
State estimation and reinforcement learning for behavior selection in
stochastic multiagent systems

Matheus Vieira Portela1

Faculty of Technology
University of Brası́lia

Guilherme Novaes Ramos2

Department of Computer Science
University of Brası́lia

Abstract

Intelligent agents can act based on sensor measurements in order
to fulfill their goals. In dynamic systems, agents must adapt its be-
havior selection processes to reflect the changing system state since
behaviors that previously were considered the best choice may be-
come sub-optimal. Multiple agents that co-exist in the environment
is one example of such a dynamic system. The problem is even
greater when stochastic systems are considered, since the states the
agents are actually in are unknown. This work proposes a learn-
ing algorithm for stochastic multiagent systems, in which Bayesian
programming is used for state estimation and Q-learning provides
learning capabilities to the agents. An experimental setup using
electronic games is described to evaluate the effectiveness of this
approach.

Keywords: Artificial Intelligence, Multiagent System, Bayesian
Programming, Reinforcement Learning, Q-learning, Predator-
pursuit

Author’s Contact:

1 matheus.portela@aluno.unb.br
2 gnramos@unb.br

1 Introduction

Digital games provide a test bed for experimentation and study of
Artificial Intelligence (AI), and there has been a growing interest
in applying AI in several problems present in them [Lucas 2008].
One of the more interesting and difficult uses is controlling non-
playable characters (NPCs), whose behavior should be interesting,
believable, and adapt to the player [Lucas 2009]. Such games also
present a well defined environment in which complex situations can
be simulated for developing solutions for actual problems [Caldeira
et al. 2013].

Uncertainty is inherent to real-world applications, most aspects of
the environment are not directly measurable and measurements are
often noisy. Therefore, descriptions of a state of the environment re-
quire some stochastic approach to handle such uncertainties [Koller
and Friedman 2009]. Among current stochastic methods, by us-
ing Bayesian inference to reach reasonable conclusions in highly
noisy environments, Bayesian methods find successful applications
in both academic and industrial problems [Koller and Friedman
2009]. In this scenario, Bayesian programming (BP) provides a
generic approach for modeling and decision-taking based solely in
Bayesian inference [Lebeltel et al. 2004].

An agent is defined as an entity capable of acting and sensing
in an environment in order to maximize a performance measure-
ment [Weiss 1999]. In cooperative multiagent systems (coopera-
tive MAS), multiple agents coexist in the same environment and an
agent that improves its performance positively affects the perfor-
mance of other agents in the same environment. Therefore, multi-
ple agents can reach their goals concurrently [Russell and Norvig
2010].

When dealing with cooperative MAS, which are dynamic environ-
ments, an agent is expected to adapt its actions based on previous
experiences accumulated by interacting with the environment [Rus-
sell and Norvig 2010]. The development of learning machines is a
major challenge in contemporary AI research, difficult enough to
justify the creation of a whole academic area: machine learning
(ML). Within this are reinforcement learning (RL), where agents

must learn from interaction which actions yield higher numeric re-
wards, found extensive usage in MAS [Sutton and Barto 1998].

Typically, agents are controlled by periodically selecting the action
that will be executed [Martinson et al. 2001]. A control framework
using behaviors, pre-programmed sequences of actions, can also be
used so as agents can perform complex tasks. In some cases, using
behaviors can even accelerate learning processes [Martinson et al.
2001].

Usually, learning algorithms are validated by evaluating their per-
formance on problems well-known by the scientific community. In
cooperative MAS, the predator-pursuit problem is such a standard
test. Traditionally, an environment is set up with four predators and
one prey where the prey must avoid being captured and predators
must capture it [Stone and Veloso 2000]. Eletronic games provide
an excellent platform for simulating such conditions, and Pac-Man,
one of the most famous games in history [Kent 2001], has its game-
play defined exactly as this type of real-world problem.

This work approaches the problem of creating agents that can learn
to select the best behaviors in cooperative MAS where stochasticity
is present, such as eletronic games, robotics scenarios, and others.
This paper is organized as follows. Section 2 presents previous
work with points in common with the work here developed. Sec-
tion 3 summarizes the Bayesian programming theory, and Section 4
discusses reinforcement learning. Section 5 describes the algorithm
proposed in this paper using these. Finally, Section 6 explains the
validation experiments that will be conducted to verify the algo-
rithm’s performance.

2 Related Work

Probabilistic graphical models have been used as a generic frame-
work to allow automated reasoning in real-world applications. By
representing the system with models and considering the most
probable cases, computers can reach meaningful conclusions even
though not all variables are explicit. This framework is currently
being used in medical diagnosis, market analysis, natural language
processing, communication systems, among others [Koller and
Friedman 2009].

Bayesian programming is a generic framework that incorporates
uncertainty in the design of intelligent agents, besides providing
efficient computation by using conditional independence assump-
tions [Koike 2005]. Bayesian programming was used previously in
CAD systems, environment mapping, and driving assistance sys-
tems [Lebeltel et al. 2004].

Modern computing infrastructures are developed by distributing
processing across multiple machines, often in different geographic
locations, being connected by networks [Shoham and Leyton-
Brown 2008]. State-of-the-art multiagent system algorithms con-
sider computers to be individuals capable of sensing and acting au-
tonomously. This approach, extensively used in cloud computing,
creates robust and computationally powerful systems that are able
to adapt and process millions of requests per second [Weiss 1999].

Multiagent learning has been studied considering particularities for
several scenarios, containing or not elements such as competition,
communication, and heterogeneity [Stone and Veloso 2000]. Work
has been done to investigate differences in independent and coop-
erative learning [Tan 1993]. Further studies consider learning in
behavior-based systems [Matarić 2001] and usage of game-theory
for reinforcement learning in competitive MAS [Littman 1994].

In predator-pursuit research, two techniques are usually em-

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Short Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 287

ployed in order to develop intelligent agents: reinforcement learn-
ing [Stone and Veloso 2000] and evolutionary computing [Haynes
and Sen 1996][Jim and Giles 2000].

3 Bayesian Programming

Decision taking processes that take into account environmental un-
certainties have been studied by AI researchers in the last few
decades, initially with Bayesian networks and probabilistic graph-
ical models. Since then, Bayesian approaches are replacing tradi-
tional methods with more robust algorithms that allows robots to
deal with stochasticity in an efficient way [Thrun et al. 2005].

Bayesian programming is a framework to develop intelligent sys-
tems using Bayesian inference only. The mathematic formal-
ism developed for BP is generic enough to reinterpret, under its
light, classical probabilistic techniques such as Bayesian networks,
Bayesian filters, Markov hidden models, Kalman filter, and particle
filter [Lebeltel et al. 2004].

3.1 Bayesian Programming Foundations

The fundamental element in BP is the logical proposition: a hy-
pothesis a that can be either true or false. By applying logical
operators, such as conjunction, disjunction, and negation, one can
create new propositions based on existing ones. Probability val-
ues are attributed to propositions to deal with uncertainties. For
instance, P (a) = 0.9 means the proposition a has 90% chance of
being true [Koike 2005]. It is important to notice that all proposi-
tions depend on the designer’s previous knowledge of the system,
represented by π. Therefore, proposition probabilities are always
conditioned on π, denoted by P (a|π) [Lebeltel et al. 2004].

Another important concept in BP is discrete variables: a set X of
mutually exclusive and exhaustive propositions, i.e., xi∧xj is false
for i 6= j and at least one proposition in X is true. The probability
of X is defined as the conjunction probability for all of its proposi-
tions.

Bayesian inference rules enable the calculation of unknown proba-
bilities of some propositions and variables based on known proba-
bilities of other propositions or variables. The conjunction rule, pre-
sented in (1), calculates the probability of a conjunction of propo-
sitions. The normalization rule, as in (2), defines the relationship
between the probabilities of a proposition and its negation. Finally,
the marginalisation rule (see (3)) derives probabilities of discrete
variables based on conditional probabilities [Lebeltel et al. 2004].

P (x ∧ y|π) = P (x|π) · P (y|x ∧ π) = P (y|π) · P (x|y ∧ π) (1)

P (x|π) + P (¬x|π) = 1 (2)∑
X

P (X ∧ Y |π) = P (Y |π) (3)

3.2 Bayesian Program Elements

Using discrete variables, a Bayesian program is a mathematical pro-
cedure to specify a family of probability distributions in order to
control agents to execute complex tasks [Lebeltel et al. 2004]. Any
Bayesian program contains two parts: a description and a question.
The description is the joint probability distribution of all pertinent
variables {X1, X2, . . . , Xn} using previous knowledge (π) and ex-
perimental data (δ) such as presented in (4) [Lebeltel et al. 2004].

P (X1 ∧X2 ∧ . . . ∧Xn|δ ∧ π) (4)

Usually, it is difficult to calculate a description, requiring the sys-
tem designer to apply conditional independence hypotheses in order
to reduce its complexity [Koike 2005].

The second part of a Bayesian program, the question, is a prob-
ability distribution that is calculated using the description. First,
it is necessary to split the description variables into three sets: S,

representing the variables whose probabilities are calculated, K,
as the variables that are observable, and U , as the unknown vari-
ables. Then, the question is mathematically described by (5) [Koike
2005].

P (S|K ∧ δ ∧ π) =
∑
U P (S ∧K ∧ U |δ ∧ π)∑
U,S P (S ∧K ∧ U |δ ∧ π (5)

For instance, a probabilistic question that estimates the agent state
S based on its measurements Z and actions U is defined as
P (S|Z ∧ U ∧ π). Afterwards, this estimation can feed other parts
of the intelligent system, such as action selection.

4 Reinforcement Learning

In RL problems, an agent can sense its surroundings and act to mod-
ify the state of the environment [Sutton and Barto 1998]. However,
the agent does not know which action yields the best performance
in the current state. The only feedback available is a numeric value,
the reward r, given by the environment after the execution of an ac-
tion [Sutton and Barto 1998]. Therefore, the agent must learn, from
previous experiences, which actions maximize future rewards.

Based on this idea, a value function V (s) returns the amount of re-
ward an agent expects to receive starting from the current state and
is used for action selection. Nevertheless, this function is not di-
rectly observable and needs to be estimated on all received rewards
in the agent’s history [Sutton and Barto 1998].

The agent’s policy π maps environment states to actions and may
be implemented as either state-action tables, simple functions, or
complex search processes [Sutton and Barto 1998]. During policy
design, it is important to consider the trade-off between exploitation
and exploration. The former selects the best estimated action, im-
proving performance. The latter uses sub-optimal actions to collect
information that may lead the agent to receive higher rewards in the
long run [Sutton and Barto 1998].

4.1 Q-learning

Among available RL algorithms, Q-learning is an off-policy,
model-free reinforcement learning algorithm used to control agents
by iteratively estimating the values of state-action pairs based on the
last received reward [Sutton and Barto 1998]. (6) and (7) present
the correction equations, where γ is the discount factor, α is the
learning factor, and ε is the estimation error.

ε←
[
rt + γmax

a
Q(st, a)−Q(st−1, at−1)

]
(6)

Q(st−1, at−1)← Q(st−1, at−1) + αε (7)

However, (6) and (7) cannot be applied in continuous environ-
ments due to an infinite number of state-action pairs. In this situ-
ation, a better alternative is to apply function approximation meth-
ods to estimate Q(st, at). In linear approximation, features from
the current state are selected, composing a feature column-vector
~φ(s) = [φ1(s), φ2(s), . . . , φn(s)]

T , where 0 ≤ φi(s, b) ≤ 1 indi-
cates the probability of the i-th feature. A vector of parameters ~θ(s)
of same dimension is defined, where θi indicates the relevance of
the feature φi(s). Q(st, at) is then estimated by (8) [Irodova and
Sloan 2005].

Q(st, at) = ~θT ~φ(st) =

N∑
i=1

θiφi(st) (8)

Learning occurs by updating the parameter vector according to
some rule [Irodova and Sloan 2005]. Usually, gradient descent
is used [Irodova and Sloan 2005] as shown in (9) where δ =

rt+γmaxaQ(st, a)−Q(st−1, at−1) and∇~θQ(st, at) = ~φ(st).

~θ ← ~θ + αδ∇~θQ(st, at) (9)

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Short Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 288

5 Proposed Algorithm

This work presents an algorithm that to allows multiple agents to
learn to select behaviors in stochastic MAS. It assumes all agents
exist in a bi-dimensional environment where they can go either
North, South, East, West, or remain in the same position. More-
over, agents have sensors to measure distances and directions in
respect to each other.

The algorithm has three parts: environment state estimation, be-
havior selection, and action selection. Though N agents can exist
in the environment, each one will use the same algorithm to learn,
thus the following description assumes the index 1 to be a reference
to the learning agent itself.

5.1 State Estimation

An agent must track the current environment state S, consisting
of distances Sdi and directions Sθi to every other gent. Another
pertinent variable is the measurements variable Z, composed by
the measured distances Zdi and directions Zθi to every agent. Fi-
nally, the agent must know its action U . All these variables change
throughout time, and these transitions are denoted by the suffix
X0:t = X0 ∧X1 ∧ . . . ∧Xt.

The description of the Bayesian program, therefore, consists of:

P (S0:t ∧ Z0:t ∧ U0:t|π) (10)

By applying the conjunction rule, the description is re-stated:

P (S0:t ∧ Z0:t ∧ U0:t|π) =
P (St ∧ Zt ∧ U t|S0:t−1 ∧ Z0:t−1 ∧ U0:t−1 ∧ π)·

P (S0:t−1 ∧ Z0:t−1 ∧ U0:t−1|π) (11)

This is not trivially computed since it depends on the variables’
entire history. However, by considering the first-order Markov
assumption, the probability of a variable at time t becomes in-
dependent of its history if the variable’s value at time t − 1 is
known [Thrun et al. 2005]. Markov assumption can be applied to
(11), which is then simplified to:

P (S0:t ∧ Z0:t ∧ U0:t|π) =
P (St ∧ Zt ∧ U t|St−1 ∧ Zt−1 ∧ U t−1π)·

P (S0:t−1 ∧ Z0:t−1 ∧ U0:t−1|π) (12)

The description (12) can be re-written to (13) to highlight the fact
that estimating the description is an iterative process that depends
on two factors: an initial probability distributionP (S0∧Z0∧U0|π)
and a transition probability distribution P (Sj ∧ Zj ∧ U j |Sj−1 ∧
Zj−1 ∧ U j−1π).

P (S0:t ∧ Z0:t ∧ U0:t|π) =

P (S0∧Z0∧U0|π)·
t∏

j=1

P (Sj∧Zj∧U j |Sj−1∧Zj−1∧U j−1π)

(13)

The initial condition represents the system designer’s knowledge
on the state of the environment when the program starts executing.
It is common to initialize it as a uniform distribution, representing
that no knowledge is assumed [Koike 2005].

The transition distribution is simplified by assuming conditional in-
dependence. The state St depends only on the previous state St−1

and the last executed action U t−1. The measurement Zt, in turn,
depends only on the current state St. Finally, the action U t is as-
sumed to be independent from all variables since it is chosen by the

action selection algorithm.

P (St ∧ Zt ∧ U t|St−1 ∧ Zt−1 ∧ U t−1π) =

P (St|St−1 ∧ U t−1π) · P (Zt|Stπ)P (U t|π) (14)

The same conditional independence rationale is applied to the vari-
ables Sdi , Sθi , Zdi , and Zθi .

P (St|St−1 ∧ U t−1 ∧ π) = P (Stdi |S
t−1
di
∧ U t−1 ∧ π)·

P (Stθi |S
t−1
θi
∧ U t−1 ∧ π) (15)

P (Zt|St ∧ π) = P (Ztdi |S
t
di ∧ π) · P (Ztθi |S

t
θi ∧ π) (16)

Finally, it is necessary to define the form of the probability distribu-
tion functions P (Stdi |S

t−1
di
∧U t−1∧π), P (Stθi |S

t−1
θi
∧U t−1∧π),

P (Ztdi |S
t
di
∧ π), P (Ztθi |S

t
θi
∧ π), and P (U t|π).

For the bi-dimensional environment, the agent’s coordinates (x, y)
are estimated relative to St−1 after executing the action U t−1. Us-
ing the same procedure, it is possible to calculate the (xi, yi) rela-
tive to the i-th agent. Therefore, (17) is the expected distance to the
i-th agent, after executing U t−1, and (18) is the expected direction.

d =
√

(xi − x)2 + (yi − y)2 (17)

θ =
yi − y
xi − x

(18)

P (Stdi |S
t−1
di
∧ U t−1 ∧ π) is assumed to be a Gaussian distribu-

tion centered in d with an arbitrary standard deviation σ, which can
be learned from experimental data δ. By analogy, P (Stθi |S

t−1
θi
∧

U t−1 ∧ π) is centered around θ.

P (Stdi |S
t−1
di
∧ U t−1 ∧ π) = G(St−1

di
, U t−1), µ = d, σ (19)

P (Stθi |S
t−1
θi
∧ U t−1 ∧ π) = G(St−1

θi
∧ U t−1), µ = θ, σ (20)

Measurements, then, are Gaussian distributions around the esti-
mated state for distance and direction. The standard deviations σsd
and σsθ represent the quality of the distance and direction sensors.

P (Ztdi |S
t
di ∧ π) = G(S

t
di), µ = Stdi , σ = σsd (21)

P (Ztθi |S
t
θi ∧ π) = G(S

t
θi), µ = Stθi , σ = σsθ (22)

The action is defined by the action selection algorithm, independent
from the Bayesian program, and described by an uniform distribu-
tion.

P (U ti |π) = Uniform (23)

Finally, the Bayesian program’s description is finished and a prob-
abilistic question can be stated. To accomplish this, the agent needs
an estimation of the world’s current state given its sensors’ mea-
surements and it’s last action executed. Mathematically, (24) rep-
resents the state estimation and can be calculated using (13) and
Bayesian inference rules.

P (St|Zt ∧ U t−1 ∧ π) (24)

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Short Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 289

5.2 Behavior selection

Typically, Q-learning is used to estimate state-action values and
then select actions [Martinson et al. 2001]. In this work, however,
Q-learning is used for behavior selection, hence, it will estimate the
values of state-behavior pairs.

Since the agent exists in a bi-dimensional world, potentially a con-
tinuous environment, the function approximation, which uses a ε-
greedy for exploration, is applied as:

~θ ← ~θ + αδ∇~θQ(st, bt) (25)

δ = rt + γmax
a

Q(st, b)−Q(st−1, bt−1) (26)

∇~θQ(st, bt) = ~φ(st) (27)

5.3 Action selection

Behaviors allow different actions to be selected in the same state.
Therefore, it is required to define the rules that map state-behavior
pairs to actions. This could be done by a Bayesian program, or even
by sampling a probability distribution.

In this work, actions will be selected by procedural algorithms. For
instance, a behavior can be programmed to return the action that
moves the agent closer to another one according to the probability
of the other agent’s estimated state.

6 Experiments

The presented algorithm will be evaluated by computational sim-
ulations with multiagent electronic games, considering a predator-
pursuit situation. The Pac-Man game simulator1 provides the nec-
essary features for this: a bi-dimensional environment, multiple
agents with a clear task, well defined behaviors, and a direct re-
ward value through obtained points. In contrast to the game’s orig-
inal goal of moving the Pac-Man through the map, collecting food
and avoiding the ghosts, our experiments will evaluate if the pro-
posed algorithm can make the ghosts learn the behaviors that lead
to capturing the Pac-Man with minimal score, characterizing a co-
operative MAS.

The experiments are designed in three phases, the first to evaluate
if the algorithm works by analyzing if the Pac-man’s performance
improves as a result of learning the proper behaviors. The second
part is to evaluate it in an actual cooperative MAS by verifying if
the ghosts performance improves as a result of learning the proper
behaviors. Should the ghosts be capable of learning, the game score
is expected to be reduced compared to the scores generated by the
baseline agents initially implemented in the simulator. Finally, we
will compare a co-evolutionary approach, by having both Pac-Man
and ghosts learning at the same time.

7 Conclusion

Eletronic games are an excellent test bed for developing Artificial
Intelligence, and creating agents that learn is currently one of the
most exciting and challenging areas of study. The problem becomes
even harder when multiple learning agents co-exist in the same en-
vironment. In this case, the environment becomes stochastic since
the agent does not know the other agent’s actions in advance.

This work provides one step in the direction of developing an ap-
proach for multiple learning agents in bi-dimensional stochastic en-
vironments. A theoretical algorithm is proposed where Bayesian
programming is used to deal with uncertainty, so agents seem more
believable, and Q-learning with function approximation is used for
changing the agents behavior, so it can provide a bigger challenge
and adapt to new situations.

The proposed algorithm will be tested with the Pac-Man simulator
but, due to its general approach, could be applied in any problem
involving cooperative multiple agents in games or other fields.

1Available at: http://ai.berkeley.edu/multiagent.html

References

CALDEIRA, C., ARANHA, C., AND RAMOS, G. 2013. TORCS
Training Interface: An auxiliary API for developing TORCS
drivers. XII Simpósio Brasileiro de Jogos e Entretenimento Dig-
ital, 13.

HAYNES, T., AND SEN, S. 1996. Evolving behavioral strategies
in predators and prey. In Adaption and learning in multi-agent
systems. Springer, 113–126.

IRODOVA, M., AND SLOAN, R. H. 2005. Reinforcement learn-
ing and function approximation. In FLAIRS Conference, AAAI,
455–460.

JIM, K.-C., AND GILES, C. L. 2000. Talking helps: Evolving
communicating agents for the predator-prey pursuit problem. ar-
tificial life 6, 3, 237–254.

KENT, S. L. 2001. The ultimate history of video games: from Pong
to Pokémon and beyond: the story behind the craze that touched
our lives and changed the world, 1st ed ed. Prima Pub, Roseville,
Calif.

KOIKE, C. M. C. E. C. 2005. Bayesian approach to action selec-
tion and attention focusing: an application in autonomous robot
programming. PhD thesis, Institut National Polytechnique de
Grenoble.

KOLLER, D., AND FRIEDMAN, N. 2009. Probabilistic graphical
models: principles and techniques. MIT press.

LEBELTEL, O., BESSIÈRE, P., DIARD, J., AND MAZER, E. 2004.
Bayesian robot programming. Autonomous Robots 16, 1, 49–79.

LITTMAN, M. L. 1994. Markov games as a framework for multi-
agent reinforcement learning. In Proceedings of the eleventh in-
ternational conference on machine learning, vol. 157, 157–163.

LUCAS, S. M. 2008. Computational intelligence and games: Chal-
lenges and opportunities. International Journal of Automation
and Computing 5, 1, 45–57.

LUCAS, S. M. 2009. Computational intelligence and ai in games:
A new ieee transactions. Computational Intelligence and AI in
Games, IEEE Transactions on 1, 1 (March), 1–3.

MARTINSON, E., STOYTCHEV, A., AND ARKIN, R. C. 2001.
Robot behavioral selection using q-learning.

MATARIĆ, M. J. 2001. Learning in behavior-based multi-robot
systems: Policies, models, and other agents. Cognitive Systems
Research 2, 1, 81–93.

RUSSELL, S. J., AND NORVIG, P. 2010. Artificial intelligence: a
modern approach. Prentice Hall.

SHOHAM, Y., AND LEYTON-BROWN, K. 2008. Multiagent
systems: Algorithmic, game-theoretic, and logical foundations.
Cambridge University Press.

STONE, P., AND VELOSO, M. 2000. Multiagent systems: A survey
from a machine learning perspective. Autonomous Robots 8, 3,
345–383.

SUTTON, R. S., AND BARTO, A. G. 1998. Reinforcement learn-
ing: an introduction. MIT press Cambridge.

TAN, M. 1993. Multi-agent reinforcement learning: Independent
vs. cooperative agents. In Proceedings of the tenth international
conference on machine learning, 330–337.

THRUN, S., BURGARD, W., AND FOX, D. 2005. Probabilistic
robotics. MIT press.

WEISS, G. 1999. Multiagent systems: a modern approach to dis-
tributed artificial intelligence. MIT Press.

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Short Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 290

