
AAGEngine: Action Adventure Game Engine
Alex Caldas Peixoto

Universidade Tuiuti do Paraná
Faculdade de Ciências Exatas

Curitiba, Brasil

Heitor Murilo Gomes
Pontícia Universidade Católica do Paraná

Programa de Pós-Graduação em Informática
Curitiba, Brasil

Abstract
The game industry has grown a lot in the last years, as a
consequence there is a need to develop new games more ef-
ficiently. To cope with this problem algorithms commonly
used in the development of specific game genres were unified,
effectively creating the concept of Game Engines. This work
presents the development of new multiplatform 2D Game
Engine, namely AAGEngine, written in C++ with SFML
library. The main goal of AAGEngine is to provide the key
features necessary to develop a 2D action adventure game.
The set of features available on AAGEngine includes: char-
acter representation; user input control; pathfinding; colli-
sion detection; maps manipulation; sound and music han-
dling; and many more.

Keywords: Game Engine, 2D Game, Action Adventure
Games.

Author’s Contact:

alex.caldas@gmail.com
hmgomes@ppgia.pucpr.br

1 Introduction
As the game industry grows, new game development re-
sources are needed. This includes multimedia libraries, en-
gines, frameworks, and others. Each one of those has dif-
ferent objectives, but the main goal is shared among them,
which is: facilitate game development. This work presents
the AAGEngine1 (Action Adventure Game Engine), which
was developed with the goal to facilitate the development of
a 2D action adventure game. To achieve that goal, the AA-
GEngine provides two main packages. The first package is
denominated Core, and it provides a set of common features
necessary to develop a 2D game, such as sprite management,
pathfinding, collision detection, hardware access and others.
The second package, denominated Adventure, is specialized
for action adventure games, thus it provides features like
map management, item management, level transition man-
agement and others.

The AAGEngine was developed using C++ and uses the
SFML [Haller et al. 2013] library for hardware access. The
SFML library was chosen because it is available for several
operational systems and provides many functions, such as:
text rendering, audio manipulation, image handling, window
management, and others. The Core package provides generic
functionalities of a 2D game engine, and to control the ac-
cess to the hardware. It facilitates the creation of code that
uses sprites, pathfind, collision, and others. We designed the
Core package so that other packages, which provide specific
features, can be build on top of it. The Adventure package
provides common elements of a 2D action adventure game.
Some of these specific features are: object, item and map
management. There is an integration between the Adven-
ture package features, for example, it is possible to have an
item on an object, to represent items and objects on the map
and other integrations.

Most existing game engines do not include a specialized layer
for specific game genres. On one hand, this characteristic
of other game engines provides generality for the solution,

1Available at: https://github.com/AAGEngine/AAGEngine

since they impose little to no bounds to the development
team. On the other hand, it can slow down the development
of games with specific characteristics that could be other-
wise grouped together. Besides providing a general game
development layer (Core package), the AAGEngine also in-
cludes a specialization for action adventure games (Adveture
package).

The rest of this paper is organized as follows. Section 2
contains a brief description of related works. The Section
3 describes the AAGEngine structure and its modules. Fi-
nally, Section 4 concludes the paper.

2 Related Works
Currently, there are many engines, frameworks and graphic
libraries available for game developers. Each one of them
provide access to functions at different abstraction levels. To
develop the AAGEngine a research was made on libraries,
engines and frameworks. The analysis had the objective
to evaluate the existing features as the implementation of
such. For example, OpenGL allow primitive graphics draw-
ing, while SFML, which uses OpenGL and other libraries,
provides access to higher level functions that allow the de-
veloper to handle audio, network, sprite manipulation and
others. The Angel2D, which is a game engine, provides some
features specific for game development, such as pathfind, ac-
tors and physics.

Haaf’s Game Engine (HGE). HGE [HGE 2015] was de-
veloped using DirectX 8R© [Parberry 2001] and is a fairly old
engine, but the HGE has an active community and provides
several features for game development. Its first advantage
is to be optimized for older hardware. The HGE main fea-
tures include: GUI with menu elements; Particle system;
Resource and multimedia file management; and access to
input devices.

Angel 2D. The Angel 2D [ANG 2015] Framework is con-
stantly being updated2 and contain a vast number of fea-
tures, including: a Lua interpreter; Physic algorithms;
Pathfinding; and others.

Simple DirectMedia Layer (SDL). SDL [Pendleton
2003] is a library that provides access to hardware func-
tions. It is widely used to develop 2D games, but not limited
to that. Its main features include: Support to OpenGLR©

shaders; Textures managements; Text rendering; among oth-
ers.

Simple Fast Multimedia Library (SFML). AAGEngine
uses SFML library to access hardware functions, such as
input control. It is possible to use only SFML to create an
entire game, but many specific features must be implemented
as SFML is a general purpose library.

There are many other 2D and 3D game engines, such as
Unity [Felicia 2013], Cocos2D [Itterheim and Lw 2011],
libGDX [Oehlke 2013], etc. The Adventure package, on the
AAGEngine, is a layer that aids on the development of a 2D
action adventure game and similar genres, such as Role Play-
ing Games (RPG) and Real Time Strategy (RTS) games. Ef-
fectively, the developer does not need to implement elements,
such as: item subsystem; pathfinding; controllers for menus;
and others subsystems implemented on AAGEngine. Table
1 presents a summarized comparison of the engines/libraries

2The last release on the GitHubR© is from 2014

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Short Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 204



analysed. Since providing an specialized engine for 2D ac-
tion adventure game development is the main contribution
of our proposal, the comparison is focused on aspects that
are relevant to this genre.

AAGEngine HGE Angel2D SDLSFML
GUI X X X X X
Sound X X X X X
Sprite X X X X X
Collision X X X X
Pathfind X X
Scripting X
Map X X
Object X
Item X
Character X X
Physics X
Debbuging X X
Particle X X X

Table 1: Comparative table

3 Engine Implementation
This section focus on the description of the AAGEngine
inner workings and overall organization. AAGEngine was
elaborated aiming at easing the development of 2D action
adventure games. To achieve this objective, several features
that are usually necessary for this type of game were imple-
mented, for example, item management, collision, map man-
agement, and many others. AAGEngine was developed us-
ing C++ and the SFML library for hardware access. SFML
use several other libraries for specific tasks, the more rele-
vant libraries for the project are listed below:

• Freetype3: Manages true type fonts (TTF), allowing to
render texts on the screen;

• Libjpeg4: Allows the SFML to manage JPEG images;

• Stb_image5: Allows loading JPEG, PNG, BMP and
other image formats as textures;

• OpenAL Soft6: Enables sound files loading. Concretely,
this allow the developer to position a sound on a 3D
environment;

• Libsndfile7: Allows loading WAV, OGG and FLAC
sound files format;

The AAGEngine was tested on WindowsR© and Mac OS XR©.
Although, theoretically, it is possible to compile AAGEngine
on any environment given that SFML and a C++11 are
supported. The AAGEngine features were organized into
modules, which represents one or more classes. The modules
are grouped into two packages, Adventure and Core.

The modules of the Core package were developed with the
goal of providing generic implementations to develop a 2D
action adventure game. The Core package do not depend
upon the Adventure package, thus it can be used indepen-
dently. The Adventure package uses the Core package to
create specialized features that are relevant to a 2D action
adventure game.

3http://Figura.freetype.org/
4http://Figura.ijg.org/
5nothings.org/stb_image.c
6http://kcat.strangesoft.net/openal.html
7https://github.com/erikd/libsndfile

3.1 Core Package

The Core package is responsible for abstracting some of the
hardware access to the Adventure package, the only features
that access the hardware directly from the Adventure pack-
age is the Sound Effect and the Background Music modules.
This allow to substitute most of hardware calls from AA-
GEngine by only modifying the Core package. For example,
a developer can replace the rendering calls from SFML to
OpenGL and it would not be necessary to modify the Ad-
venture package. It is possible to use the package Core as a
foundation to develop a new Adventure package for a differ-
ent genre of a 2D game. For example, it is possible to use the
Image module on the Core package to implement the par-
ticle effects of a space shooter game and another features.
The modules on the Core package are separated as:

Input Control. The module Input Control provides access
to events triggered by the keyboard, mouse and joystick.

Game. The Game module was developed to provide a tem-
plate or "model" from where it is possible to start the de-
velopment of a game. This module is implemented as an
abstract class, which provides methods responsible for pro-
cessing the inputs and actions (process), image rendering
(render) and a main window object. It is possible to com-
pletely ignore the game class while using the AAGEngine.
The developer has the freedom to use every module of the
Core and Adventure package based on a custom implemen-
tation of a game class.

Image. The Image module is responsible, through the
SFML library, for loading images to memory, and allowing
the developer to manipulate it. Manipulations include: ro-
tation, scaling or changing the position of the image on the
screen. It is possible to render the entire image or a fraction
of it. The latter is used to render Sprites and Tiles. The file
formats supported are: PNG, JPG and BMP.

Collision. The Collision module provides two algorithms
to check collision, Axis Aligned Bounding Box (AABB) and
Oriented Bounding Box (OBB). The collision area is rep-
resented by a bounding box structure, which specifies the
object position, size and rotation angle. The AABB checks
the collision between two collision areas evaluating the po-
sition and the size of the two objects. The OBB works on
a similar way, but it also evaluates the rotation angle of the
two objects.

Text Control. On action adventure games text handling
is important, usually on this type of game, there are several
conversations. The Text Control module allows to manage
texts and load fonts on TTF format, using the SFML. The
module allows to render the text anywhere, on the screen,
and to separate the text into smaller portions, this way is
possible to correctly render the text within the window res-
olution limitations.

Pathfind. The Pathfind module have the goal to provides
a variation of the A* algorithm, known as the Clearance
Pathfind[Harabor and Botea 2008]. The module receives, as
an input data: an adjacency matrix; the size of the object;
the initial; and the final point of the path. The module cre-
ates an internal graph and each node of the graph represents
an element on the matrix. Also, each node contains the in-
formation of how many adjacent nodes are empty (Clearance
level), allowing elements of different sizes to travel through
the graph. The module output is a list containing each node
that needs to be followed.

Log Manager. Provides to the developer a module for log
management. This module allows the user to associate a
type of message to an output. The developer can use this
module, for example, to output error messages to a file and
on screen.

Text Table. The Text Table module was developed with
the goal to store all the texts of the game. The texts are

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Short Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 205



stored in tuples (Key/Value). It is possible to load the texts
from a file, those need to have the text stored on the format
"Key: text", the "EOK" (End of key) defines that the text of
that specific key ended. This module do not provides I18N8

features, but is possible to archive that using a prefix on the
key, such as Name_US.

3.2 Adventure Package

The Adventure package is responsible for specific features
needed for an action adventure game. Most engines imple-
ments only generic algorithms in order to be as general as
possible. The AAGEngine is more specific, since it imple-
ments features such as Map Management, Items and other
features that are expected on an action adventure game.

Level Manager. The Level Manager module is responsible
for handling the active level on the game, and the transition
between them. On most games, Levels represent scenery
with limited size, on memory and on screen. The main goal
of the Level Manager is to make the transition between Lev-
els easier and intuitive for the developer. The Level Man-
ager, like the Game module, is an abstract class with two
main methods: process and render. To process and render
the active Level, the Level Manager uses the process method,
which invokes the process method implemented on the Level.
This process happens, also, on the render method. The Level
Manager contains a Level object, which is the active level.
When a Level change is requested to the Level Manager, it
halts the execution of the process and render methods of
the currently active Level, and removes it from memory. Af-
ter that the new Level is allocated and the processing and
rendering methods are resumed.

Level. The Level module defines the implementation of
one type of scenery. The Level is an abstract class which
contains two abstract methods, process and render, those are
invoked by the Level Manager. One Level is responsible for
the management of a scenery that contains similar execution
logic. This allows the same Level implementation to be used
to load many Levels with similar logic. For example, a Level
with a house, without battle system, is able to load several
different maps that, as well as the house, do not need the
implementation of a battle system. The Level Manager is
responsible for instantiating all Levels as a Level object.

Warp. The Warp module defines locations, inside the map,
where it is possible to change to another Level. The Warp
module contains the size of the Warp, a file that should
be loaded when the player collides with the Warp, and the
destination coordinate of the player in the new map. The
Warp module cannot change the Level by itself, thus the
developer needs to detect the collision between the Player
and the Warp and use the Level Manager to complete the
operation.

Sprite. The Sprite module is a specialization of the Im-
age module. It was developed with the intent of mapping a
sprite-sheet to an in-memory matrix. This process facilitate
the access of individual sprites in the sprite-sheet. The im-
age mapping to a matrix format is created when the Sprite
module is instantiated. The module requires the image path,
width and height of each Sprite. Every sprite on an image
must have the same size.

Character. The Character module defines the characters
that are not controlled by the player, i.e., Non-Player Char-
acter (NPC). The NPC can be anything that is “alive” inside
the game, like a merchant or a dog. The module contains
a collision area, item list, and an attribute list. In order
to represent the Character on the screen a Sprite object is
used. The character provides two different methods, with
different goals, to animate a character. The first is an au-
tomatic movement, which will make the character follows a
path passed as a parameter. The attributes of the automatic

8Internationalization

movement method are: number of pixels that the Char-
acter needs to move per second (addPixelsPerSecond) and
the nodes that represents the path the Character will move.
This path can be generated using the Pathfind module. The
Character moves through the path at the speed defined by
the addPixelsPerSecond parameter until it reaches the end
of the path. The second option is invoke the method “call”.
On each execution of the method the module increases the
counter on the variable callsOnFrame, when it reaches the
value defined on changeOnCall the module will change the
frame of the Sprite, progressing to the next frame. The sec-
ond option is useful to control the movement inside a main
loop, where the speed is usually 30 or 60 FPS (Frames per
second).

Player. The Player module is a specialization of the Char-
acter module and represents the main character. As usual,
the main character is controlled by the player, thus a method
was created to associate keyboard and joystick inputs to
the player’s movement. Any other functionality, besides the
movement, must be implemented by the developer.

Map Manager. The Map Manager module manages all the
components inside the map on the game, including the 2D
camera. The module is compound by several subsystems,
which are classes responsible for each one of the elements on
the map. Concretely, the map subsystems are: Tile Man-
ager; Tile Layer; Collision Map; Object Map; Item Map;
Sound Map; and Warp Map. These subsystems must be in-
stantiated by the developer separately and, as a parameter,
passed by reference to the Map Manager.

Object. The Object module represents the inanimate el-
ements inside the game that are possible to interact with,
for example, doors and chests. An Object is associated to
a Sprite and a list of Items. The Object contains a bound-
ing box to detect interactions between the Player and the
Objects on the scenery. The module provides an attribute
list, a dictionary, that can be used the way the developer
wants, allowing actions such as damaging the player, when
it opens the chest, associate "life points" to an object, as
another behaviours. The usage of those attributes and the
behaviour are responsibility of the developer as the correct
visual representations for those interactions. It is also possi-
ble to associate an Item to an Object, allowing to the Player
to acquire an Item when interacting with the Object. The
Objects are managed by the Object Manager, allowing to
add and remove an Object, manage the properties of an ex-
isting Object and get the ID of the Item associated to the
Object. The module allow the Object to be loaded from a
file.

Item. Action adventure games have their logic intrinsically
associated to the Items scattered through the map. Items
may allow the Player to advance the game or simply change
its attributes. The visual representation of an Item is possi-
ble through the Sprite module. A dictionary is used to map
attributes of individual items. Items are managed by a class
named Item Manager, which allows additions, removals and
selective changes to properties of an existing Item. The col-
lision behavior whenever an Item and a Character collides
are specified by the developer. Finally, it is possible to load
items from a file.

Menu. Games exhibit different menus, but two main types
are usually observed, the configuration and the game Menu.
The configuration Menu provides a way to change the config-
uration parameters, e.g., video preferences. The game menu
permits the player to access items, skills, spells, etc. To fa-
cilitate the creation of menus, the Menu module provides
individual controls that can be added to the screen and ren-
dered on the same way as a Sprite. The actions associated
with each of the elements respond to events, executing meth-
ods specified by the developer through function pointers or
lambda functions.

Sound Effect. The Sound Effect module allows to create a

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Short Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 206



better ambience on the game, accentuating specific elements
on the scenery. The Sound Effect utilizes the Sound class of
the SFML, allowing to load uncompressed WAV files. The
module allows to control the general volume as the volume
on each channel of the sound, it is also possible to pause
and restore the reproduction of the audio. Also, it is pos-
sible to specify the 2D position of the audio. The Sound
Effect Manager is responsible for controlling Sound Effect
instances loaded on memory. This management includes:
loading sound effects files; creating new instances of sound
effects; and adding/removing sound effects.

Background Music. The Background Music is responsi-
ble for the creation of a generic ambience. It is possible to
have, as an example, a dark song when entering a cave or
a happy song when entering a store. The main difference
between the Background Music and the Sound Effect is that
only one Background Music is allowed at a time. This is be-
cause the decompression process of an OGG or MP3 file need
a more intense usage of the hardware. Also, this modules
is responsible for transitioning between background music
with transition effects between them, such as Fade-Out and
Cross-fade. Other features of this module includes: paus-
ing/playing songs; checking song’s position; reporting song’s
total time; and controlling the volume.

Dialog. The Dialog module manages the text that repre-
sents chats between two Characters. The management of
the text is done using the Text Control module. Dialogs are
stored on a text vector, allowing to linkages between them.
The exhibition of texts respects the order in the vector. This
module also allows to create Dialogs with options, which can
trigger actions that can be executed using a callback method.

4 Conclusion

In this work, we have presented a game engine with a spe-
cialized layer for action adventure games. Because of the
specialized layer, the AAGEngine helps to develop an 2D
action adventure game, abstracting the common features of
this genre. The AAGEngine have two packages, Core and
Adventure. The Core package is responsible for abstracting
the hardware access, to provide generic features for game
development and to be the basis of the Adventure package.
The Adventure package provides features specific for action
adventure games and almost every hardware access of the
Adventure package is done using the Core package, only the
sound access is done directly. Because of the AAGEngine
architecture, related to the hardware access, is more sim-
ple to migrate from one technology to another. The reason
for that is because most of the hardware calls are located
on the Core package. Most of the modules inside the AA-
GEngine can be used separately. This provides freedom to
the developer on the game development process, because it
do not dictates where those modules need to be used. The
modules on the Engine package can be used to extend the
AAGEngine’s features, or it can be used as the basis for
other genres (e.g. RPG).

As future works we are considering implementing pixel-
perfect collision, because the sprite collision is determined
by its size even if there are transparent pixels. The pixel-
perfect collision solves that problem, analysing if the collided
area has pixel that are transparent or not. To be able to
change the behaviour of some elements on the game without
recompiling it, the engine should be able to interpret com-
mands from a script at runtime. Some elements of a game
can be stored inside serialized files, e.g. maps, items, charac-
ters, etc. A level editor provides a way to manage those files
visually, thus it would make the process of creating levels,
positioning items, objects and others easier. Finally, we are
considering porting AAGEngine to iOS and Android plat-
forms.

References
2015. Angel 2d. http://angel2d.com, July.

Ericson, C. 2005. Real Time: Collision Detection, 1 ed.
Morgan Kaufmann Publishers.

Felicia, P. 2013. Getting Started with Unity. Packt Pub-
lishing.

Gregory, J. 2009. Game Engine Architecture. Wellesley,
Massachusetts: A K PETERS.

Haller, J., Hansson, H. V., and Moreira, A. 2013.
SFML Game Development. Packt Publishing.

Harabor, D., and Botea, A. 2008. Hierarchical path
planning for multi-size agents in heterogeneous environ-
ments. IEEE .

2015. Haaf’s game engine. http://hge.relishgames.com,
July.

Itterheim, S., and Lw, A. 2011. Learn Cocos2D Game
Development with iOS 5, 1st ed. Apress, Berkely, CA,
USA.

Kelly, C. 2012. Programming 2D Games. Wellesley, Mas-
sachusetts: A K Peters/CRC Press.

Oehlke, A. 2013. Learning Libgdx Game Development.
Packt Publishing.

Parberry, I. 2001. Introduction to Computer Game Pro-
gramming with Direct X 8.0 with Cdrom. Wordware Pub-
lishing Inc., Plano, TX, USA.

Pendleton, B. 2003. Game programming with the simple
directmedia layer. Linux journal, 110, 42–45.

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Short Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 207




