecting his house, John and his family 

escape to a remote island, where they have to build a house and 

find supplies to survive. Unfortunately, some zombies also find 

their way to the island and attack John and his family again. John 

survives the attack, but the future of his family is still uncertain. 

Several different stories with happy, sad, and even dark outcomes 

can emerge from this basic storyline depending on the player 

behaviour and decisions while performing nondeterministic 

quests. John’s wife and his daughter may survive or not, after 

being infected by a zombie, depending on whether the player 

succeeds in getting an antidote. After escaping to the island, the 

player may fail in the quest of finding supplies and one or more 

members of his family may starve to death. John can even be 

unable to escape to the island if he fails in a quest to get fuel for 

his boat. This unfortunate event will force him to escape to a 

remote mountain, where a different story takes place. 

 

 

Figure 3: Prototype game used to test and validate our method. 

The gameplay of the prototype game is driven by the story 

quests, wherein the player has to collect items, interact with non-

player characters and kill enemies (zombies). In order to fight 

against the zombies, the player has a gun with a limited amount of 

ammunition, which is reloaded when the player collects 

ammunition kits. When the player is attacked by zombies, he/she 

loses an amount of life (i.e. of the life energy initially attributed to 

the player), which is only restored when he/she collects medic 

kits. In addition to the enemies, the player finds through the game 

two types of non-player characters: (1) normal non-player 

characters, which are characters that talk and interact with the 

player; and (2) non-player characters in dangerous situations, 

which are characters that can be saved by the player. 

4 PLAYER BEHAVIOR MODEL 

The process to create a computational model capable of 
recognizing the current player behavior using only gameplay data 
is a complicate task. Human behavior is the result of complex 
reflective-impulsive processes [30], which are influenced by a 
series of factors (e.g.: personality traits, beliefs, and cultural 
aspects). In addition, behavior is also dynamic, meaning that it is 
susceptible to vary with time, place, situation, and context [20]. A 
model built to predict player behavior must be able to handle, not 
only its complex nature, but also its natural dynamism. 

As illustrated in Figure 3, a general player behavior model is 
composed of three main components: input, output, and a 
function. The model’s input comprises a set of observations 
extracted from the gameplay data, which should provide enough 
information about the player’s behavior. The model’s output 
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represents the set of behaviors that can be predicted by the model 
based on the input observations. The model’s function is the core 
of the model – it maps the input observations into the output 
behaviors. The next sub-sections describe how these general 
components are implemented in the proposed behavior model. 

 

 

Figure 3: Components of a general player behavior model. 

4.1 Input 

Since behavior is dynamic and time-dependent, the model must be 
able to recognize all behavioral changes that occur over time. 
Consequently, the system must be constantly capturing gameplay 
data and using it as input to the model. This dynamic process is 
performed using time windows, which are constant time intervals 
where the gameplay data is collected and then used to predict the 
current player behavior. The length of the windows is a crucial 
variable to determine the precision of the model. Too short time 
windows may provide only a limited amount of information about 
the player behavior, but too long windows may fail in capturing 
transitions between behaviors and produce blurred data. In order 
to determine the best length for the time windows, we conducted 
several tests with window sizes of varying length. The results of 
these experiments are presented in section 6. 

The data used as input to a player model is composed of a set of 
statistical features extracted from the gameplay during a time 
window. Although these features are dependent of the game 
mechanics, we selected a collection of general gameplay features 
that can be found not only in our prototype game but also in other 
game genres, such as shooters, action-adventures, and role-
playing games. In addition, we modeled the features to be 
independent of context, meaning that they are computed 
according to the context from which they were extracted. For 
example, if a time window comprises the player’s actions in a 
location with 8 enemies and another window includes his actions 
in a location with 2 enemies, all features related with the number 
of enemies must take this information into account. If the player 
kills all enemies in both time windows, the feature that represents 
the number of enemies killed must be the same for both cases.  

The gameplay features used as input to our model are described 
in Table 1, where T is the length of the time window in seconds, E 
is the total of enemies seen by the player during the time window, 
A is the total of ammunition kits seen by the player, M is the total 
of medic kits seen by the player, N is the total non-player 
characters seen by the player, and D is the total non-player 
characters in danger seen by the player. 

4.2 Output 

The next step to create a player behavior model consists in 
defining its output, which will represent the possible behaviors 
that the model will be able to predict in the future. The majority of 
previous works on player modeling adopt very simplified 
behavior models based on limited sets of player archetypes [32], 
which can be very restricted considering that players can exhibit 
interchangeable and unique blended behaviors. In addition, they 
often fail in providing more detailed information about the 
behaviors, such as their intensity. 

Table 1: Gameplay features. 

ID Description 

F1 Percentage of time that the player is standing still (in relation 

with T) 

F2 Percentage of time that the player is walking (in relation with T) 

F3 Percentage of time that the player is colliding (in relation with 

T); 

F4 Total of new areas explored by the player  

F5 Total of shots fired by the player during the time window 

F6 Percentage of shots that hit targets (in relation with F5) 

F7 Percentage of shots that miss targets (in relation with F5); 

F8 Percentage of enemies killed by the player (in relation with E) 

F9 Average time interval between shots fired by the player 

F10 Standard deviation of the time intervals between shots fired by 

the player 

F11 Average distance in which enemies were killed by the player 

F12 Standard deviation of the distances in which enemies were 

killed by the player 

F13 Average distance in which enemies were hit by shots fired by 

the player 

F14 Standard deviation of the distances in which enemies were hit 

by shots fired by the player 

F15 Average time spent by the player to kill enemies after seeing 

them 

F16 Standard deviation of the times spent by the player to kill 

enemies after seeing them  

F17 Percentage of medic kits collected by the player (in relation 

with M) 

F18 Percentage of life the player recovered without necessity (i.e. 

by using medic kits when the player’s life was almost full) 

(percentage calculated in relation with F17) 

F19 Average time spent by the player to collect medic kits after 

seeing them 

F20 Standard deviation of the times spent by the player to collect 

medic kits after seeing them 

F21 Percentage of ammunition kits collected by the player (in 

relation with A) 

F22 Percentage of ammunition kits used by the player without 

necessity (i.e. by using ammunition kits when the gun clip was 

almost full) (percentage calculated in relation with F21) 

F23 Average time spent by the player to collect ammunition kits 

after seeing them 

F24 Standard deviation of the times spent by the player to collect 

ammunition kits after seeing them 

F25 Percentage of non-player characters with whom the player 

interacted and talked (in relation with N) 

F26 Average time spent by the player to talk with non-player 

characters after seeing them 

F27 Standard deviation of the times spent by the player to talk with 

non-player characters after seeing them 

F28 Percentage of non-player characters in danger saved by the 

player (in relation with D) 

F29 Average time spent by the player to save non-player characters 

in danger after seeing them 

F30 Standard deviation of the times spent by the player to save non-

player characters in danger after seeing them 

F31 Total damage suffered by the player during the time window 

(i.e. total life loss) 

F32 Total of times the player changed his direction during the time 

window 

F33 Average time interval between the moments when the player 

changed directions 

F34 Standard deviation of the time intervals between the moments 

when the player changed directions 
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To define a more general and robust output for our behavioral 
model, we adopted a widely accepted theory about human 
personality: the Five Factor Model (also known as “Big Five”) 
[11]. Big Five is a dimensional representation of human personality 
structure, which claims that, by using five personality traits, it can 
suitably account for personality diversity. The Big Five factors are: 

(1) Openness: those who are high on this factor are imaginative, 
curious and open to new ideas. In contrast, those who 
score low on this factor are indifferent and uninterested; 

(2) Conscientiousness: the ones that display high degree of 
this factor are meticulous, efficient and systematic. Who 
scores low is careless, chaotic and disorderly; 

(3) Extraversion: high scorers are characterized by high 
indulgence in social activities. On the opposite side, low 
scorers are reserved and shy. 

(4) Agreeableness: a high score on this factor characterizes 
helpful, co-operative and friendly people. In contrast, low 
score characterizes selfish and hostile people. 

(5) Neuroticism: those who score high on this factor are 
emotionally unstable, anxious and aggressive. In contrast, 
those who score low are well-adjusted and calm. 

The five dimensions of the human personality structure are 
supported by several questionnaires, inventories, and adjective 
rating scales designed to measure each dimension (e.g.: 
[9][8][12]). Personality classification is then achieved by 
assigning five numerical scores (one per dimension) that account 
for how well each factor describes the person. The attribution of 
the scores is typically performed with questionnaires that consider 
observable behavior and characteristics of the individual. 

Although the Big Five factors are ordinarily used to describe 
individual personality, they can also be correlated with specific 
behaviors. In fact, past studies have pointed that several human 
behaviors can be adequately explained in terms of the Five Factor 
Model [24][1]. One example of behavioral taxonomy based on the 
Big Five is presented by Back et al. [1], who assigned a multitude 
of concrete actual behaviors to each of the five dimensions of the 
Big Five on the basis of a systematic investigation of theoretical 
and empirical approaches to personality and social behavior. 

The output of our model is represented by the Big Five factors, 
which are disposed on five behavioral axes (Figure 4), each within 
the interval of [-1, 1]. We adopted the taxonomy proposed by 

Back et al. [1] to define the general behavioral aspects of each 
factor (Table 2), which we divided into positive (+) and negative 
(-) behaviors in accordance with the factor’s score. The sign (- or 
+) does not mean destructive or constructive behaviors, but simply 
indicates the two opposite sides of the Big Five dimensions (i.e. 
low and high scores). Each behavioral aspect is also associated 
with a set of general in-game player behaviors, which describes 
concrete player behaviors within a game environment.  

 

 

Figure 4: Big Five factors represented as behavioral axes. 

4.3 Function 

Once we have defined the input and output of our model, we need 
to establish a function capable of learning and predicting player 
behaviors. Considering that the output of our model comprises 
five numerical values representing the Big Five factors, the task to 
build this function can be seen as a multi-output regression 
problem [7]. Existing methods to handle this type of problem can 
be categorized as: (1) problem transformation methods, where the 
multi-output problem is converted into independent single-output 
problems, which are solved using a single-output regression 
algorithm; and (2) algorithm adaptation methods, which adapt 
single-output methods to directly handle the multi-output data. 
Among these methods are the Artificial Neural Networks [13], 
which is a typical multi-output regression algorithm to handle 
problems where the outputs are independent of each other. 

Table 2: General behavioral aspects of the Big Five factors. 

Big Five Factors Behavioral Aspects In-game Player Behavior 

Openness 

+ curious, interested, inquisitive 
 Explores the environment 

 Collects all the available items 

- indifferent, incurious, uninterested 
 Explores only indispensable parts of the environment 

 Collects only indispensable items 

Conscientiousness 

+ meticulous, efficient, systematic 

 Rarely gets attacked by enemies 

 Rarely misses a shot 

 Collects and uses items only when they are needed 

- careless, chaotic, disorderly 

 Frequently gets attacked by enemies 

 Frequently misses shots 

 Collects and uses items when they are not needed 

Extraversion 

+ sociable, talkative, active 
 Frequently interacts with non-player characters 

 Interacts with non-player characters as soon as possible 

- reserved, shy, passive 
 Rarely interacts with non-player characters  

 Postpones interactions with non-player characters  

Agreeableness 
+ friendly, altruistic, helpful  Always tries to save non-player characters that are in danger 

- selfish, hostile, obstinate  Rarely tries to save non-player characters that are in danger 

Neuroticism 

+ aggressive, nervous, unstable 
 Tries to kill all enemies 

 Performs disordered movements 

- calm, relaxed, balanced 
 Kills only threatening enemies 

 Performs only necessary movements 
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In the proposed system, we implemented the model’s function 
using an Artificial Neural Network trained to predict the values 
for the Big Five factors based on the statistical features extracted 
from the gameplay (Table 1). We employed a single hidden layer 
Neural Network trained by an incremental back-propagation 
learning algorithm using a sigmoidal activation function. In our 
experiments, we used 64 neurons in the hidden layer. The 
algorithm was implemented using the FANN library2. 

Since our method employs a supervised machine learning 
technique to create the player model, samples of gameplay 
sessions need to be captured and annotated by an expert with 
labels describing the current player behavior. Considering that our 
model characterizes the player behavior with five numerical 
scores, each representing one of the Big Five factors, this 
annotation process must cover all characteristics of the observable 
behavior and measure each score systematically. To standardize 
this process and assist the human expert during the annotation 
process, we created a simple training questionnaire based on the 
general in-game player behaviors that contribute to the scores of 
each Big Five factor in accordance with the rating scales of the 
Revised NEO Personality Inventory (NEO PI-R) [8]. Our 
questionnaire is composed of 10 statements regarding the 
observable player behavior. Each statement is followed by a ten-
point Likert scale on which the expert has to rate how much of the 
behavior indicated by the statement he/she could observe on the 
analyzed gameplay segment. The scale ranges from “not even a 
little” (-5) through “neutral” (0) to “a lot” (5). Each statement 
contributes to the measurement of at least one of the Big Five 
factors used to characterize the player behavior. The full 
questionnaire is available in a separate online document3. 

In order to gather samples to train our Neural Network, we 
recorded the gameplay sessions of 52 players, which generated 
approximately 4 hours of gameplay. For all sessions, the system 
automatically captured the statistical features used by our model 
in five time windows of different lengths (5, 10, 15, 20 and 25 
seconds) and recorded a video of the game screen. As previously 
mentioned, different time windows are being used in order to 
determine the best length for them.  

After capturing the data, each sample (the set of features for a 
particular time interval) was associated with its respective video 
segment (i.e. the video segment extracted from the game screen 
video at the exact time interval during which the features were 
captured). Then, three voluntary human experts analyzed all video 
segments and used the training questionnaire to measure and 
annotate the scores of the Big Five factors for the samples of each 
time window. Each sample was analyzed by one expert. Five 
datasets were created (one for each time window). The numbers 
of samples of the datasets are: (1) time window of 5 seconds – 
2903 samples; (2) time window of 10 seconds – 1451 samples; (3) 
time window of 15 seconds – 967 samples; (4) time window of 20 
seconds – 720 samples; and (5) time window of 25 seconds – 562 
samples. 

After creating and selecting the best dataset, the Neural 
Network can be trained offline and then used to predict the player 
behavior in real-time. An evaluation of the precision and 
performance of the Neural Network is presented in section 6. 

5 QUEST GENERATION 

Challenges and actions that entertain players are the core of the 
gameplay of many games. RPGs in particular deliver challenges 
through quests, which are a fundamental mechanism for narrative 
progression and provide players with concrete goals that guide the 
gameplay. However, most of the current RPGs are still using 

                                                                 
2 Fast Artificial Neural Network Library - http://leenissen.dk/fann/  
3 http://www.icad.puc-rio.br/~logtell/interactive-quests/quest1.pdf    

static quests with plots manually created by game designers. Even 
modern RPGs that have quests with multiple outcomes, usually 
implement them using predefined branching storylines based on 
key choices. This type of quest reduces the player’s sense of 
agency if the designers are not able to anticipate all the player’s 
actions during the development of the game. In addition, 
traditional quests often fail to provide to the player the ability to 
interfere in the main plotline of the game. 

5.1 Hierarchical Quests and the Quest Planner 

We define a quest as a planning problem, expressed by the tuple: 

gHSOPQ ,,, 0  

where P is a set of atom symbols (also called propositions or 

predicates), O is a set of planning operators, S0 is the initial state 

(although our planning system uses the current state of the world 

as initial state, we keep S0 in the tuple in conformity to the 

formalism of planning processes), and Hg is the hierarchical set of 

goals, such that: PS 0  is a set of ground literals, where a literal 

is an atom p or the negation of an atom, p, letting negation 

signify the deletion of the proposition from the current world state 

S (i.e. we use the close-world assumption: a proposition that is not 

explicitly specified in a state does not hold in that state); Hg is a 

totally ordered set of goals: 
 

   nnng GGGGGGGGGH  1322121 ,,,,,,,  ,  
 

where each goal PGi   is a set of ground literals and the order 

GjGi   defines the sequence of alternative goals. 

An action a is any ground instance of a planning operator 

Oo , denoted by the tuple: 
 

    osubqoeffectoprecondonameo ),(),(,  
 

where: 

 name(o) is an expression of the form  kxxname ,1 , xi 

is a variable symbol that occurs anywhere in o; 

 An action a is applicable to the current world state S if the 

preconditions of a hold in S.  

 An action a is relevant for a goal G (i.e. a can produce a 

state that satisfies G) if the effects of a hold in G, and the 

effects of a hold in any goal of the sub-quest qi  subq(a). 

When subq(o) is not empty, o is referred as a compound 

operator otherwise it is a primitive operator. An instance of a 

compound operator is a total-order plan (i.e. a totally ordered 

sequence of actions), resulting from the concatenation of the 

resolutions of all sub-quests. Each sub-quest is handled as a 

classical planning problem. We consider the cost of doing an 

action a in a state s as unitary, i.e.   1,cos sat , Ss . 

The following examples in a zombie survival game illustrate 

the hierarchical quests: 
 

quest: save-family 

s0: character(john), character(anne), place(home), 

place(forest), at(john,forest), at(anne,forest), 

healthy(john), infected(anne), safe(home), 

path(forest,home), path(home,forest) 

G1: healthy(anne), protected(house) 

G2: escaped(john) 
 

Operator: take(CH1, CH2, PL1, PL2) 

precond: healthy(CH1), infected(CH2), at(CH1,PL1), 

at(CH2, PL1), path(PL1, PL2), CH1 ≠ CH2 

effects: ¬at(CH1, PL1), ¬at(CH2, PL1), at(CH1,PL2), 

at(CH2, PL2) 

subq: ∅ 
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Operator: save(CH1, CH2, PL) 

precond: healthy(CH1), infected(CH2), at(CH1, PL), 

at(CH2, PL), safe(PL), CH1 ≠ CH2 

effects: healthy(CH2), ¬infected(CH2) 

subq: save-wife 
 

Operator: protect(CH, PL) 

precond: healthy(CH), at(CH, PL) 

effects: protected(PL) 

subq: protect-house 
 

quest: save-wife 

s0: character(john), character(anne), 

character(oldman), place(home), place(village), 

place(hospital), place(market), item(antidote1), 

item(antidote2), at(john,home), at(anne,home), 

at(oldman,market), healthy(john), 

infected(anne), at(antidote1,hospital), 

has(oldman,antidote2), safe(home), 

path(home,village), path(village,home), 

path(village,hospital), path(hospital,village), 

path(market,village), path(village,market) 

G1: healthy(anne) 

G2: dead(anne) 
 

In the above examples we can notice that john, anne , and 

oldman are characters; house, village, market, forest, and 

hospital are places; john and anne are both at home; john is 

healthy, but anne is infected; antidote is an item that is at the 

hospital; and there is a path connecting home with the 

hospital (amongst other paths connecting places). Also we can 

see that if the compound operator save is instantiated as 

save(john,anne,home), the sub-quest save-wife will be 

triggered, because one of its goal (i.e. healthy(anne)) is one of 

the effects of the action save(john, anne, home). 

The game world is logically represented by a state, which 

consists of a set of ground propositions S  P defining characters, 

objects, locations, and their current situation in the game world. If a 

sub-quest is called, the current state of the world will be used as the 

initial state of this new sub-quest. Therefore, when the player 

causes changes in the world, the planner recalculates the quest plan 

using the modified world state as the initial state of a new classical 

planning problem. The proposed algorithm can use any classical 

planner for this step of a simple quest. In our implementation, we 

used the HSP2 planner provided by Bonet and Geffner [6], which 

is fully compatible with our STRIPS-like formalism. 

Any sub-quest is described as an independent planning problem 

in the Quest Library. The Quest Planner adopts a hierarchy of 

authorial goals, in the sense that, if the intended goal cannot be 

achieved, the planner tries its immediate successor in the 

hierarchy. The planner can fail to achieve a desired goal either if 

there is no valid sequence of actions that leads from the initial 

state to the goal state, or if the prescribed time limit for searching 

for a solution is exceeded. In both cases, the planner tries to 

achieve the next successor goal from the authorial goal hierarchy. 

For example, the hierarchy of goals for the quest save-family 

has two different outcomes that can be described as follows: 
 

G1: healthy(anne), protected(house) 

G2: escaped(john) 
 

where G1 is the primary goal of the quest that establishes that 

anne must be healthy and the house must be protected. If the 

player modifies the game world in such a way that G1 becomes 

unreachable, the planner will try to find a plan to achieve G2, 

which requires john to save himself escaping from the zombies. 

above mentioned example, if the first goal of the sub-quest save-

wife fails, then the second goal may be accomplished by the 

husband killing his wife to save her from the doom of being a 

walking mindless monster forever. As a general authorial rule, the 

last successor goal should be always achievable to avoid aborting 

the story prematurely.  

Compound operators represent nondeterministic events that 

may have different effects on the story plot depending on the 

player’s interferences and decisions while the quest monitor is 

performing the sub-quests. Although the compound operators may 

have nondeterministic effects on the quest plan, they are specified 

with a default list of deterministic effects according to the primary 

authorial goal of its respective sub-quests. The nondeterministic 

nature of the compound operators is handled by the Quest Monitor 

in real-time during the execution of the quest plan.  

Once a quest has started, the planning algorithm proceeds by 
searching in the space of world states for a sequence of actions 
that leads the player from the current state of the world to one of 
the quest’s goals. However, differently from a traditional HTN 
planning algorithm, and to improve the performance of the 
planner, our algorithm does not decompose the compound 
operators during the generation of the initial plan for the quest, 
which significantly the performance of the planner significantly. 
The planner interprets compound operators as primitive, and uses 
their predefined deterministic effects to generate a plan without 
instantiating the events of sub-quests. When the player reaches a 
compound operator, the plans for sub-quests are generated by new 
instances of quest planners. In this way, our algorithm deals with 
non-determinism efficiently and gracefully. 

The player behavior can be used as precondition for both 
primitive and compound operators. Two sets of five especial 
propositions are used to represent the players’ recent and average 
scores of the Big Five factors. While the first set of propositions 
(openness, conscientiousness, extraversion, agreea-
bleness, and neuroticism) refers to the last player behavior 
observed (predicted by the model), the second set (avg-
openness, avg-conscientiousness, avg-extraversion, 
avg-agreeableness, and avg-neuroticism) represents the 
average scores accumulated over time for the current player.  

The following examples illustrate the usage of the player 
behavior as precondition for operators: 
 

Operator: give(CH1, CH2, IT, PL) 

precond: at(CH1,PL), at(CH2,PL), healthy(CH2),  

has(CH1,IT), avg-agreeableness(CH2,X), X > 0.5 

effects: has(CH2,IT), ¬has(CH1,IT) 

subq: ∅ 
 

Operator: not-give(CH1, CH2, IT, PL) 

precond: at(CH1,PL), at(CH2,PL), healthy(CH2),  

has(CH1,IT), avg-agreeableness(CH2,X), X < 0.5, 

avg-neuroticism(CH2,Y), Y < 0.5 

effects: ¬has(CH2,IT) 

subq: ∅ 
 

Operator: kick-out(CH1, CH2, IT, PL) 

precond: at(CH1,PL), at(CH2,PL), healthy(CH2), 

has(CH1,IT),avg-agreeableness(CH2,X),X < -0.5, 

avg-neuroticism(CH2,Y), Y > 0.5  

effects: ¬has(CH2,IT) 

subq: ∅ 
 

The examples show three different operators that can occur 
after an ask event, where the player (CH2) asks another character 
(CH1) for an item (IT) in a specific place (PL). The operator give 

can only occur if the player has been behaving in a friendly 
manner towards the others (with an average score of the 
agreeableness factor higher than 0.5). Otherwise, if the average 
score of the agreeableness factor be lower than 0.5 and the 
average score of the neuroticism factor also be lower than 0.5 
(meaning that the player is not being very friendly, but is not 
behaving aggressively), the operator not-give can occur. 
However, if the player has been hostile (agreeableness factor 
lower than -0.5) and aggressive (neuroticism factor hither than 
0.5) with others, the kick-out is the only operator available.   
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5.2 Quest Monitor 

The Quest Monitor is based on a planning approach that integrates 

planning, execution, and monitoring. The Quest Monitor works 

together with the Quest Planner to generate and maintain the 

coherence of quests in the dynamic and nondeterministic 

environment of the game. 

For each instance of a Quest Planner, there is a Quest Monitor 

in charge of monitoring the execution of its respective quest plan. 

Its job is to verify the occurrence of changes introduced by the 

player in the game world that violate preconditions of the quest 

events generated by the planner. In addition, the Quest Monitor is 

also responsible for instantiating new Quest Planners and 

Monitors to handle sub-quests described by the compound 

operators present in its respective quest plan. 

The algorithm for monitoring the execution of quests 

continuously checks the current state of the world and the player 

behavior model to verify the consistency of the quest plan. If it 

detects that the current world state is different from the expected 

state described in the quest plan, it requests a new plan for the 

Quest Planner using the current state of the world as the initial 

state for the planning problem. Similarly, if changes in the current 

or in the average player behavior are detected, a new plan is 

requested. In this way, a new plan to achieve one of the quest 

goals will be generated. In this plan, new tasks may be added in 

order to make the player return to the previous storyline of the 

quests or a completely different sequence of events may be 

created to guide the quests towards a different outcome.  

During the execution of the quest plan, the monitoring 

algorithm also verifies the occurrence of compound operators in 

the plan. If the next expected event of the quest is defined by a 

compound operator, a new Quest Planner and a new Quest 

Monitor are instantiated to handle the execution of the sub-quest 

independently. While the player is performing a sub-quest, the 

Quest Monitor of its parent quest waits until the player has 

finished the sub-quest to resume the monitoring process. 

The process of monitoring the execution of quests, with the 

capacity of replanning the quest’s events whenever necessary, 

allows the system to directly support nondeterministic sub-quests 

with multiple endings so as to influence the whole narrative of the 

game. In nondeterministic sub-quests, player’s actions can induce 

the quest to an outcome that may affect the world state in a way that 

does not match the state produced by the predefined deterministic 

effects of its respective compound operator. Consequently, 

nondeterministic sub-quests can introduce inconsistencies in the 

plan of their parent quests depending on the way they end. Such 

inconsistencies will be automatically detected by the Quest 

Monitor, which will request a new plan to its respective Quest 

Planner, in order to correct inconsistencies and maintain the flow 

and coherence of the game. In this way, while performing a sub-

quest, the choices made by the player are propagated through the 

hierarchy of quests, effectively modifying the game’s narrative. 

Figure 5 illustrates how player actions and behaviors can 

modify the plot of quests, and how the combination of planning 

and monitoring can support nondeterministic quests and handle 

inconsistencies introduced by player’s interventions in the plan of 

quests. In this example, the player is in a quest to save the life of 

his family, after his wife was attacked and infected by zombies. 

Plan 1 describes the initial plan generated to solve the quest 

“Save family”, which consists of taking his wife back home, 

saving her from the Zombie disease, and protecting his house. The 

sub-quest “Save wife” consists of going to the city hospital, 

getting the antidote, going back home, and using the antidote to 

save the wife’s life. Suppose that when the player is trying to go 

back home with the antidote, he is attacked by a zombie and 

breaks the antidote bottle. In this case, the fact has(player, 

antidote)will be removed from the current state of the world. 

When this happens, the Quest Monitor of this quest will detect an 

inconsistency in the quest plan (i.e. the player cannot give the 

antidote to his wife if he does not have it). In order to solve this 

inconsistency, a new plan will be requested to the Quest Planner, 

which finds an alternative plan to achieve the same goal of the 

previous plan. 
 

 

Figure 5: Example of dynamic quest plans generated by the 

planner while the player is performing actions and progressing 

through the quest “Save family”. 

In Plan 2, after breaking the bottle of the first antidote, the 

player has to go to the market and ask an old man for another 

antidote, get the antidote, and go back home to save his wife. 

However, in this new sequence of events, the event where the old 

man gives an antidote to the player has a precondition that 

indicates it can only occur if the player has been behaving in a 

friendly manner – which was true when Plan 2 was generated. But 

suppose that before asking the old man for an antidote, the player 

starts to behave in a more hostile manner (e.g. by not helping 

other characters). This behavioral change will cause the player 

model to be updated and the score of Big Five factor that 

represents the agreeableness dimension will be decreased. When 

this happens, the Quest Monitor of this quest will detect this 
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inconsistency and trigger another replanning procedure. But now 

the previous quest goal will no longer be achievable, because 

there are more antidotes available in the game world. This will 

force the planner to try another authorial goal. 

In the resulting plan (Plan 3), after trying all the alternatives to 

get an antidote, the only choice the player has is to go home and 

see his avatar John kill his wife to save her from a dreadful 

destiny. This new sequence of events affects the resulting world 

state of the quest “Save wife”, which introduces an inconsistency in 

the plan of its parent quest. In this case, the quest “Protect house” 

cannot be executed anymore, because it requires the player’s wife 

to be alive. In order to correct this inconsistency, the Quest 

Monitor of the parent quest will request a new plan, where the 

quest “Protect House” ends up being replaced by the quest “Escape”. 

6 EVALUATION AND RESULTS 

Considering that our general approach for hierarchical quest 
generation was already evaluated in our previous work [17], we 
focus here on the evaluation of the player behavior model. For this 
evaluation, we performed two tests: (1) a precision test to check 
the accuracy of the proposed model; and (2) a performance test to 
evaluate the real-time performance of the Neural Network used to 
predict the player behavior. 

For the precision test, we used five datasets of different time 
windows to train and test our Neural Network. As described in 
section 4.3, these datasets were created with data collected from 
52 gameplay sessions (approximately 4 hours of gameplay) and 
include samples with all the gameplay features used as input to 
our model, as well as the scores of the Big Five factors used to 
characterize the player behavior (model’s output). In all the 
experiments, we used a 10-fold cross-validation strategy. 

Three statistical criteria were applied to evaluate the precision 
of our model: (1) the root-mean-square error (RMSE), which is 
the square root of the average squared distances between the 
actual score and the predicted score (prediction error); (2) the 
correlation coefficient (r), which measures the linear association 
between the actual score and the predicted score; and (3) the 
coefficient of determination (R2), which represents the proportion 
of the variance in the actual score that is predictable. The 
correlation coefficient (r) is represented in the interval of [-1, +1]. 
While an r of +1 indicates that the actual score and the predicted 
score are perfectly related, an r of -1 indicates that the two scores 
are totally unrelated. The coefficient of determination (R2  [0,1]) 
can be thought of as a percentage that indicates the extent to 
which the scores are predictable. A higher R2 is an indicator of 
better fitness for the observations. For the RMSE criteria, low 
values indicate low prediction errors. 

The results of the precision tests are shown in Figures 6, 7 and 
8, where each bar represents the average value (10-fold cross-
validation) for the evaluation criteria (r, R2, and RMSE) calculated 
for each Big Five factor obtained by Neural Networks trained with 
datasets of different time windows (5, 10, 15, 20 and 25 seconds). 
The results indicate that the best length for the time window is 10 
seconds (average r of 0.97, average R2 of 0.96, and average RMSE 
of 0.06). The second best length is 15 seconds (average r of 0.94, 
average R2 of 0.91, and average RMSE of 0.08). 

To evaluate the performance of our model, we performed the 
prediction of the player behavior during 5 gameplay sessions, 
wherein a total of 120 behavior predictions were performed (time 
window of 10 seconds). For each prediction, we computed the 
time necessary to calculate the input features and predict the Big 
Five factors using the Neural Network. The computer used to run 
the experiment was an Intel Core i7 2630QM, 2.0 GHZ CPU, 16 
GB of RAM using a single core to process the Neural Network. 
As a result, we got an average time of 4.2 milliseconds (standard 

deviation of 1.2 milliseconds), which indicates the applicability of 
the proposed method in highly interactive game environments 
without noticeable delays. 
 

 

Figure 6: Average correlation coefficient (r) for the Big Five factors 

(Openness (O), Conscientiousness (C), Extraversion (E), 

Agreeableness (A), and Neuroticism (N)) obtained for different time 

windows. 

 

Figure 7: Average coefficient of determination (R
2
) for the Big Five 

factors (Openness (O), Conscientiousness (C), Extraversion (E), 

Agreeableness (A), and Neuroticism (N)) obtained for different time 

windows. 

 

Figure 8: Average root-mean-square error (RMSE) for the Big Five 

factors (Openness (O), Conscientiousness (C), Extraversion (E), 

Agreeableness (A), and Neuroticism (N)) obtained for different time 

windows. 
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7 CONCLUDING REMARKS 

In this paper we present a new method for interactive storytelling 
in games based on player behavior modeling, hierarchical task 
decomposition, and nondeterministic planning. The proposed 
method is capable of generating dynamic and nondeterministic 
quests that are directly or indirectly affected by in-game player 
behavior.  

Our approach provides game designers with new ways of 
imagining and creating narratives for games using dynamic and 
nondeterministic quests. We believe that this form of interactive 
narratives can expand the boundaries of traditional games towards 
new forms of interactive storytelling, allowing players to create 
their own narrative experiences.  

As further research, we intend to conduct more tests in more 
complex game scenarios and genres. Also we plan to evaluate in 
depth a number of key aspects of the authoring process, especially 
authoring expressiveness, the complexity issues involved in the 
process, and the level of control the human author may have over 
the game’s narrative. Furthermore, we consider that more 
extensive user studies are needed to evaluate our method from the 
player’s perspective. Improvements to the behavioral model are 
also a paramount commitment in our research agenda. 
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