
Script System Architecture for Quick Game Production

Rodrigo de Godoy Domingues, Alexandre Cardoso
Universidade Federal de Uberlândia

FEELT, FACOM, GRVA
Uberlândia, Brasil

rodrigo@facom.ufu.br, alexandre@ufu.br

Bruno Barbieri Gnecco
Corollarium Tecnologia

São Paulo, Brasil
brunobg@corollarium.com

Abstract

In this paper we propose the architecture of a software layer
for Game Engines, either for simulation or entertainment
applications, with the goal to define a configurable module that
allow quick production and maintenance of scripts through
modular code developed using a script language. Through a fixed
manager, responsible for the administration of events and the
structure of interaction, the script code is responsible for the
definition of checkpoints, for the control of some behavioral
aspects of the application models, for the definition and
management of the contextual logic of the system and for the
definition and internal logic of the script, generating and
processing events. With this we were able to quickly define and
produce script code and a detailed evaluation method of the users
performance.

Keywords: Game Engines, Script Systems, Configurable
System, Serious Games, Simulation, Performance Evaluation

I. INTRODUCTION

Simulations are now standard in many applications. They
are less costly, less dangerous and permit users to be tested in
controlled scenarios. Computers have aided immensely in this
task [1].

As [2] demonstrated, game engines such as Unity [3] are
now sophisticated tools, very useful for developing simulators.
They provide most of the basic needs: high level manipulation
of graphic elements, sophisticated rendering pipelines with
shadows and effects such as as particles, physics and more.

When designing sophisticated simulators, however, one
still has to deal with the states and logic of the objects being
simulated, checkpoints, messages to the user and other aspects
which are better handled by separate system that does not
depend on the renderization and the low level events, such as
input from user devices and others.

We propose in this paper an architecture based on a
software layer that separates completely the logic for
simulation. It only receives high-end events and handles the
internal state of the simulation. With this we have a fixed
manager kernel for any projects and we can develop new
simulators much more quickly, easily and with fewer errors.

Since development is simpler and based on a script
language and a basic data structure, it is also faster, demands
less of the developers and easier to debug [4]. AI is notoriously
difficult, for example, though it is completely detached from
the rendering pipeline [5].

As an added bonus, since we establish a common structure
and a series of checkpoints, we can easily evaluate user
sessions, checking with the same code for any application
whether they skipped steps, made errors or spent too much
time in certain tasks.

II. ARCHITECTURE

Our architecture is based on two parts:

• the core, which handles the lower level events from the
application, such as input from keyboard and other
devices, the GUI, management of objects and states,
network, loading scenes etc.

• the script system, which is based on a JSON
description [6] and can run Python [7] code. This can
run code outside the main Unity3D loop or its supported
languages, and can be changed without recompilation of
the main application. This makes development much
easier and faster. Also, patches and upgrades are quite
small in size, since the core is not changed, only a few
small scripts. All the application logic is defined by
these scripts.

Since Unity3D uses .NET, we can use any CLI language.
Unity3D already supports 3 languages, C#, Boo and
UnityScript. Unfortunately these languages are not completely
dynamic within Unity3D; they have to be coupled to a
GameObject. This couples the behaviour to the actual game
objects, which is exactly what we wanted to avoid. Our script
system is similar to the HTML/JavaScript model, in which the
objects (HTML) and the code (JS) are independent, and linked
through events or object searches at runtime, and not at
compile time.

Therefore we needed another solution. We chose Python,
through the IronPython implementation, due to its power,
maturity and set of libraries. We can call Unity directly from
Python wherever necessary, avoiding wrappers or other
mechanisms if we need to manipulate objects or perform any
changes in the scene. We can even generate code procedurally
at runtime and execute it.

The script system is composed of the following parts:

SBC – Proceedings of SBGames 2013 Workshop on Virtual, Augmented Reality and Games – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013 50

• Events: whenever a registered event happens in the
scene, it is sent through the script system to capture a
list containing which elements respond to it. Then, each
element is processed regarding the event occurred;

• Checkpoints: Checkpoints are named events that are
stored for evaluation purposes. They can be sent to a
server for processing and parametrize the evaluation
system to generate the reports and

• Rules: This mechanism is responsible for storing and
controlling the state flow of the application, according
to the activities or interactions performed by the user.
This component is responsible to validate a state
transition, if it happens, according to an activity and is
also responsible to manipulate the state of the game,
ensuring the final state of the transition is valid and
correctly setup.

These three components allow us to know exactly what
happened and where (checkpoints), respond to game events ("if
you click the green button, the machine is started") and keep
track of the complete flow, following a script, which is a basic
requirement for evaluation of how the user performed in the
simulation.

III. RESULTS

We present on the sequence some screenshots, of an
application and a console system using the script system to
manipulate the scene and the game states, a sample code
representing the system state configuration, in python and a
sample code to the rules of state configuration and events.

The test system is a room containing 3 switches and a lever
to be manipulated and start a cog. Once the three switches are
on a determined position, the lever is released and the cog can
be started.

In the fig. 1 the camera is positioned near the middle
switch, which was identified as “chave2” and a checkpoint
added so it can generate events. On click the checkpoint
triggers the event with the same name and the process begins.

It is also possible to view the “in-game” console, which can
be used to manually trigger events, such as the one the
checkpoints triggers, meaning we can test the features of the
game at any time.

The console is printing the state of the system previously to
the switch switching.

Fig. 1. Python console and the initial state. In green is a checkpoint
activated by proximity.

In the fig. 2 the situation is similar to the one presented by
fig. 1, however the switch was switched and then the state of
the system printed again. Observe the value for chave2.

Fig. 2. Console and printing a state after an event on the lever

Fig. 3 is an excerpt of the state and event configuration. It
uses the JSON notation so it is easy to parse and process. Note
that the first configurations indicates the name of the system,
the name of the script that represents or implements the state
and the modules that python shall require.

Following the initial setup comes the states of the system.
Each state has its rules for transitions and evaluation. A state
can be simple, leading to another state, or scripted, which
means it executes a code that will consult the overall state of
the system, through the indicated script, and decide to which
state transit.

SBC – Proceedings of SBGames 2013 Workshop on Virtual, Augmented Reality and Games – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013 51

Fig. 4 indicates the ending of the states configuration and
the two final configurations, the events and the response of
elements regarding an event.

Fig 5. presents the script that represents the overall state of
the system. It is a python script with functions to manipulate
the values itself as well as to manipulate Unity objects,
triggering animations etc.

IV. CONCLUSION

We have shown our architecture for a simulator that
decouples game rendering and devices to the actual game logic,
event treatment and user evaluation. Such a system makes
development of game logic quite easy, particularly for serious
games and simulators.

We can change rules without recompiling the code -- in
fact, we can reload the scripts in real time, during execution, so
it is quite easy and fast to test changes and fix bugs. Debugging
is also very easy: access to Unity allows use of its features
(such as the console or showing data on the screen).

These are yet preliminary results and we will extend this
architecture further.

V. BIBLIOGRAPHY

[1] GNECCO, B. B, DOMINGUES, R. G., BRASIL, G. J. C., DIAS, D.
R. C., TREVELIN, Luis Carlos Ferramentas para desenvolvimento de
jogos para ambientes livres. Tendências e Técnicas em Realidade
Virtual e Aumentada. Cuiabá, p.104 - 120, 2013.

[2] Domingues, R. G., Battaiola, A. L.: Projeto de um framework para
auxilio no desenvolvimento de aplicações com gráficos 3D e animação,
São Carlos, 2003

[3] Unity3d Game Engine - www.unity3d.com, último acesso em
08/07/2013

[4] Varanese, A. & Lamothe, A.: Game Scripting Mastery, Premier
Press, Dez. 2003

[5] Bourg, D. M., Seeman, G.: AI for Game Developers, O`Reilly Media
Inc, Jul. 2004

[6] www.json.org, último acesso em 26/07/2013

[7] Linguagem Python - www.python.org, último acesso em 08/07/2013

Fig. 3. The initial setup in the rules file. The configuration and the
states definition.

Fig. 4. Final part of the rule file. The ending of the states configuration
and the event and event on element configuration

Fig. 5. The systems overall state and scene manipulation functions

SBC – Proceedings of SBGames 2013 Workshop on Virtual, Augmented Reality and Games – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013 52

