
A Generic Framework for Procedural Generation of

Gameplay Sessions

Leonardo V. Carvalho, Átila V. M. Moreira, Vicente V. Filho, Marco Túlio C. F. Albuquerque, Geber L. Ramalho

Center of Informatics (CIn)

Federal University of Pernambuco

Recife-PE, Brazil

{lvc, avmm, vvf, mtcfa, glr}@cin.ufpe.br

Abstract — this paper studies the application of procedural

content generation techniques in the development of endless

games. A chunk-based approach is used along with a 4-step level

generation process that takes in consideration the need for an

infinite chunk-placement cycle. Chunks are defined as playable

game segments with fixed width and height, on which gameplay

elements such as coins are placed. The proposed process consists

of the definition of a difficulty curve, chunk generation, chunk

evaluation, and insertion of the chunks in real time during the

gameplay session. For the purposes of this work, we focus on the

chunk evaluation step, which employs neural networks that are

capable of evaluating each chunk in terms of difficulty. The

parameters used by these networks include both non-controllable

features - i.e. amount of coins collected by the player - and

controllable features - i.e. amount of obstacles present in the

chunk. The system was employed on the game Boney the Runner

during its development, and as of the time of writing the game is

available for download on the Apple and Google app stores. To

validate the work, neural networks based on player data were

built, and the performance of such networks was compared to

that of a human designer. The performance of the neural

networks varied according to the parameters used, but the best

one was capable of correctly classifying 90% of the chunks from

the pool, while a human designer was capable of correctly

classifying 52% of said chunks.

Keywords— procedural generation; endless game; neural

network; difficulty modelling

I. INTRODUCTION

Procedural content generation, or PCG, consists of the use
of algorithms in the process of creating content, like game
levels, maps or music. Increasingly more game development
companies have been employing these techniques on their
processes, often motivated by the elevated monetary costs of
creating the content manually and by the variety of content that
can be generated procedurally [1].

The use of PCG techniques in games dates back to the
1980s, with games like Rogue [2], a graphical role-playing
game on which a virtually infinite amount of levels is
generated on demand. Even though the generated levels do not
present a high complexity when compared with what can be
created manually, the game has shown that it is possible to
greatly increase the replay factor by using non-supervised level
generation [3].

Currently in the game industry, PCG is being employed
both in the generation of content on demand - with the goal of
increasing a game’s replay value or adapting the game to the
player – and during the game’s production stage – in order to
make the content generation process more efficient [4]. Overall
there is no restriction regarding the kind of content that can be
generated procedurally – textures, sounds, maps, cities, levels
and even whole systems can be generated algorithmically with
various levels of complexity [5].

Some of the games that illustrate well the potential of PCG
include the games .kkrieger [6] and Zettai Hero Project [7].
The former is a 3D first person shooter on which all game
assets are generated procedurally. That includes textures,
tridimensional models, sound effects and levels; however, no
gameplay aspect is affected by the procedural generation. The
latter is a rogue-like game on which PCG is used in order to
increase the game’s replay factor through the generation of
levels, enemies and equipment. Unlike .kkrieger, on Zettai
Hero Project no PCG techniques are used in the creation of
artifacts such as textures and sounds.

Given the potential and widespread use of PCG on games,
this paper has the purpose of analyzing the application of PCG
techniques on a game genre that has become prominent with
the popularization of mobile platforms – endless running. This
genre consists of an infinite race on which the player’s goal is
to obtain a high score while avoiding obstacles present along
the way. One of the features that influence the score is the
maximum distance that the player can reach, but other elements
can also influence, such as collectible items. Since games of
this genre are very dependent of a high replay value, it’s
important to present levels with a high variety, which is
something that a can be done through the use of PCG.

The endless running genre is relatively new, with much of
its recent popularity attributed to mobile games such as Jetpack
Joyride, which can be seen on Fig 1. This game had over 170
million downloads across various online stores and received
various rewards from the specialized press [18] as of writing.
On this game, the player must survive for as long as possible
while avoiding traps and collecting items along the way, and
the final distance reached is used as the score.

Because the genre is still relatively new, there is still a
scarcity of materials that focus on the generation of gameplay

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 203

sessions for this kind of game, given that most solutions focus
on generating levels with clear initial and final points [3] [9]
[11], instead of an endless track.

Fig. 1. A gameplay session of Jetpack Joyride.

As it will be shown on the next section, many of the
existing level generation solutions present the possibility of
generating a virtually infinite amount of levels for games [8]
[10], but said levels commonly have a start and end point. On
an endless running game, there isn’t the concept of a level with
a pre-determined end, since the gameplay sessions consist of a
continuous challenge which is generated on demand and whose
end depends on the player’s skills. Also, to the best of the
authors’ knowledge, there still aren’t any relevant surveys that
focus on endless games.

Because of that, it’s necessary to define not only how to
generate playable chunks, which are essentially fixed-size
game segments on which gameplay elements are placed, but
also how those chunks are positioned along the track on two
moments: during the initial player progression and during an
endless cycle. This paper does not try to tackle all these
questions simultaneously; it focuses on the evaluation and
positioning of playable chunks, while the remaining aspects
utilize heuristics defined by game designers.

II. RELATED WORK

As it will be seen on this section, most of the works that
were analyzed on our studies focus on the generation of finite
levels or level networks. In [3], the concept of rhythm is used
on the level generation process. Basic components like
platforms or spikes are combined according to a rhythm
pattern, and the result of this combination is an entity
denominated “pattern”. Said patterns are then encapsulated on
“cells”, which can be used to create both linear and non-linear
levels. The levels are determined by “cell structures”, which
allow for the creation of levels with branching paths, hubs and
many other commonly used structures.

The work presented by [8] is similar to the previous one,
but it presents some substantial changes on the way that the
level is generated: instead of creating chunks directly from
rhythm patterns, an intermediary structure is created from said
patterns. From this structure, a great variety of chunks can be

created by combining basic gameplay components, so this
allows for a greater variety of playable chunks for the same
kind of rhythm pattern.

The approach used by [9] consists of a generic framework
aimed at automating the level creation process by using a top-
down approach. This work utilizes a genetic algorithm to
generate levels that respect certain constraints defined by game
designers, and each level is comprised of various “design
elements”, which correspond to the basic gameplay elements.
The best levels are chosen by the fitness function in the genetic
algorithm, which is capable of determining the amount of fun
that each level provides based on the difficulty perceived by
the player over time.

On the work presented by M. Kerssemakers, J. Tuxen, J.
Togelius and G. N. Yannakakis [10], a meta-procedural level
generator is presented with the purpose of minimizing the
effort of creating a new level generator for each game. This
generator works with two cycles, an internal one which uses
agents to create levels, and an external one which provides a
visual representation of each level generator. The level
generators have to be analyzed by a human designer, who is
responsible by choosing the best ones.

The work presented by C. Pedersen, J. Togelius and G. N.
Yannakakis [11] focuses on modelling the player experience on
the game Super Mario Bros. On this work, levels are created by
using heuristics that randomly position most gameplay
elements on the levels, the only exceptions are elements that
affect player experience, which are positioned on certain fixed
positions. Players were invited to play sets of game sessions
during which gameplay and level data were collected. Once the
sets of sessions are over, the players answered a short form to
tell about the game experience, and all this information was
used to build a neural network responsible for modelling the
player experience.

On most of the works presented, the authors focus on the
process of generating the content, but mostly don’t mention
how to balance the difficulty once the content is generated. So
on this paper we focus on the difficulty evaluation based on
both authorial content, which we refer to as controllable
features, and gameplay sessions information, which we refer to
as uncontrollable features. For this purpose, neural networks
were employed to classify chunks, but the classification
technique itself is not the scope of this work and other
techniques could be used for this purpose, such as decision
trees or nearest-neighbor classifiers.

III. TESTBED GAME

 The testbed game that was used for our studies is the
endless running title Boney the Runner [12], which as of
writing is available for download on the Apple Store [12] and
Google Play Store [13].

On Boney the Runner the player controls the character
Boney, which is a skeleton that came back to life and is being
chased by a pack of hungry dogs. Fig. 2 shows a gameplay
session from the game during its development, and the main
game elements are also presented on this image: the skeleton

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 204

Boney, the dogs, golden coins and a tomb, which is an
obstacle.

Fig. 2. A gameplay session of the game Boney the Runner.

During a gameplay session, Boney automatically runs to
the right, and the player’s input consists of touching the screen
to make Boney jump – the longer the player touches the screen,
the higher the jump, up to a maximum height. The dogs chase
after Boney during the whole game, but since they are slower,
Boney is capable of outrunning them. However, some obstacles
can affect Boney negatively and make him walk slower or stop,
and at that moment, the dogs get closer. Once the dogs catch
Boney, the game ends.

As Boney runs, various obstacles and elements are
presented along the way, these are highlighted in red on Fig. 3,
which is a composition of various gameplay images, each
containing one element and numbered for convenience. Below
is a description of each element:

1) Tomb – Tombs can be avoided if Boney jumps
over them, but if Boney fails to jump over, he will
have to climb. While he is climbing, Boney stands
still on the same spot for some time, which allows
the dogs to get closer.

2) Zombie Mud – While over the Zombie Mud,
Boney gets significantly slower and only recovers
his maximum speed once he gets out of the dark-
brown area on the ground.

3) Ghost – A hovering obstacle that stands still in the
air. When Boney fails to avoid a Ghost and
touches it, he will stand still for some seconds, but
after that, he will start running again.

4) Moss – The moss is a green element placed on the
ground, and once Boney starts to walk over it, his
speed will greatly increase. This effect only
happens while Boney is in contact with the moss,
so if Boney jumps during it, he will slowly go
back to his normal speed.

All these elements are combined in structures defined as
Chunks, which are randomly placed in the track based on the
difficulty that a player would face to traverse them.

Fig. 3. The various kinds of gameplay elements present on the game. These

elements are numbered to facilitate the identification, number one corresponds

to the tomb, number two are the zombie hands, number three corresponds to

the ghosts and number four is the moss which covers the ground.

IV. SESSION GENERATION PROCESS

The session generation process that was adopted consists of
four steps:

1) Definition of how the chunks will be placed along
the track – this definition must take in
consideration the fact that gameplay sessions may
last for a potentially infinite amount of time.

2) Chunk generation – all chunks are created
beforehand so that they can be placed in the track
during the session.

3) Chunk classification – the chunks generated on the
previous step are evaluated and classified
according to their difficulty.

4) Chunk placement – as the gameplay session
progresses, the segments must be placed on the
track while following the constraints defined on
the first step.

During the development of Boney the Runner, all these
steps, except for the chunk placement, were executed
manually. In order to determine how chunks were placed, two
curves of difficulty-over-time were used, which can be seen on
Fig. 4. The first difficulty curve indicates how the game
difficulty flows along the first minutes of gameplay. The
second corresponds to another curve that runs on an infinite
loop, so when the player reaches its end, this curve starts again.

As previously stated, the difficulty curves are used by the
game to determine the sequence of chunks that should be
placed. Attempts at using curves based on continuous values
were made during the development process, but that made the
difficulty evaluation of chunks by the designers harder, so the
team opted to use only discrete values for difficulty instead.

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 205

Fig. 4. Difficulty curves defined by the designers. On the horizontal axis the

chunk number can be seen, on the vertical axis, the four chunk difficulties are

available. The difficulties are “B” for bonus, “E” for easy, “M” for Medium

and “H” for Hard.

The chunks are placed during the gameplay sessions
exclusively according to the curves, meaning that each chunk is
placed independently and the difficulty of previous chunks do
not affect which ones will be placed later on the game.

Chunks were manually created and evaluated by game
designers, which classified them according to the difficulty that
the player would face in order to traverse them. Once the
chunks were classified, they were divided into three pools
according to their difficulty – namely Easy, Medium and Hard.

In order to guarantee more coherence during chunk
classification, each chunk had follow two pre-determined
constraints:

1) All chunks must have precisely 1536 pixels in
width and 640 pixels in height.

2) Chunks must be assembled only by using the basic
components: coin, tomb, zombie mud, ghost and
moss.

For the first constraint, no information regarding the ideal
chunk size was found on the literature, so the production team
decided to determine the size based on the base device for
which the game was projected, the iPod Touch 4 [17]. Thus,
the chunk height is the same as the device’s height when on
landscape mode, which is 640 pixels, and the chunk’s width is
equivalent to 1.6 times the device width on landscape mode,
which is 960 pixels. The production team opted to make the

chunks horizontally larger to give the game designers more
freedom when designing the chunks.

Fig. 5. A chunk seen inside the chunk editor.

The second constraint was chosen based on the approaches
used by other works [8] [9], on which the use of only basic
elements made the creation process more straightforward.

Fig. 5 shows a chunk as it is seen inside the game’s chunk
editor, note that the red grid limits the chunk’s horizontal and
vertical reach.

During a gameplay session, the chunks are placed on the
track according to the difficulty determined by the current
difficulty curve. Therefore, every time that a new chunk has to
be placed on the level, the currently expected difficulty has to
be obtained from the difficulty curve, and after that, a random
chunk of the given difficulty is picked from the corresponding
pool.

Although this process works well for the game, it presents
one major flaw: the chunk classification. Since the
classification is based on the game designers’ intuition, it might
present mistakes. In addition, normally the game designers
have a vast amount of experience with the game during its
development, and that might affect how he perceives the
chunks’ difficulties.

As previously stated, on this paper we focus on the third
step, chunk classification. Our goal is to create a system
capable of automatically evaluating and classifying chunks
according to pre-defined criteria in order to increase the
correctness of the chunk classification process.

V. DATA COLLECTION

 To perform the chunk classification, we used an approach
similar to that employed by [11] – our system collects data
from various gameplay sessions, and this data is used to model
the perceived difficulty of each chunk. The main difference
that our approach presents is that we model the chunk difficulty
instead of players’ emotions, as is the case with [11].

That way, the methodology that we chose to use is the
following:

1) Players are invited to play game sessions, and on
each session, we obtain data related to the player’s
performance.

2) Based on the player’s performance, the chunks are
reclassified utilizing the key metric “Difference
between needed time and regular time” (GF_TD),
which corresponds to the difference between the
amount of time that the player needed to traverse

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 206

the chunk and the amount of time that the player
would need if there were no influences of external
elements.

3) Two neural networks responsible for reclassifying
the chunks are created by using data collected
from the players’ game sessions.

Therefore, it can be said that four classifications exist:

1) The original classification made by the designers.

2) The reclassification based on the GF_TD metric
which was collected during gameplay sessions.
This is considered the Baseline Classification,
because it directly reflects actual gameplay data.

3) The other two classifications made by the neural
networks.

In order to conduct the experiments, a special version of the
game was created. On this version, 230 chunks are available,
all of which were created and classified by game designers. Of
said chunks, 99 were classified as Easy, 62 as Medium, 55 as
Hard and 14 were special Bonus chunks. The bonus chunk do
not offer any danger to the player and they serve the purpose of
creating regions where the player can relax for some seconds
and collect coins before the next chunks.

During the collection process, two types of data were
collected for each chunk:

1) Controllable Features – these correspond to the
chunk aspects that can be directly influenced by
the designer, such as obstacle amount and the
width of each obstacle.

2) Gameplay Features – these are related to how the
player interacts with the game. It covers
information such as how long the player takes to
traverse a chunk.

The features that were collected for each kind of data were
determined by discussions with game designers. On these
discussions, the game designers were questioned about what
they took in consideration to decide the chunk’s difficulty and
what should be monitored during gameplay sessions to validate
said difficulty.

All game designers responsible for the game were present
during these discussions and each one could give their opinions
and feedbacks regarding their colleague’s comments. At the
end of the discussions, the authors of the paper and the
designers would determine what features better encapsulate
most of the relevant data present on a gameplay session. Each
one of these features will be described in detail below.

A. Controllable features

The controllable features are calculated based on the
positioning of basic elements such as tombs or coins on the
chunk. Although the game designers don’t directly specify
these metrics, it’s possible to affect them indirectly through the
positioning of basic entities.

Fig. 6. Two chunk examples as seen from inside the chunk editor. This

image shows the same element – the tomb – with different widths.

In addition, it’s important to note that the tomb, mud and
moss might present width variations, as it’s possible to see on
Fig. 6. Because of that, when calculating features related to
these elements, we first divide them into smaller slices with the
fixed size of 72 pixels, which is the minimal size for these
entities. That way, a tomb with 720 pixels would be converted
to 10 adjacent tombs, each with a width of 72 pixels. We
denominated these slices as “segments”, therefore on the
previous examples we would have 10 tomb segments.

The measured controllable features were separated
according to the type of element to which they belong in order
to better organize the information.

For the tombs it’s important to note that they can appear on
three height varieties – small, average and tall – but their
widths may be freely modified by the game designers. The
tomb features are:

 Amount of tall tombs – by utilizing the previously
described slicing method, the total amount of tall
tomb segments can be obtained from the chunk.

 Amount of average tombs – concept similar to that
of tall tombs, but applied to average tombs.

 Amount of small tombs – concept similar to that
of tall tombs, but applied to small tombs.

 Average height – the average height of all types of
tomb segments present in the chunk.

 Height Variance – the height variance of all kinds
of tomb segments present in the chunk.

 Average position – the average position on the x-
axis of all kinds of tomb segments.

 Position variance – the position variance on the x-
axis of all kinds of tomb segments.

 Percentage of area with tombs – percentage of the
terrain that is covered by tomb segments.

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 207

For the ghost element, the following features were
considered relevant:

 Ghost Amount – the total amount of ghosts on the
chunk.

 Average X position – the average position of
ghosts on the x-axis.

 X position variance – the position variance on the
x-axis.

 Average Y position – the average position of
ghosts on the y-axis.

 Y position variance – the position variance on the
y-axis.

The following features were chosen for the zombie mud:

 Segment amount – the total amount of mud
segments on the chunk.

 Average segment position – the average position
on the x-axis of mud segments.

 Segment position variance – the position variance
on the x-axis of all of mud segments.

 Percentage of area with mud – percentage of the
terrain that is covered by mud segments.

The features chosen for the moss are similar to those used
for the zombie mud due to how these elements are arranged on
the chunks:

 Segment amount.

 Average segment position.

 Segment position variance.

 Percentage of area with mud.

The features chosen for the coins are similar to those used
for the ghosts due to how these elements are arranged on the
chunks:

 Coin Amount.

 Average X position.

 X position variance.

 Average Y position.

 Y position variance.

B. Gameplay features

The gameplay features are the result of player actions
during the sessions. For each session, the system collects data
regarding events that have occurred on each chunk of the track.
The gameplay features are explained below:

 Initial distance between Boney and the dogs – The
distance between Boney and the dogs on the
moment that Boney enters the chunk.

 Final distance between Boney and the dogs – the
distance between Boney and the dogs on the
moment that Boney exits the chunk.

 Time to traverse the chunk – the time that the
player has taken to go from the start to the end of
the chunk.

 Death occurred on the chunk – assumes the value
1 if Boney was captured by the dogs on the chunk.

 Difference between needed time and regular time
(GF_TD) – as previously defined, this metric is
related to how much time the player has spent on
the chunk. Since all the chunks have a fixed width,
it’s possible to determine the time that the player
would need to traverse the chunk if no other
element was present on the chunk, this time is
2,4s. This feature will present positive values if
the player was delayed by an element, negative
values if he was propelled by the moss, and zero if
nothing affected him while he was traversing the
chunk.

 Total amount of collected coins – the amount of
coins that the player collected on this chunk.

 Percentage of collected coins – the percentage of
coins that the player collected on this chunk.

C. Collection

The data was collected from sessions played by individuals
with varied levels of experience and skill with games of this
genre. In total, we collected data from 184 sessions, from
which 53 were considered invalid, thus leaving 131 sessions
for analysis. After some experiments, we concluded that if the
game did not receive any input from the player, Boney could
safely reach the fifth chunk most of the time, but would rarely
get past it. So these might be sessions where the player forgot
the game open and left it running, which is something that
would provide us with invalid data. Therefore, these are the
sessions that we considered as invalid.

It is important to reiterate that all these features were
collected on a per-chunk basis. So that means that every time
that Boney got out of a chunk or was captured by the dogs on a
chunk, the data was submitted and was associated with that
given chunk.

Since various sessions were played, we obtained a
considerable amount of repeated data for the same chunks, so
we averaged the data for each chunk. That way only the
averages were associated with each chunk. After that, all data
was normalized for an interval between 0 and 1 so that it could
be properly used in the neural networks.

VI. MODELLING CHUNK DIFFICULTY

With the collected data, we tried to make an association
between the features and the perceived chunk difficulty. Based
on the findings from the collected data and through discussions
with game designers, we concluded that it would be reasonable
to relate perceived chunk difficulty with the time that the

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 208

player has lost on each chunk, which corresponds to the
GT_TD metric. For this kind of game, a chunk can be
considered hard when the player has a higher chance of
committing mistakes, which consequently leads to wasting
more time than expected on the chunk.

Keeping this concept in mind, we removed bonus chunks
from our list since they did not offer dangers to the player and
are inserted in the game only to create a moment where the
player can relax. With the removal of the bonus chunks, 216
chunks remained.

The GF_TD metric was then used to create a new chunk
classification, which is the previously mentioned Baseline
Classification. To create such a classification, the chunks were
sorted in ascending order according to this feature, and new
sets were created. These sets had the same sizes that the game
designers originally determined: 99 easy chunks, 62 medium
chunks and 55 hard chunks.

After this division, it was possible to establish the
association between the perceived chunk difficulty and the
GF_TD feature, as it can be seen below:

 Easy chunk – GF_TD value below 0.45

 Medium chunk – GF_TD value superior to 0.45
but inferior to 0.52

 Hard chunk – GF_TD value superior to 0.52

With this reclassification, it was possible to notice a
divergence between the original classification by the designers
and the findings from the collected data – 48% of the chunks
that were classified by human designers were in in a different
group after this reclassification.

However, only this reclassification is not enough, after all
the system must be capable of classifying the chunks by using
all the data that was collected previously, specially the
controllable features that can be easily modified during the
chunk construction. Because of that, two neural networks with
different purposes were created: one, which receives only
controllable features as input – Network A –, and another one
which receives both controllable and non-controllable features
as input – Network B. Both networks have chunk difficulty as
the output.

The purpose of creating two networks lies in the different
needs that exist during the game lifecycle. During the process
of creating chunks, we do not have access to gameplay data,
after all no player has yet had the opportunity of playing such
chunks. Of course, it would be possible to include external
players during this step, but this would increase the production
overhead, which is undesirable. Besides, we are aiming at
creating an automatic system that makes the process faster and
more precise, so the need for more human interaction would
remove some of the autonomy from this system.

Therefore, the Network A is destined to be used during the
initial stages of development, during which we only have
access to controllable features from the chunks.

The Network B, on the other hand, should be used to make
periodic adjustments to the game after it has been made

available. With the release of the game, it’s possible to collect
data related to the gameplay features and use this information
in combination with the controllable features to reclassify
existing chunks. That way, as more data becomes available,
there is an overall tendency of the chunks converging towards
the real difficulty perceived by the players.

Both networks were created using the software Weka [14],
and are Multilayer Perceptrons with one hidden layer each. The
amount of nodes on the hidden layer is determined by (1),
which is the default value defined by Weka.

 N = (A + C) / 2

 On (1), the variables are:

 N – the amount of nodes on the hidden layer

 A – the amount of attributes

 C – the amount of classes

To train and validate the networks, the data was randomly
divided in two sets: a training set with 2/3 of the data, and a
validation set with 1/3. The number of epochs used for both
networks was 500, and the maximum amount of validation
errors was 20. We created various networks by combining four
values for the learning rate – 0.15, 0.3, 0.45, and 0.6 – with
four values for the momentum – 0.2, 0.4, 0.6, and 0.8 –
totalizing 16 combinations for each network. The networks
with the lowest test Mean Square Error, or MSE, were chosen
on each case.

For the Network A, the best performing configuration had a
learning rate of 0.15 and a momentum of 0.4, while for the
Network B, the best performing configuration had a learning
rate of 0.15 and a momentum of 0.8. More details about the
networks, such as the number of nodes on the hidden layer, can
be seen on Table 1.

TABLE I. CONFIGURATIONS USED FOR THE NEURAL NETWORKS

 Network A Network B

Epochs 500 500

Maximum validation errors 20 20

Learning rate 0.15 0.15

Momentum 0.4 0.8

Nodes on the hidden layer 15 18

VII. DISCUSSION

Both networks presented a good performance. Network A
was capable of correctly identifying 70% of the instances with
a Mean Square Error of 0.4, while the Network B was capable
of correctly classifying 90% of the instances with a Mean
Square Error of 0.25.

As it can be seen on Table 2, the removal of the gameplay
features caused a great impact on Network A when comparing
it to Network B, which relates to the advantage of collecting
gameplay data in order to model the perceived chunk difficulty.

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 209

TABLE II. RESULTS OBTAINED ON EACH NETWORK

 Network A Network B

Test Mean Square Error 0.4 0.25

True Positive Rate 0.7 0.904

False Positive Rate 0.18 0.041

Area under the ROC curve 0.81 0.951

Still, even though Network A did not present a performance
as good as that of Network B, it has shown a good capacity of
modelling the perceived difficulty of a chunk, especially when
compared to the original classification presented by the game
designers, for which 52% of the chunks were in the same
groups as in the Baseline Classification.

The fact that the game designers were capable of predicting
only 52% of the chunks might be attributed to some aspects of
the game production process, such as the fact that three
different designers were responsible for creating and evaluating
each chunk during different work sessions. Since each designer
might have different perceptions of the chunk difficulty, that
increases the chance of divergent classification.

Besides that, it’s possible that the designers’ perception of
difficulty might be affected when producing various different
chunks over a period of time due to various human factors,
such as experience with the game and fatigue. This is certainly
a very relevant topic and that would warrant further
investigation on future works.

VIII. CONCLUSION

On this work, we presented an approach for the generation
of gameplay sessions on endless games, a genre that still is not
widely explored on the literature. This approach includes a 4-
step process that goes from the creation of the necessary
content to the content placement across the gameplay sessions.

A robust chunk evaluation system was also presented. This
system uses both controllable features that can be manipulated
by a human designer or level generation system and gameplay
features that can be obtained from gameplay sessions. The use
of two neural networks is also a novel approach, which goes in
line with the concept of game as a service, after all our system
is designed not only to work during the game development
process, but also support it along the game’s lifecycle.

Although the system was tested only on an endless running
game, there is no reason why it shouldn’t be applicable on
other kinds of endless titles. As long as the concept of chunks
and difficulty curves are present, it should be easy to adapt the
system to different kinds of games.

The work also presents great potential for improvements
and expansion. For instance, the other three steps of the process
could also be automated in order to create a full-fledged system
capable of generating chunks, evaluating and placing the
chunks accordingly. In addition, the current version of the
system only considers local chunk difficulty, so it would be
possible to consider the accumulated difficulty or to take in

consideration the difficulty of previous chunks to decide the
placement of upcoming chunks. Other possible improvement
would be the use of dynamic difficulty adjustment systems to
tailor the game’s difficulty to each individual player.

ACKNOWLEDGMENT

The authors would like to thank BigHut Games [15], the
developers of Boney the Runner, for allowing the use of the
game on this study and for also for allowing discussions with
the development team. And also, our sponsor CAPES [16].

REFERENCES

[1] C. Morris, “Analysis: Are Long Development Times Worth The
Money?”, gamasutra.com, September 10, 2010. [Online]. Available:
http://www.gamasutra.com/view/news/30339/Analysis_Are_Long_Deve
lopment_Times_Worth_The_Money.php [Acessed: October 13, 2012].

[2] G. R. Wichman, “A Brief History of "Rogue"”, web.archive.org, 1997.
[Online]. Available:
http://web.archive.org/web/20080612193401/http://www.wichman.org/r
oguehistory.html [Acessed: October 13, 2012].

[3] K. Compton and M. Mateas, "Procedural Level Design for Platform
Games," in Proc. 2nd Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE '06), Stanford, CA, 2006.

[4] N. Shaker, G.N. Yannakakis, and J. Togelius, “Towards Automatic
Personalized Content Generation for Platform Games,” Proc. Artificial
Intelligence and Interactive Digital Entertainment,pp. 63-68, Oct. 2010.

[5] M. Hendrikx, S. Meijer, J.V.D. Velden, and A. Iosup, "Procedural
Content Generation for Games: A Survey," ACM Transactions on
Multimedia Computing, Communications and Applications, Vol. -, No. -
, Article 1, January 2012.

[6] farbrausch [Online]. http://www.farb-rausch.de/ [Accessed: July 12,
2013].

[7] Zettai Hero Project [Online]. http://nisamerica.com/games/zhp/
[Accessed: July 12, 2013].

[8] G. Smith , M. Treanor , J. Whitehead, and M. Mateas, "Rhythm-based
level generation for 2d platformers," Proc. Found. Digit. Games, pp.175
-182 2009.

[9] N. Sorenson, and P. Pasquier, “Towards a Generic Framework for
Automated Video Game Level Creation,” Proc. European Conf.
Applications of Evolutionary Computation, pp. 130-139, 2010.

[10] M. Kerssemakers, J. Tuxen, J. Togelius, and G. N. Yannakakis, "A
procedural procedural level generator generator," IT University of
Copenhagen, 2300 Copenhagen, Denmark.

[11] C. Pedersen, J. Togelius, and G.N. Yannakakis, “Modeling Player
Experience in Super Mario Bros,” Proc. IEEE Symp. Computational
Intelligence and Games. pp. 132-139, Sept. 2009. Boney the Runner.

[12] Apple App Store. [Online]. Available:
https://itunes.apple.com/app/boney-the-runner/id573242168?mt=8
[Accessed: July 12, 2013].

[13] Google Play. [Online]. Available: https://play.google.com [Acessed:
October 13, 2012].

[14] Weka. [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/
[Acessed: October 13, 2012].

[15] BigHut Games. [Online]. Available: http://www.bighutgames.com/
[Acessed: October 13, 2012].

[16] CAPES. [Online]. Available: http://www.capes.gov.br/ [Accessed: July
12, 2013].

[17] iPod touch (4th generation) - Technical Specifications. [Online].
Available: http://support.apple.com/kb/sp594 [Acessed: August 28,
2013].

[18] Jetpack Joyride Google Play Store Listing. [Online]. Available:
https://play.google.com/store/apps/details?id=com.halfbrick.jetpackjoyri
de [Acessed: August 28, 2013].

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 210

