
A Hyper-Heuristic Genetic Algorithm To Evolve
a Commander For a Capture The Flag Game

Victor de Cia Costa Amadeus Torezam Seilert
Léo Françoso dal Piccol Sotto Vinícius Veloso de Melo

Federal University of São Paulo - UNIFESP, Institute of Science and Technology - ICT
São José dos Campos, São Paulo, Brazil

Abstract—This paper presents results from using a hyper-
heuristic genetic algorithm to evolve a Commander for a Capture
The Flag (CTF) game. The CTF game employed in this study
runs on The AI Sandbox framework that was used in the
competition promoted by AiGameDev. The Commander issues
high-level orders to a team between 4 and 15 bots that must
capture the flag of the enemy team and return it to its flag
scoring location. The orders are for each bot and include requests
to charge, defend, attack, or move to a location. Before issuing
an order, the Commander has to evaluate the environment and
then make the decision. These evaluations are usually organized
in modules or blocks of codes that are executed sequentially.
Thus, the developer uses his creativity to implement these modules
and to organize the code. This paper is focused on the second
part of the problem: code organization. The idea proposed in
this paper is the employment of a genetic algorithm to evolve
a Commander built of blocks of codes extracted from other
Commanders. The algorithm selects the blocks from a set, join
them to result in a complete Commander, and evaluates it against
other Commanders in a set of maps to calculate a score, which
represents the quality of the Commander. Results of battles in
maps that were not used in the evolution phase show that the
proposed approach presents a great potential to generate high-
quality Commanders without human intervention.
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I. INTRODUCTION

Modern digital games in computers, consoles and, more
recently, smartphones and tablets, have become very advanced
in recent years. However, despite the improved graphics,
physics, sounds, interactivity, among other aspects, players
usually complain against the Artificial Intelligence (AI) of
NPCs (non-player characters) arguing that they are far from
being intelligent. As games become more complex, with more
players, more items and guns, larger scenarios, the develop-
ment of interesting AIs also becomes a very hard task.

In the development of AI for agents in games, it is very
common the use of hard-coded scripts with Finite States
Machines [1], [2] and, more recently, Behavior Trees [3], [4],
[5], [6], which are executed when some specific condition is
reached by the player. When these conditions, or the way the
logic is organized, make the actions to be executed by the agent

very predictable, it may contribute to non-intelligent behavior
of NPCs.

On the other hand, in the last years some researches have
been made with evolutionary [7] and machine learning [8]
algorithms to improve the AI in games [9], [10], [11], [12].
Because the automatic creation of a complete code from
scratch in not possible with current techniques, one of the main
ideas is to automate the creation of parts of the code, instead
of letting the developer do the whole work. This automation
allows a game to be parallely run in a cluster, for instance,
where several thousands or millions of games can be executed
in a feasible amount of time and the collected information be
employed to improve the game’s AI. Thus, new strategies and
behaviors may be automatically discovered by the algorithms,
using almost no human intervention. The objective is that the
generated AI outperforms the hard-coded AI in efficiency and
adaptiveness.

A. Motivation and Contribution
The AI GameDev group promoted an AI competition in

2013 for their Capture The Flag (CTF) game that runs on their
AI Sandbox framework. With the SDK, the developers have
access to the API and to some example AIs (the Commander
of a team of bots) that can battle against other Commanders in
several different maps. Participants were allowed to manually
code their Commanders and to use machine learning and other
optimization algorithms.

Instead of developing a new Commander from scratch,
the approach in this work uses an algorithm to create a
Commander. The algorithm selects random blocks of codes
from known Commanders, arranges them in a sequence to
generate a complete source-code, and runs the battle to eval-
uate the new Commander. An iterative process is repeated,
trying to find even better Commanders. This iterative process
is performed by an evolutionary optimization algorithm, the
Genetic Algorithm (GA, [13]), acting as a Hyper-Heuristic
[14], [15] to evolve the code.

Therefore, the investigation in this paper is to evaluate if
a competitive Commander can be automatically generated by
arranging strategies from human developed Commanders. As
a result, a tool was developed to automate the design of the
Commander by using a template that is filled with blocks of
code from a dataset. The tool can be used by developers to
test their ideas, which are automatically arranged with other
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ones,trying to select the best arrangement of blocks. Using the
tool a Commander may be evolved for a specific map or for
a set of maps. In the end several Commanders are returned,
letting the developer evaluate them, check the blocks that were
selected, and analyze the performance of the Commander.

The organization of this work is as follows: Section II
presents related works. Section IV briefly presents the algo-
rithms to evolve a Commander. Section V presents the method-
ology employed in this work, Section VI presents the test
case and simulations to validate the architecture, discusses and
analyzes the tests. Finally, Section VII presents the conclusions
of this work.

II. RELATED WORK

A bot AI is commonly composed by several hard-coded
conditions and possible responses for different cases - an
scripted AI. In these cases, however, the AI can only cover
or present reactions for situations previously imagined by the
developer. Recently, new approaches using adaptive AI and
evolutionary computation have been researched and yielded
satisfactory results in defeating random and human-made bots.

An evolutionary approach to create a bot AI consists of, by
means of evolutionary algorithms such as Genetic Algorithms,
evolving aspects of an existing bot AI, or randomly generating
an initial population of bots and evolving it to a goal, measured
by an evaluation function.

Examples of researches that obtained good results in evolv-
ing bot AIs can be seen in [9], [10], [11], [12]. Bakkes et al. [9]
evolved team behavior for the Capture The Flag game mode
of Quake III. Their algorithm evolved each state of a bot’s
finite-state machine and then used them for a final one. Cole
et al. [10] used also a genetic algorithm to tune parameters
in a bot for Counter-Strike. In [12], an evolutionary algorithm
was applied to evolve rules for a bot AI in Quake III. Mora et
al. [11] used a Genetic Algorithm to optimize the parameters
of a bot AI for the Unreal game, and Genetic Programming to
evolve states for the behavior of the bot.

III. THE CTF GAME USING AI SANDBOX

The game for which we have evolved the AI is called
Capture The Flag (CTF), and runs on the AI Sandbox [16]
platform. In each game, two teams composed of 4 to 15 bots
compete against each other to score the most points. Points
are scored whenever a team returns an enemy flag (see Figure
1) to its flag scoring location. The Commanders, the "brains"
of the game, are built to control all bots in the battlefield by
sending them orders when called by the game, at specific time
intervals (ticks). The orders defined by the API are: attack,
charge, defend, and move to a location. The Commander has
information about the visibility, flag situation, combat and
status of each bot (see Figure 2 ), thus the user has a lot
of possibilities to create modules to control the bots.

A brief description of the basic idea of each Commander
investigated in this work is shown below. The descriptions
for the example commanders (Random, Greedy, Defender and
Balanced) were taken from the AI Sandbox documentation

Figure 1. Game image [16].

Figure 2. Game simulation image [16].

[16], while Kilroy [17] and BTSample [18] are commanders
released by other developers.
• RandomCommander: sends everyone to randomized

positions or a random choice of flag location. The
behavior of returning the flag to the home base after
capturing it is purely emergent!

• GreedyCommander: always sends everyone to the flag
of the enemy and the guy carrying the flag back again.

• DefenderCommander: leaves everyone to defend the
flag except for one lone guy to grab the other team’s
flag.

• BalancedCommander: an example commander that has
one bot attacking, one defending and the rest randomly
searching the level for enemies.

• Kilroy14: this bot “started with Defender commander
and added some adaptations to help it track visible
enemies and look towards killed teammates to help
make it a better contender”. Then, Balanced flanking
method was added to the current single attacker in the
team. Also, a dictionary is associated with each bot for
associated roles, state and properties. Other strategies
are used, like adding a simple ’evade’ behavior, sorting
distances, and defense functions that help a bot only
defend angles of interest when near outer map walls and
corners.

• btSampleCommander: this bot uses a behavior tree
(BT). It assigns and run a BT for each bot. The function-
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Table I. CHARACTERISTICS OF THE AVAILABLE MAPS, WHERE
R=RESPAWN DEAD BOTS AT EVERY R SECONDS, O=NUMBER OF
OBSTACLES, B=NUMBER OF BOTS PER TEAM, BFD=BASE-FLAG

DISTANCE, AND FDS=FLAG-SCORE DISTANCE. ONLY ONE MAP WAS USED
TO TRAIN THE COMMANDER, BUT ALL OTHERS WERE USED TO TEST IT.

Map R O B BFD FSD
map00 45 medium 5 close close
map01 45 several 15 close close
map02 20 medium 8 far far
map03 2 medium 14 medium far
map10 20 few 8 medium medium
map11 30 few 6 far far
map12 30 few 10 far medium
map13 5 medium 7 close close
map20 45 medium 11 close close
map21 45 medium 9 medium close
map22 10 few 7 far medium
map23 5 several 9 far close
map30 30 several 12 far close
map31 30 several 13 far far
map32 5 several 10 far medium
map33 5 several 12 far close
map40 30 few 8 medium far
map51 30 none 5 far far
map52 30 several 10 far far
map53 30 several 12 far far

ing of the BT used is rather simple: it checks a condition
and chooses between returning flag, take flag, or attack
enemy.

There were 20 maps available in the SDK. Some charac-
teristics that we could identify are presented in Table I. The
base-flag distance is the distance between the respawn location
of a team and the flag location of the opponent team, which
interferes in search of the flag from the base. The flag-score
distance is the distance between the score’s location of a team
and the flag location of the opponent team, which interferes
in the bringing of the flag to the score zone.

IV. THE ALGORITHMS TO EVOLVE A COMMANDER

In this work, a Genetic Algorithm was employed as a Hyper-
heuristic to evolve a Commander. The efficiency of these
methods are well known and applicable to a wide range of
problems [13], [19], [20].

A. Genetic Algorithms
Genetic Algorithms (GAs, [13]) are one of the most em-

ployed evolutionary algorithms for global optimization. It
has been widely used to solve continuous and combinatorial
problems over the years [21], [22], [23].

The GA tries to mimic the process of natural evolution. Usu-
ally, solutions for a problem are represented as chromosomes
of individuals. A population of individuals is evolved over the
generations, generating better individuals in the process. Each
individual has a fitness value, that corresponds to its quality.
Some individuals from the population are selected, usually
based on their fitness, to generate one or more children that will
contain part of the genetic material from the parents. Children
can suffer from genetic mutation, making them more different
and possibly with better characteristics. The new individuals

Let P be a random, initial population
Evaluate P using the fitness function
While some convergence criteria is not satisfied

Let P1 be the individuals selected from P to be parents
Let P2 be the offspring after applying the crossover

operator to P1
Mutate individuals in offspring population P2
Evaluate P2 using the fitness function
Replace individuals from P with individuals from P2

according to some criteria
Return P and corresponding fitness values

Figure 3. Basic pseudo-code of a Genetic Algorithm.

Figure 4. Basic example of a hyper-heuristic flowchart.

are evaluated by the fitness function and may be inserted into
the population, replacing older individuals. This process is
repeated until a stop condition is achieved, for instance, a
maximum number of generations or a desired value for the best
fitness. A basic pseudo-code of a GA is presented in Figure 3.

B. Hyper-heuristics

According to Ross [14], “The key idea is to devise new al-
gorithms for solving problems by combining known heuristics
in ways that allow each to compensate, to some extent, for the
weaknesses of others. They might be thought of as heuristics
to choose heuristics.”. It is important to notice, as shown in
Figure 4), that the solution generated by a hyper-heuristic is
not a solution for a problem, as occurs in common optimization
algorithms. Actually, the solution is the codification of an
algorithm to find solutions for a problem. As a result, the
evaluator has to run the coded solution on the problem, several
times if necessary, to assess its quality.

Therefore, a hyper-heuristic is an optimization algorithm
employed to create another algorithm by, for instance, selecting
and grouping pre-coded components in a template code. Other,
more complex possibility, is the creation of components by the
evolution of the source code [15]. In this paper, the template
approach is employed to evolve the Commanders.

Hyper-heuristics have been successfully applied to solve
several problems, e.g., improvement of optimization algo-
rithms [24], the development of heuristics [25], [26], decision
tree classifiers [27], solving scheduling [28], and timetabling
[29].

The methodology applied in this work is presented in the
next Section.
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V. METHODOLOGY

To evolve a Commander, an adaptive length chromosome
hyper-heuristic genetic algorithm (ALChyper-GA), similar to
the one proposed in [19], was employed to work on a previ-
ously prepared set of low-level heuristics (blocks of codes from
Commanders) and evolve the arrangement of blocks guided
by an evaluation function. The heuristics were taken from the
Commanders presented in Section III.

A. The Template
A Commander is basically composed by the following parts,

which were used as the template to be filled:
Head: it is the top of the source-code’s file. The head of all

Commanders are grouped in the template’s head, which will
contain all imports, functions, global variables, etc, taking care
of repeated names. Moreover, one must identify blocks of code
inside of the Tick function that may be necessary for a specific
Commander to work and include them in the template’s head.
For instance, if one Commander has a function or procedure
implemented in the Tick, then this function or procedure must
be inserted in the template’s head to be accessible for any new
Commander, even if it will be unnecessary.

Tick function: is called by the game, at every interval
of time, to ask the Commander the new orders to submit to
the bots. The Commander must evaluate the environment and
decide what each bot has to do next. To perform this task it
has access to several information (via the API) of the map, the
flag, and each bot. This is the brain of the game, the part that
must be evolved. Because blocks from different Commander
may be inserted into the same Tick function, it must have all
local variables and initialization procedures required by the
Commanders.

Shutdown function: it is responsible for, when the battle
ends, calculate the score/quality of the Commander to be
used by the GA as fitness value. It also must have all local
variables and codes required by the Commanders. Also, this
function is the responsible for calculating the score/quality of
the Commander using the approach employed in this work (see
Section V-D).

B. The Blocks of Code
The hyper-heuristic will create a sequence of codes using

blocks available in the dataset, which can be seen as low-level
heuristics. To create this dataset, one must manually extract
logically independent blocks of code from the Tick function
in the Commanders. Since the source code of the Commanders
are in Python, we have considered that a block is independent
if it is indented/aligned with the first command inside the Tick
function (see Figure 5). Thus, an inner-loop is not independent,
neither an if inside of another block (loop, if ), neither an else
that depends on the if.

However, a loop below another loop may be considered
independent even if the second one depends on a value updated
by the first one. If only one of the loops is inserted in the
template, the code will probably result in a low score and then
this Commander may be replaced. As one can see, there is no

def tick(self):
# INITIAL ALIGNMENT
init = 0

# BEGIN BLOCK
if condition:

commands
# END BLOCK

# BEGIN BLOCK
if condition:

commands
if condition2:

commands
else:

commands
# END BLOCK

# BEGIN BLOCK
for variable in list:

if condition:
for variable2 in list2:

commands
# END BLOCK

Figure 5. Examples of blocks of code.

need to verify this kind of coherence in the code because the
hyper-heuristic can deal with it.

Each extracted block received an integer ID. The initial
dataset had 14 blocks, where a large part had numerical
parameters, for instance, if distance < 1. These parameters
need a high level of experience in the game to be opti-
mized [10]. Taking this into consideration, variants of the
blocks were created with different, empirically chosen, values
(if distance < 2), extending to a total of 44 blocks of code.

C. The Genetic Algorithm
The hyper-heuristic was implemented in the Python pro-

gramming language, using the PyEvolve library1, because it
was the official programming language of the competition,
very flexible, and easy to code.

Crossover: as previously commented, hyper-heuristic uses
adaptive length chromosomes instead of fixed length ones. It
is simply the one-point crossover where for each parent a
different point is selected.

Mutation: two operators were employed at each call to this
function, in a random choice with probability of 50% each.
The first one is the Swap mutation and the second one is the
New Value (in range 0 to 43) mutation.

No corrections are made in the individuals, so repetitions
are allowed.

D. The Evaluation Function
The fitness of and individual (Commander) is calculated in

the Shutdown function using Eq. 2:

1www.pyevolve.com
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flagsPerSec =
myScore

timePassed
, (1)

score = myScore − theirScore + flagsPerSec, (2)

where myScore is how many flags our team captured and
theirScore how many flags we lost, or, in other words, the
enemy team captured, and flagsPerSec is a metric to
standardize the number of flags when battles have different
duration.

VI. SIMULATION RESULTS AND DISCUSSION

For the simulation we used AI Sandbox version 20.7, CTF
SDK version 1.7.1, Python 2.7.3, Ubuntu Linux 12.04 64bit
in a desktop Intel core(TM) i5-2400 CPU 3.10GHz with 4 Gb
RAM. In order to evolve our Commander, named BRAINIAC,
using the hyper-heuristic, we have chosen to put it to battle
against the best Commander available, Kilroy, in map00. By
doing this, one can have an idea of how good it performs in the
map it was trained in as well as in unseen maps, allowing for
an analysis of its effectivity and adaptivity. The configuration
used in hyper-heuristic is presented in Table II.

Table II. CONFIGURATION OF THE HYPER-HEURISTIC.

Parameter Value

Population size 50
Initial chromosome size 12

Maximum chromosome size Unlimited
Generations 130

Crossover rate 0.9
Mutation rate 0.5

Elitism 1
Selection Ranking

The final best evolved Commander, named BRAINIAC,
presents the following chromosome with 14 blocks:

chromo = [18, 7, 24, 3, 35, 12, 27, 6, 11, 9, 32, 34, 38, 24].

A total of 13 different blocks were selected (block number
24 is repeated) from the 44 available (see Section V-B). The
descriptions in Table III, taken from the comments in the
original source codes, are from some of these blocks. The
blocks are sequentially executed in the code, thus a posterior
block may directly interfere in the orders issued by a previous
block. This also means that the resulting Commander may not
present a logic that a human would use and that some blocks
may be useless.

To investigate the effectiveness of BRAINIAC in different
situations, it was tested against all Commanders it evolved
from, playing in all available maps (20). A battle in a map has a
duration of 300 seconds, with respawn of dead bots at every R
seconds, as shown in Table I. For each map, BRAINIAC played
30 times against each Commander (a total of 20∗6∗30 = 3600
battles), and the result of a battle (Won, Drew, or Lost) is based
on the final number of flags captured. The percentage of the
results are presented in Table IV.

Table III. DESCRIPTIONS OF SOME BLOCKS OF CODE.

ID Description
18 check combatEvents for latest activity; remove dead enemies from

tracking list; check for flag drop
7 move scramble bots
24 Return the flag home relatively quickly!; Find the enemy team’s flag

position and run to that.; defend the flag!
3 Second process bots that are in a holding attack pattern.

35 spawncamp - not currently using this role because of spawncamp
protections, but could be altered to camp further from spawn to catch

bots exiting spawn
12 periodically reset back to facing enemy flag
27 In this example we loop through all living bots without orders

(self.game.bots_available); All other bots will wander randomly
6 The same as ID 27, but with different configuration in some

parameters

A. Discussion

The first consideration is that BRAINIAC was evolved to beat
Kilroy, which was supposed to be the best opponent, in map00.
Therefore, BRAINIAC is being evolved to be specialized. Thus
it is expected that it outperforms Kilroy in this map but draw or
lose in other maps. The same is valid for the other opponents
in the simulation. It is important to notice that all percentages
are rounded, thus the sums may not result in 100%.

The first analysis is BRAINIAC versus Kilroy (see Table IV).
In map00, BRAINIAC lost 15% of the battles, whereas we
expected it to win all battles. BRAINIAC lost some battles in
map11, map12, map21, map30, map31, map52, and map53,
but only in the last one the number of defeats was lower
than the number of wins. These results are substantially rele-
vant because one may argue that the hyper-heuristic evolved
a Commander that discovered and exploited weaknesses of
Kilroy, no matter the map. Therefore, the first objective of this
investigation - evolve a commander to beat Kilroy in map00
and maybe in other maps - was achieved. Actually, Kilroy was
outperformed int the majority of the maps.

The second objective is the comparison with other Comman-
ders in map00. BRAINIAC lost 27% of the battles for Balanced,
12% for Random, and 15% for Greedy. Balanced was good
at killing BRAINIAC’s defenders. The other important aspect
to notice is the result of the Defender Commander. For this
map, and for various other maps, the percentage of Draws is
either 100% or close to it. It was possible to observe that the
number of attackers that BRAINIAC sent to capture the flag
was very small, making them get killed. A different strategy
should be evolved for this opponent. Finally, from a total of
180 battles (6 opponents, 30 runs), BRAINIAC Won 118 (66%),
Drew 41 (22%) and Lost 21 (12%). These results were above
expectations.

The third analysis is by map. The maps where BRAINIAC
achieved more than or equal to 70% of wins were: map02,
map13, map30, and map52. The worse results, more than or
equal to 20% of losses, were in maps: map11, map21, map30,
map31, map40, map52, and map53.

We tried to discover patterns to justify BRAINIAC’s per-
formance in those maps using the characteristics in Table I.
However, based only on the results of this simulation, it can be
said that the performance of the evolved bot in a specific map
cannot be easy generalized. Other map details, not included in
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Table IV. SIMULATION RESULTS IN PERCENTAGE (ROUNDED), 20 MAPS, 30 RUNS BY MAP. ZEROS ARE REPRESENTED AS ’-’.

BRAINIAC Kilroy Balanced Btsample Defender Random Greedy
Map Won Drew Lost Won Drew Lost Won Drew Lost Won Drew Lost Won Drew Lost Won Drew Lost Won Drew Lost

map00 0,66 0,23 0,12 0,15 0,09 0,76 0,27 0,15 0,58 - 0,03 0,97 - 0,91 0,09 0,12 0,12 0,76 0,15 0,06 0,79
map01 0,25 0,70 0,05 - 1,00 - - 0,97 0,03 - 0,57 0,43 - 1,00 - 0,13 0,33 0,53 0,17 0,33 0,50
map02 0,81 0,15 0,04 - - 1,00 0,07 0,13 0,80 - 0,07 0,93 0,13 0,33 0,53 0,03 0,17 0,80 0,03 0,20 0,77
map03 0,19 0,68 0,13 - 0,43 0,57 0,03 0,87 0,10 - 0,77 0,23 - 1,00 - 0,03 0,87 0,10 0,73 0,13 0,13
map10 0,56 0,35 0,09 - 0,10 0,90 0,07 0,57 0,37 - 0,03 0,97 - 1,00 - 0,23 0,17 0,60 0,27 0,23 0,50
map11 0,63 0,15 0,22 0,03 0,03 0,93 0,20 0,37 0,43 - 0,03 0,97 0,33 0,07 0,60 0,23 0,20 0,57 0,50 0,20 0,30
map12 0,65 0,19 0,16 0,17 0,27 0,57 0,13 0,30 0,57 0,03 0,17 0,80 0,37 0,13 0,50 0,03 0,17 0,80 0,23 0,10 0,67
map13 0,75 0,24 0,01 - 0,20 0,80 0,03 0,30 0,67 - 0,03 0,97 0,03 0,90 0,07 - - 1,00 - - 1,00
map20 0,32 0,60 0,08 - 0,67 0,33 0,03 0,83 0,13 0,07 0,60 0,33 - 1,00 - 0,13 0,40 0,47 0,27 0,10 0,63
map21 0,22 0,50 0,28 0,23 0,50 0,27 0,50 0,40 0,10 0,03 0,47 0,50 - 1,00 - 0,23 0,50 0,27 0,67 0,13 0,20
map22 0,63 0,26 0,11 - 0,10 0,90 0,27 0,57 0,17 - 0,07 0,93 0,13 0,53 0,33 - 0,20 0,80 0,27 0,10 0,63
map23 0,22 0,78 - - 0,60 0,40 - 1,00 - - 0,70 0,30 - 1,00 - - 0,83 0,17 - 0,53 0,47
map30 0,72 0,05 0,23 0,11 0,09 0,80 0,09 - 0,91 - 0,06 0,94 0,97 0,03 - - - 1,00 0,20 0,14 0,66
map31 0,37 0,33 0,30 0,09 0,31 0,60 0,69 0,09 0,23 - 0,49 0,51 0,29 0,23 0,49 0,11 0,71 0,17 0,63 0,17 0,20
map32 0,37 0,59 0,04 - 0,26 0,74 0,03 0,86 0,11 - 0,46 0,54 - 1,00 - 0,14 0,66 0,20 0,06 0,31 0,63
map33 0,19 0,81 - - 1,00 - - 1,00 - - 0,91 0,09 - 1,00 - - 0,94 0,06 - 0,03 0,97
map40 0,55 0,22 0,23 - 0,51 0,49 0,06 0,14 0,80 - 0,11 0,89 0,46 0,20 0,34 0,06 0,23 0,71 0,83 0,11 0,06
map51 0,60 0,22 0,18 - - 1,00 0,34 0,23 0,43 0,20 0,37 0,43 0,11 0,63 0,26 0,06 - 0,94 0,34 0,11 0,54
map52 0,70 0,05 0,24 0,14 0,09 0,77 0,80 0,09 0,11 - - 1,00 0,03 0,03 0,94 0,17 0,09 0,74 0,31 0,03 0,66
map53 0,56 0,24 0,20 0,29 0,46 0,26 0,17 0,43 0,40 - 0,06 0,94 0,37 0,20 0,43 0,11 0,09 0,80 0,26 0,20 0,54

Average 0,50 0,37 0,13 0,06 0,34 0,60 0,19 0,46 0,35 0,02 0,30 0,68 0,16 0,61 0,23 0,09 0,33 0,57 0,30 0,16 0,54

the study, may be more adequate. If this hypothesis is correct,
then it may be possible to generate a Commander that chooses
a strategy based on the map.

Surprisingly, the Commander that defeated BRAINIAC most
(in average) was the Greedy Commander (30%) and not Kilroy.
However, as previously stated, it can suggest that BRAINIAC
exploited Kilroy’s Achille’s heel. To also outperform the
Greedy Commander, BRAINIAC should battle against it during
the evolution phase, what requires only a small change in
the API’s competition tool to add that Commander as a new
opponent in the list.

In general, as can be seen by the average values, BRAINIAC
has won approximatelly half of the battles (50%), drew 37%
and lost only 13%, making it the clear winner of the simulated
competition.

VII. CONCLUSIONS AND FUTURE WORK

The development of high-quality intelligent behavior for
bots in games is a hard task to be performed manually, and
thus the use of optimization and machine learning algorithms
has been emerging as a trend. However, using this kind of
algorithms to develop a bot AI from scratch is not achievable
yet.

In this paper, we have investigated the use of a Hyper-
heuristic Genetic Algorithm (ALChyper-GA) to evolve the AI
of a Commander to control bots in a Capture The Flag game.
Using blocks of codes from open source Commanders, the
hyper-heuristic evolved the Commander, named BRAINIAC,
by finding an arrangement of available blocks to outperform
a specific opponent (Kilroy, which seemed to be the best
available Commander) at a specific map (map00).

To evaluate BRAINIAC we performed 3600 battles against
several opponents in several maps. BRAINIAC lost 6% of the
battles for Kilroy and 13% of all battles. It is very important to
remember that BRAINIAC was not expected to perform well
in any map different from map00.

In this paper we have shown that: 1) it is possible to evolve a
Commander using blocks of code from other Commanders; 2)
it is possible to evolve a specialized Commander able to exploit
the weaknesses of an opponent; 3) besides being specialized,
the Commander is capable of defeating new opponents in
unseen scenarios, showing a high degree of adaptability; 4)
a Commander specialized at defeating an advanced opponent
may not guarantee that all other opponents will be easily
defeated; 5) there are very strong indicatives that the automated
design of good Commanders is an achievable task and that
high-quality Commanders may be generated from high-quality
opponents, instead of using the simple examples from the API.

This paper worked as a proof-of-concept, and several studies
can be made in future works. Different ALChyper-GA config-
urations can be tested, more Commanders can be used in the
evolution, more maps, longer matches, a different evaluation
function, new blocks of code, etc.

Other important aspect is that several blocks of codes present
numerical values that can be tuned by optimization algorithms
(another Genetic Algorithm, for instance), increasing the per-
formance of the evolved Commander.

As a final contribution, by the results obtained in this work
it is reasonable to expect that a hyper-heuristic may also be
successfully employed to generate codes for other kinds of
games, widening the applications of the proposed ALChyper-
GA.
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