
A Model for Stream-based Interactive Storytelling as

a New Form of Massive Digital Entertainment

Marcelo Camanho, Bruno Feijó, Antonio L. Furtado

Dept. Informática, PUC-Rio

Rio de Janeiro, Brazil

{mcamanho, bfeijo, furtado}@inf.puc-rio.br

Cesar T. Pozzer

Dept. Eletrônica e Computação, UFSM

Santa Maria, Brazil

pozzer@inf.ufsm.br

Angelo E. M. Ciarlini

Dept. Informática Aplicada, UNIRIO

Rio de Janeiro, Brazil

angelo.ciarlini@uniriotec.br

Abstract— In this paper we present a highly scalable

architecture for massive multi-user interactive storytelling

systems based on video streams. The proposed architecture can

support different demands for interactivity, generation, and

visualization of stories in digital television environments, which

include TV set-top boxes, tablets, smartphones, and computers.

In this architecture, the same story adapts itself to the spectator’s

device in terms of rendering and interface processes

automatically. Also a model for sharing massive interactive

stories is presented. Moreover, the proposed system preserves the

logical coherence of the story that unfolds while keeping it

interactive.

Keywords— Interactive Storytelling, Massive Digital

Entertainment, Streaming, Cross-media games, TV.

I. INTRODUCTION

Interactive storytelling as a form of massive digital
entertainment has many open questions. How can we transform
a TV program into a skilled storyteller capable of adapting the
reactions of hundred thousand spectators simultaneously? How
can we convert the audience into co-authors of a story in such a
way that the evolving plot surprises even the original author of
the script? These questions drive the attention of both TV
producers and researchers. Since the 2000’s, research works on
interactive storytelling have been growing at a fast pace.
However, the literature on interactive storytelling for digital
television is still scarce, especially when we are looking for
systems that can deal with a great variety of devices.
Furthermore, most of the systems are based on a predetermined
and fixed tree of possibilities. In the present paper, we propose
a model and an architecture that address some of the above-
mentioned issues.

In this paper we adapt the model used in our previous
Logtell interactive storytelling system [1,2] to a new massive
multi-user system. In the Logtell system, stories evolve in
chapters and each chapter is a sequence of logically consistent
events. Spectators interact with the story by making
suggestions for the next chapter that will be accepted if
coherence with the mathematical logic model of the story is
preserved. Fig. 1 illustrates Logtell’s evolutionary cycle of a

story composed by two processing stages: plot generation and
dramatization. A first draft of this story cycle was presented in
a previous work by the authors [4] and a more complete
version was recently implemented for the present paper. In the
plot generation stage, a plan π and a list of suggestions for the
next chapter are generated from the initial state s0. The initial
state is a set of rules and facts that define genre, characters, and
general situations. A chapter is a plan π, which is a sequence of
events to be dramatized. The user can pick up a suggestion
from the list or write a new one. The execution of the events ei

produces a set of new facts to be added (Facts

) and a set of

facts to be excluded (Facts

):

 s0 = (s0 Facts+) Facts

The list of suggestions is created by the same logical
inference mechanism that generates the plan π. Therefore, the
evolution of a story is always a surprise even for the original
author. In the Logtell model, the inference mechanism is based
upon a temporal modal logic framework [22] and a partial
order planning algorithm. The inference mechanism is written
in a constraint logic programming language [3] and details of a
single-user system can be found in our previous works [1,2].
The prototype presented in this paper implements the same
small sub-class of the popular Swords and Dragons genre used
by those previous works, telling a simple story about damsels,
heroes, villains, wizards, courage, revenge, and love. The

Fig. 1 The proposed story cycle

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 109

mailto:mcamanho,%20furtado,%20bfeijo%7D@inf.puc-rio.br
mailto:mcamanho,%20furtado,%20bfeijo%7D@inf.puc-rio.br
mailto:mcamanho,%20furtado,%20bfeijo%7D@inf.puc-rio.br
mailto:mcamanho,%20furtado,%20bfeijo%7D@inf.puc-rio.br
mailto:mcamanho,%20furtado,%20bfeijo%7D@inf.puc-rio.br
mailto:mcamanho,%20furtado,%20bfeijo%7D@inf.puc-rio.br
mailto:mcamanho,%20furtado,%20bfeijo%7D@inf.puc-rio.br
mailto:mcamanho,%20furtado,%20bfeijo%7D@inf.puc-rio.br

logical rules of the story are also the same found in our
previous works [1,2,4].

Our planning algorithm considers the following rules and
facts that define the genre and the initial conditions of the
story: (a) a set of goal-inference rules, which define situations
that lead characters to pursue the achievements of goals (e.g., if
a damsel (i.e. a victim) is kidnapped, a hero will want to rescue
her); (b) a set of parameterized basic operators, with pre- and
post-conditions (e.g. the operator go(Character, Place), which
indicates a character moving to a specific place, has simple
preconditions, such as Character is alive and Character is not
kidnapped by someone, and obvious post conditions, such as
Place is the new location of Character); (c) logical descriptions
of initial situations of the stories, introducing characters, their
relationships, and their current properties (e.g., Hoel is a hero,
Brian is a hero, Marian is a princess, Draco is a villain, and
Draco is a Dragon).

In our previous work [4], we propose a client-server model
with rich clients (i.e. clients that provide rich functionality
independent of the server). In that work, we assume that the
spectators’ devices could cope with heavy local processing. In
the present paper, we take an opposite strategy; that is, we
search for a flexible and scalable architecture for interactive
storytelling in digital television that allows thin clients and a
great diversity of platforms, as illustrated in Fig.2. Interactive

storytelling systems for digital television should consider the
fact that PCs, smartphones, digital TV set-top boxes, and
tablets have different possibilities to render graphics and run
artificial intelligence tasks. Moreover, those platforms have
distinct screen resolutions, performances, and interfaces. In this
paper, we propose a model of interactive storytelling for digital
television that allows a better portability for different
environments without losing the richness of interactivity and
narrative coherence. We believe that our model and
architecture can contribute for better solutions of broadcasting
of interactive storytelling on digital television networks.

The basic idea of our model is to transfer the plot
generation and dramatization tasks of the chapter generation
cycle (Fig. 1) from the clients to a cluster of servers. In this
model, we have video streams as responses to the clients’

requests. For this reason we classify our proposal as a Stream-
based Interactive Storytelling architecture. The proposed model
can cope with most of the strategies for spectators sharing
interactive stories. The architecture based on this model adopts
a light and highly responsive approach to web services, that is:
HTTP as the transport layer, JSON [5] as the data layer, and
REST [6] as architectural style. This approach is more flexible
and lighter than the classic layers of XML as the data layer and
SOAP as the protocol layer. Furthermore, the design of the
architecture allows that different dramatization paradigms are
easily adapted, such as text only, audio only (for visual
impaired people), 3D rendering, video-based storytelling, 2D
comics, 2D rendering, and even some combinations of them
(e.g. text and 2D rendering). This approach to TV interactive
storytelling allows a new form of massive digital
entertainment, in which spectators can choose the type of
dramatization they prefer.

This paper presents a contribution towards a distributed
architecture for interactive storytelling that considers a
multitude of environments and interfaces. As far as the authors
are aware, there is no work in the literature that contemplates
massive multiplayer interactive storytelling based on temporal
modal logic and offers interactive dramatization on a variety of
devices. Works on interactive storytelling usually focus on a
single spectator experience or, even in the case of the multiuser
systems, on individualized experiences similar to multiplayer
games, which stray from the interactive storytelling proposal.

This paper is organized as follows. Section 2 presents
related works. The architecture for a stream-based interactive
storytelling system is presented in section 3. Processes and
methods of this architecture can be found in section 4. Section
5 presents the interface of the prototype. A model of massive
interaction is proposed in section 6. Conclusions are presented
in section 7.

II. RELATED WORK

Independent, non-academic projects, like The Written
World [7], show that there is a demand for multiplayer
interactive storytelling as a product. This project, which is a
web-based product financed by a crowd-sourcing agency,
proposes an interactive storytelling system focused on an
interactive narrative presented in a text format, where a user is
“the world” and the other is “the hero”. Another similar system
is Sleep is Death [8], based on a two-player experience, where
one is the author and the other the spectator. In this system,
there is no backend to have an automated story generation – the
author must prepare scenes in a graphical environment with
interactive elements and the other user explores this scenario,
similar to a “live” adventure game.

In Façade [9], the user plays a guest invited for drinks with
a couple of friends. By using the mouse and by typing phrases,
the user can interact with objects and talk to the characters
using natural language, being able to influence the direction of
the plot: the couple can fight, get together, or the user can be
expelled from their house. Façade is regarded as one of the
most successful interactive storytelling systems. However, it is
based on a single player experience, and only available for
computers.

Fig. 2 Network environment of digital television for massive

multiplayer interactive storytelling systems

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 110

In [10] experimentation was made to find out how
multiplayer interactive storytelling systems could work.
Similar to what happens with a single player interactive
system, the problem of exception, that is, of something
unexpected due to user interaction that was not predicted, was
greatly increased. It uses a partially ordered planning algorithm
to control the story generation and adaptation, with the addition
of a “repairing” system to remove from the plan (the plot)
elements that no longer makes sense after user interaction. This
system differs from Logtell mainly because spectators play
different roles, as players, while in Logtell the objective is to
watch a story, being able to influence other characters, without
the compromise of following and controlling only one of them.

One of the most similar projects to the model presented
here is the Shapeshifting Media [11], which creates interactive
screen-media narratives. It was broadcast on Finnish TV and
provided an interactive experience that allowed spectators to
participate by SMS messages, internet, and television. One of
the main differences from our work is that it is centered on
narrative objects, pre-recorded scenes, each defining their
interaction points; that is: Shapeshifting Media system uses
branching techniques, instead of a fully-fledged logical system,
to create stories focused on their plot events definitions. In
other words, it always uses fully instanced and pre-recorded
events, instead of allowing more flexible plots to be
constructed based on the logical structure of the story.

The approach presented by [12] uses StoryML, an XML
based specification for multiplatform interactive stories, to
build the TOONS application, featuring a story involving
several devices: a TV screen, a light, an audio device, and a toy
robot. It supports multiple environment presentation and
interaction, what makes it similar to the architecture presented
in the present paper. However, there are a couple of important
differences from our system.

One of the key differences is that TOONS is based on
presenting distributed media objects in multiple devices, where
objects might even be something rather abstract like emotions.
The approach of our paper is, however, to present a single story
on multiple devices with different resolutions and interaction
interfaces, through a continuous video stream. Also, TOONS
has no real logical engine. Another difference is that the media
objects must all be created beforehand, while in our system the
plot can evolve from an initial state along unforeseen
storylines.

Other works with multiuser interactive storytelling systems
focus on local multi-player environment, as in [13], where
users interact by drawing objects that are then transferred into
the story in a virtual reality environment. In [14], multiple
users inter-act with characters in different ways, using Wii
videogame controllers, mobile phones, among others.
However, those works differ from our work because they are
focused on local interactivity instead of networked multiplayer
systems.

There are already different storytelling researches that
approach individual questions. On a general view, for an
individual experience, Façade is the closest thing to the state of
art in terms of interactive storytelling. However, it is based on a

single player only experience, and only available for
computers.

III. STREAM BASED INTERACTIVE STORYTELLING

In the proposed architecture, the main tasks of plot
generation and dramatization of Fig. 1 occur at the server side.
Instead of having the dramatization of stories being rendered
and controlled on each platform, we propose video streams as
responses to the clients’ requests. Fig. 3 illustrates the proposed
model, where the drama servers send video streams to the
clients, which can be several devices in a variety of

environments (e.g. windows computers, android smartphones,
android tablets, etc.). This allows the same story to be easily
generated in the same way for all the chosen environments;
furthermore, the best image quality is guaranteed in all of them.
Also, programming efforts will be much lower than the ones
that would be necessary to have multiple versions of the
software running in multiple platforms.

However, it is important to notice that some peculiarities
apply to each environment. Also the ways of interacting with
each one will not be the same. For instance, in a PC, users may
use keyboard and mouse. On the other hand, in a smartphone,
the screen and resolution are much smaller and, consequently,
the interface cannot occupy the same size and be so full of
details. As far as digital television systems are concerned, there
are two distinct types: traditional television systems (terrestrial,
satellite, and cable) and IPTV (Internet Protocol Television).
Each of them requires a different client structure. For stories in
multiuser mode, the same stream is shared through broadcast in
a channel. In the case of Brazilian digital TV, for instance, the
multiuser mode may be implemented through broadcasting
together with a Ginga application, either in Ginga NCL [15], or
Ginga-J [16]. The scenario is even more complicated, because

Fig. 3 Simplified stream-based interactive storytelling

architecture

Fig. 4 The proposed architecture for the stream-based interactive

storytelling system

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 111

smart TVs are using their own software environments.

Therefore, in our model, the choices to interact are defined
in an agnostic way, and each client implementation is then
responsible for interpreting it in the best way. Fig. 4 presents a
more detailed architecture of the proposed model. Also this
figure shows how the system is scalable. The Story Server
environment, responsible for controlling story generation and
adaptation, can be composed of multiple application servers,
thus being able to support bigger loads.

The Story Client is capable of communicating with the
Story Server through HTTP calls through a REST [6] interface.
This is a much lighter approach than the use of EJB (Enterprise
Java Beans) or Web Service calls, like it was done in our
previous work [4]. This approach permits an easier creation of
multiple client applications, since the HTTP protocol can be
used for easy communication and transport of messages
between the client and the story server.

The basis of the proposed architecture is defined by a
module of the Drama Server called Drama Streamer. This
module is responsible to intermediate the story that is being
watched by different spectators.

The Drama Streamer module also follows a scalable
strategy. There may be multiple instances in a given
environment. The system uses the Story Server to find all the
instances in a given cluster. Each drama streamer instance is
capable of rendering one story at a time, since it captures the
video of the server.

After some analysis with the possibilities of streaming with
Java, we adopted the use of VLCj, a java version of VideoLAN

 an open source video player, encoder, and transcoder. It is
capable of supporting the media needs of an interactive story,
and it was integrated into our system.

In the proposed architecture, the Story Client should
connect to the Drama Streamer server using the RTSP protocol.
The choice of VLCj for the client side was a natural one, since
it was also chosen for the server side for encoding the videos.

For watching a story, a HTTP request is sent to a web
server in order to discover which available Drama Streamers
are free in the server cluster. This method call is made with a
plain request, and a JSON [5] object is returned through the
network. JSON objects are a standard data layer that simplifies
interoperability between different layers of application, and
tends to be simpler than other representations (such as XML).

The Plot Generator module is the core of the story creation:
it is responsible for creating the list of events and suggestions
that unfolds, using goal-inference rules and constraint logic, in
a partially ordered planner algorithm. The Simulation
Controller is responsible for generating the story itself and
suggestions of strong interventions using the Plot Generator.
Suggestions should be consistent and lead the plot towards
different outcomes. This process is based on the story contexts
that are stored in the Context Control Module, stored in the
Database Server. These contexts define the story’s logical rules
and constraints, characters, relations, and the story’s world
initial state.

The Interface Controller controls interactions, organizing
suggestions from the users. It coordinates the simultaneous
dramatization and the presentation of suggestions for strong
interventions in the various clients. It also controls the time
during which users’ choices are considered. The proposed
architecture is completely different from our previous model
with rich clients [4]. An interesting difference is that the
control of interactions in our previous work [4] uses EJBs
(Enterprise Java Beans) by the clients; now it is controlled by
calls redirected from the REST interface.

IV. PROCESSES AND METHODS

In the prototype, we considered two platforms (windows
and android) and two dramatization outputs (3D rendering
using Unity [17] and 2D comics with text). When started, the
drama streamer instance sets up its Story Output (by default the
Unity3dOutput) and starts its VLCStreamer instance,
responsible for streaming the story video for its clients.
Afterwards, the Drama Streamer registers itself on its RMI
Registry, which will be called by the JBOSS server of the Story
Server environment. Then, the WEB calls that are received by
the Web server will know to which server the RMI calls should
go, when received in its REST interface.

After an available drama streamer is found, the client
application should connect to this server. This connection
actually occurs in more than one way. The dramatization of the
story itself is received by a RTSP video stream, which is
available on almost all modern platforms. Other protocols
should be possible, but for now this one is being used since it is
very portable and commonly supported.

Other than the video stream, Story Clients should also be
coded to interact with the servers by using the REST interface.
This interface contains all remote methods that need to be
invoked in order to watch and control a story.

In Appendix A we present the supported methods in the
REST interface of the Story Server (Drama Streamer Rest
Controller). With only those methods and a video client that
can connect the video stream, a new story client can be

Fig. 5 Activity diagram for the process of watching a story

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 112

implemented in any platform.

Figure 5 is an activity diagram that shows how the activity
of watching a story happens overall. We can see that the Drama
Streamer starts and registers itself in the Story Server. Also we
can see that all client calls go to the Story Server before going
to the Drama Streamer. In this diagram we do not represent the
video stream.

Basically, in this architecture, we can see that the client is
just responsible for asking the user for preferences and then
watching the story. All the story writing is still a responsibility
of the Story Server. Any other remote method calls that the
client needs are also received by the JBOSS web Server, which
then redirects these calls to the Drama Streamer. Then, the
Drama Streamer itself may need to make calls back to the
JBOSS Application server, since it will ask, for instance, for
the story writing process to start. The story writing process is
still the same one used in our previous work [4], which can be
accessed for further details.

In the proposed architecture there is a constant heartbeat
being sent from the Drama Streamer to the JBOSS Server. This
is a crucial aspect, because this is how the architecture will
know which Drama Streamers are running, where, and what
are their addresses. With this type of information, clients can
know where to receive the RTSP stream of story, and the
JBOSS server itself can do RMI calls to access specific Drama
Streamer story context information and dramatization.

Client applications also connect to the drama streamer to
reach the interaction options and chapters information. These
calls are made by sending HTTP requests, receiving JSON
object representations of the chapters, events, and available
suggestions. By indirectly sending messages to the drama
streamer, the interaction requests are also sent to the Story
Server.

When we use the REST layer, the calls can be done by a
simple HTTP request, instead of a more complicate access
through Enterprise Java Beans calls. This approach facilitates
the implementation and portability of the system to multiple
platforms. In this case, the JERSEY library was used on the
client side, although even if it did not exist, it was just a matter
of doing HTTP GET method requests and deserializing the
response in the form of JSON objects. This is a practice that
can even be done natively on some languages, like Javascript.

In our prototype there is a small delay between the
rendering, transcoding, and streaming of the stories. This
limitation should not occur in an actual deployment
environment in production use, with dedicated stations.
Anyway, this should not be a big issue, since interactions in our
system are mainly focused on the subsequent chapters – that is,
while the user watches events of a given chapter, s/he is given
the chance to suggest interactions for the next chapters. Also,
in any TV broadcast process, it is inevitable that there is some
delay, especially in the case of off-air television.

V. INTERFACE

Figure 6 shows two different start menus (on different
operational systems and devices) representing the same
interface objects and the same story controlled by a common

server. These menus reflect different implementations of story

clients. One implementation is an Android application, running
on a tablet, and the other is a windows application running on a
laptop. Both applications are able to access the Story Server
through the REST interface and to receive a video stream from
the Drama Streamer Server. In the Windows application, VLC
is used, but only as an embedded video player. In the android
client, the native video player code was used, what shows how
flexible the architecture is.

In Figure 7, we can see the same story running in two
different applications, which are on different devices and
operational systems. The difference between the two
applications is the dramatization format, that is: one is a 3D
rendering and the other one is a 2D cartoon with text. The last
format has no animation. Several other formats can be easily
implemented in the system, what is another evidence of how
flexible the architecture is. Also there would be the possibility
of having different forms to interact, such as using icons or
voice input. As a design option, the proposed architecture
cannot broadcast different dramatization formats
simultaneously. Since these applications are running in
different platforms, the interfaces can and should be different,
because they have different screen resolutions and interaction
devices. For instance, in the android application, the chapter
description section is simplified.

VI. A MODEL FOR SHARING MASSIVE INTERACTIVE

STORIES

The most challenging aspect of interactive stories on digital
television is how to share desires and interventions from a
massive audience on thin clients. We propose a model for
sharing massive interactive stories that has two basic forms of
user intervention: Local Weak Interaction and Global Strong
Interaction.

In the Local Weak Interaction form, the user interferes in
the dramatization using local information and plug-ins. For
example, the user may ask for another camera point-of-view.
This form of intervention heavily depends on the processing
capacity of the user’s device. Furthermore, this sort of
intervention is not shared by other users and has no influence
on the plot generation.

In the Global Strong Interaction form, the user may
change the course of the story. In this form of intervention, we

Fig. 6 Two different story client menus (Android and Windows).

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 113

propose the following strategies: Most Voted Suggestion,
Weighted Voting, and Harmonized Voting.

In the Most Voted Suggestion strategy, when users ask the
system to incorporate a specific suggestion, they are engaging
themselves in a simple process of vote counting. The most
voted suggestion will be chosen to be incorporated in the next
chapter. The Interface Controller organizes the interaction with
clients and interacts with the Simulation Controller as if there
were a single user. In order to do that, it coordinates the
simultaneous dramatization and the presentation of suggestions
for global strong interventions in the various clients. Also it
controls the time during which users’ choices are considered.
After computing the most voted suggestion, the Interface
Controller checks whether the number of votes reaches a
minimum threshold. If this is the case, the suggestion is sent to
the Simulation Controller.

Weighted Voting is a strategy of global strong interaction
in which the number of votes can be weighted by the potential
of each option to trigger goal-inference rules. In this way,
options that generate more interesting situations tend to be
chosen.

In the Harmonized Voting strategy, compatible
interventions can be combined in the same chapter. In
particular, different groups of users may have different options.
For instance, the groups can be separated by the characters they
decide to support and, then, the planning algorithm (Plot
Generator module) tries to combine the choices of all groups.

The way groups are formed to share a story is also an
important issue. Off-air broadcast has no flexibility of choice,

that is, users should join the story at specific date and time. In
other systems of TV, such as IPTV, we have more options. The
simplest strategy is to assume that any user is allowed to
schedule the start of a story based on a specific context at a
certain time. As soon as other users notice a specific story in a
list of scheduled stories, they may be tempted to join the group.
Users can either have equal rights to intervene in the story or
not; in the latter case, different criteria can be established to
assign their rights and privileges. Independent of the TV
system (off-air, IPTV, internet TV), methods for the
communication among users who share the same story can be
adopted. In this case, users can discuss their interventions. An
interesting model of incorporating social nets into an
interactive storytelling system can be found elsewhere [18].

We consider the question of user interface modalities as an
issue of utmost importance for massive interactive storytelling.
Another work by the Logtell research group proposes a
multimodal, multi-user and adaptive interaction model [19].
The experimental production of the configurable documentary
“Golden Age” by the ShapeShifting TV research group [20,21]
is a valuable source of information that could be implemented
in the interface of our system.

During the tests of the prototype, we have considered the
Most Voted Suggestion strategy only. Also, we implemented a
simple interface modality in the prototype, as presented in the
Figure 7. Moreover, usability issues from the viewpoint of

Fig. 7 Different applications on different story clients presenting the same story

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 114

Human-Computer Interface were not considered in the present
work. We made these decisions because the focus of the
present paper is on the client-server architecture.

VII. EVALUATION

We made a partial performance evaluation of the proposed
model in terms of delay time and number of users. Although
the test is very simple, it represents a first measure of the
capacity of the proposed multiuser system to handle loads
without performance degradation.

TABLE I. PERFORMANCE TEST

With 1 Drama

Server

Number of Viewers

1 User 2 Users 3 Users

Approximated

Stream Delay

3.2 seconds 3.3 seconds 3.4 seconds

In the prototype, we used an i5 notebook running Windows
7 with 6 GB of RAM as the basic server machine. We
implemented two separated servers running on the same
machine, one working as a Story Server and the other one as
the Drama Server. As clients, we used the following machines:
(1) a 7-inch Android tablet running Ice Cream Sandwich with 1
GHz CPU and 1 GB RAM; (2) a Windows XP 1 GHz netbook;
(3) a smartphone with 1 GHz CPU and 384 MB RAM.

As Table 1 shows, the prototype implementations do not
change much in the delay of the video stream of the story.
Also, this delay is mostly caused by the CPU intensive process
of rendering the 3D story on the Drama Server, together with
the live transcoding of the stream. On a real production system,
better computers can be used. Moreover, even with a 3 second
delay, it should be noted that this test reveals one of the most
positive aspects of the proposed model: the same quality of
story rendering would be much harder to achieve if all the story
client implementations had to render the story by themselves.

Analyzing the test results, it seems fair to conclude that the
model shows promising results towards the desired behavior of
the multiuser system, where the Drama Server provides
streams to multiple story clients and it is in charge of heavier
CPU loads than those found in the clients.

VIII. CONCLUSION

In this paper, we present an extensible architecture that
allows a multi-user stream-based interactive storytelling system
to be available for different platforms. This architecture is
currently already working and two different clients are
available for the Windows and Android systems.

We show how a multiplatform stream-based storytelling
experience can happen. By using video streams, we move the
CPU cost from the clients to the servers, which allow the
architecture to support more platforms, since processors can be
quite slow on low end smartphones, tablets, and set-top boxes,
for instance.

Another advantage of the proposed architecture is that it
allows different types of Drama Streamers to be supported.

That is, since the dramatization is taken from clients, it allows
the same story to be rendered in different ways. In this
particular aspect, a possible expansion of this architecture is to
render the story in different graphical engines.

By making use of open patterns like REST and JSON
through HTTP for the client server communication, the
architecture presents itself as easily portable and extensible.
The use of those patterns in APIs is an appropriate approach,
because there are many libraries available to parse and process
them. Also, in some cases, they are even part of native libraries
of platforms. For instance, JSON is directly implemented in
Javascript, where it origins from – thus making possible the
creation of a new story client in pure HTML5, for instance.

For future works, different strategies of encoding will be
investigated, for instance, generating multiple streams for the
same story, in different formats and resolutions. With this
alternative, the story clients could then have multiple choices
that could be more appropriate for different platforms and
screen sizes.

As research expands, more tests will be made regarding
usability tests. Performance is also an important question, so
for a real world use case, different optimization alternatives
will be pursued, and tests with more powerful hardware should
also be carried out.

Furthermore, it should be noted that since the architecture
supports multiple platforms, the forms to interact can be
expanded upon the different interfaces that they support. For
instance, the mobile version could support voice recognition
and motion sensing. This will be considered in our future
works.

An important contribution of the present paper is the model
for sharing massive interactive stories. As far as we are aware,
no other work presents a model with strategies that are
different from the simple “most voted suggestion”. The
implementation and evaluation of all strategies we have
proposed in the present paper are currently under development
by our research group.

ACKNOWLEDGMENTS

This work was partially supported by CNPq (National Council for
Scientific and Technological Development) and FINEP (Brazilian
Innovation Agency), both linked to the Ministry of Science,
Technology, and Innovation, CAPES (Coordination for the
Improvement of Higher Education Personnel, linked to the Ministry of
Education), and the Department of Informatics/PUC-Rio.

APPENDIX A

The supported methods in the REST interface of the Story
Server (Drama Streamer Rest Controller) have special java
annotations that define them as REST methods to be called
over the HTTP interface. They are named accordingly, using
the same name the java method has but separated by dashes.
The same occurs to their parameters, showing how simple its
access is. We decided to present the methods because they help
the reader to understand the flexibility of the proposed system.

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 115

We describe bellow the available methods on the REST
interface, for each URL format accepted:

 getDramatizationServers()
http://[story-server:port]/REST/streamers
Action: Returns the list of available Drama Streamer
servers, their address and state (whether they are idle or
already showing a story).

 getAllContexts()
http://[story-server:port]/REST/streamers/get-all-
contexts/
Action: Returns the list of all available story contexts –
used to choose which story to watch on the story server.

 scheduleContinuousStory()
http://[story-server:port]/REST/streamers/schedule-
continuous-story/{ip}/{selected}/{timetostart}
Action: Schedules the selected context to be dramatized
on the selected Drama Streamer interface. Since this is a
multiuser system, the act of scheduling and joining a
story to watch it are not necessarily single user
exclusive.

 getTimeToStart()
http://[story-server:port]/REST/streamers/get-time-to-
start/{storyid}
Action: Returns the time in milliseconds that a given
story will still take to start, according to its schedule.

 getCurrentChapter()
http://[story-server:port]/REST/streamers/get-current-
chapter/{ip}
Action: Returns the current chapter being shown on the
Drama Streamer. This is important since the story client
may need to get different data from the chapter and its
events other than just the story visualization, which is
provided by the video stream.

 getSuggestions()
http://[story-server:port]/REST/streamers/get-
suggestions/{ip}
Action: Returns the available suggestions for the story
(and chapter) being watched on the Drama Streamer.
This is basically the main interaction mechanism in this
version of story, where a user can vote for what he or
she wants to happen in the story – this list is built by the
system based on its logic [4]

 requestSuggestionInsert()
http://[story-server:port]/REST/streamers/request-
suggestion-insert/{ip}/{suggestionid}
Action: Inserts a vote for the selected suggestion for the
story being watched on the selected Drama Streamer.
Since this is a multiuser system, more than one user can
vote for different suggestions, where the most voted
will be chosen and then be used for the following
chapters of the story being watched.

REFERENCES

[1] CIARLINI, A. AND FURTADO, A. Understanding and Simulating

Narratives in the Context of Information Systems. In Proc. ER'2002 –

21st. International Conference on Conceptual Modelling, Tampere,
Finland, Oct. 2002.

[2] CIARLINI, A.E.M., POZZER, C.T., FURTADO, A.L., FEIJO, B.: A
logic-based tool for interactive generation and dramatization of stories.
In: Proceedings of the International Conference on Advances in
Computer Entertainment Technology, Valencia, pp. 133-140 (2005)

[3] CARLSSON, M. AND P. MILDNER, P. SICStus Prolog - The first 25
years. Theory and Practice of Logic Programming, 12(1-2):35-66, 2012.

[4] CAMANHO, M.M., CIARLINI, A.E.M., FURTADO, A.L., POZZER,
C.T., FEIJO, B., 2009. A model for interactive TV Storytelling. In: VIII
Brazilian Symposium on Games and Digital Entertainment, Rio de
Janeiro, Brazil (SBGames 2009), pp. 197-206, 2009. [DOI:
http://doi.ieeecomputersociety.org/10.1109/SBGAMES.2009.31]

[5] CROCKFORD, D. Introducing JSON, 2006. Available at:
http://www.json.org [Accessed 13 February 2013].

[6] FIELDING, R.T. AND TAYLOR, R.N., Principled design of the
modern Web architecture. ACM Transactions on Internet Technology,
vol. 2, no. 2, pp. 115–150, May 2002.

[7] KICKSTARTER. The Written World. Available at: :
www.kickstarter.com/projects/thewrittenworld/the-written-world
[Accessed 13 February 2013].

[8] ROHER, J. Sleep is Death (Geisterfahrer) – a storytelling game for two
players. Available at: www.sleepisdeath.net [Accessed 13 February
2013].

[9] MATEAS, M., STERN, A., 2005. Structuring content in the Facade
interactive drama architecture. In Proc. Artificial Intelligence and
Interactive Digital Enter-tainment Conference (AIIDE 2005).

[10] RIEDL , Mark O., LI, B., AI H., and RAM A. Robust and Authorable
Multiplayer Storytelling Experiences. Proceedings of the 7th Annual
Conference on Artificial Intelligence and Interactive Digital
Entertainment. Palo Alto, California, 2011

[11] URSU, MARIAN F., KEGEL, IAN C., WILLIAMS, DOUG,
THOMAS, MAUREEN, MAYER, HARALD, ZSOMBORI, VILMOS,
TUOMOLA, MIKA L., LARSSON, HENRIK and WYVER, JOHN.
2008. ShapeShifting TV: interactive screen media narratives.
Multimedia Systems, 14(2), pp. 115-132. ISSN 0942-4962

[12] JUN HU AND LOE M. G. FEIJS. An adaptive architecture for
presenting inter-active media onto distributed interfaces. In The 21st
IASTED International Con-ference on Applied Informatics (AI 2003),
pages 899–904, Innsbruck, Austria, 2003. ACTA Press.

[13] KUKA, D., ELIAS, O., MARTINS, R., LINDINGER, C.,
PRAMBÖCK, A., JALSOVEC, A., MARESCH, P., HÖRTNER, H.
BRANDL, P., 2009. DEEP SPACE: High Resolution VR Platform for
Multi-user Interactive Narratives. In: Proceedings of the 2nd Joint
International Conference on Interactive Digital Sto-rytelling: Interactive
Storytelling, pp. 185-196

[14] KURDYUKOVA, E. ANDRÉ, E. LEICHTENSTERN, K., 2009.
Introducing Mul-tiple Interaction Devices to Interactive Storytelling:
Experiences from Prac-tice. In: Proceedings of the 2nd International
Conference on Interactive Digital Storytelling (ICIDS), pp. 134-139

[15] SOARES, L. F. G., RODRIGUES, R. F., MORENO, M. F., 2007.
Ginga-NCL: the Declarative Environment of the Brazilian Digital TV
System. Journal of the Brazilian Computer Society, Revista n. 4; v. 12;
Mar. 2007 - ISSN 0104-6500.

[16] SOUZA, G. L. F., L. E. C. LEITE, BATISTA, C. E. C. F., 2007. Ginga-
J: The Pro-cedural Middleware for the Brazilian Digital TV System.
Journal of the Bra-zilian Computer Society. Revista n. 1; v. 13; Mar.
2007 - ISSN 0104-6500.

[17] UNITY Technologies. Unity. Available at http://unity3d.com [Accessed
13 February 2013].

[18] LIMA, E.S., FEIJO, B., POZZER, C.T., CIARLINI, A.E.M.,
BARBOSA, S., FURTADO, A.L., and SILVA, F.G., 2012. Social
Interaction for Interactive Storytelling. In: Proc. of the 11th International
Conference on Entertainment Computing (ICEC 2012), Bremen,
Germany, pp. 1-15, September 2012.

[19] LIMA, E.S., FEIJO, B., FURTADO, A.L., CIARLINI, A.E.M.,
POZZER, C.T., SILVA, F.G., 2012. A Multi-User Natural Language
Interface for Interactive Storytelling in TV and Cinema. In: XI Brazilian

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 116

http://[story-server:port]/REST/streamers
http://[story-server:port]/REST/streamers
http://[story-server:port]/REST/streamers
http://[story-server:port]/REST/streamers
http://[story-server:port]/REST/streamers
http://[story-server:port]/REST/streamers
http://[story-server:port]/REST/streamers
http://[story-server:port]/REST/streamers

Symposium on Computer Games and Digital Entertainment (SBGames
2012), Brasília, Brazil, November 2012.

[20] M. TSCHELIGI, M. OBRIST, and A. Lugmayr (Eds.): EuroITV 2008,
LNCS 5066, pp. 40 – 50, Springer-Verlag, Berlin, Heidelberg, 2008.

ILLUMINATIONS, NM2: A Golden Age, ShapeShhifting Media Concept,
2009. Available at http://www.youtube.com/watch?v=jnMBrLWVwjE
[Accessed 20 February 2013].

[22] CIARLINI, A.; VELOSO, P. ; FURTADO, A., 2000. A formal
framework for modelling at the behavioural level. In: Proc. of the 10th
European-Japanese Conference on Information Modelling and
Knowledge Bases, Saariselkä, Finland.

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 117

