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Abstract—Classification algorithms became an important sub-
ject in games, mainly because of the introduction of new inter-
action paradigms such as the Natural User Interfaces (NUI). It
is possible to find many works that make use of classification
algorithms in the literature, but they still do not provide any
study that could compare different classification algorithms in
the context of human pose classification. Most of the related
work mention the adopted algorithm for classification issues.
Nevertheless, we do not know the answer of the question:
Which classification algorithm could give the best choice in pose
recognition context? In this paper we propose and develop a
detailed analysis, using our own pose detection and tracking
method, called M5AIE method with different algorithms: C5.5
Gain Ratio Decision Tree, Naı̈ve Bayes Classifier and K-Nearest
Neighbor (KNN) Algorithm. As a consequence of our study, we
provide results that can help researchers to choose among the
selected algorithms to use in human pose classification in digital
games context.

I. INTRODUCTION

In the past few years, important advances were achieved
in Computer Vision research, specially in gesture recognition.
These advances create the possibility of application develop-
ment in Human-Computer Interaction, security, health-care and
digital games [1]. According to Tang et al. [2], there is an
increasing demand from game players for games enhanced
functionalities and one of these functionalities is interaction.

The launch of low-cost capture devices of depth images
promoted facilities in gesture recognition research. These de-
vices provide better options for the development of interaction
paradigms such as Natural User Interface (NUI). In 2010,
Microsoft launched the Kinect and described how it works
in [1]. Shotton et al. presented how the device works and
the applicability in digital games. The authors selected the
possible user’s playing movements (driving, kicking, running,
navigating menus, etc) that are applied in Xbox 360 games. For
experiments, the authors used 31 keypoints and their classifier
was developed using tree structures. In another work, Shotton
et al. [3] describe new approaches to human pose estimation
and also use tree structures.

Tang et al. [2] describe a study that uses an interactive
dancing game with real-time recognition of continuous dance
moves from 3D human motion capture. The authors describe
positive feedback from the users experiences. Tang et al. also
describe the development of their own motion recognition
algorithm for dance moves.

Rogez et al. [4] address human pose recognition as a
classification problem. In their work, the authors describe

a pose detection algorithm that is based on tree structures.
Shotton et al. [1], [3], Tang et al. [2], Rogez et al. [4] and many
other related studies mention the used classification algorithm.
However, the authors do not explain why they chose each of
their options, and they do not compare their algorithms with
traditional classification algorithms.

To the best of our knowledge, there is no work in the
literature that performs a comparison among classification
algorithms in human pose recognition in the context of games.
Huang et al. [5] compared Naı̈ve Bayes, Decision Trees, and
Support Vector Machines (SVMs), to evaluate which is the best
measure to use when classification algorithms are compared.
In [5], the authors used datasets that had only two classes (bi-
nary datasets) and compare the use of two different measures:
accuracy and Area Under the Curve (AUC). In this thesis, the
accuracy measure was used in the experiments (Section V) to
evaluate the selected classification algorithms. Amor et al. [6]
used intrusion detection system datasets to compare Naı̈ve
Bayes and Decision Trees. Amor et al. described how a Naı̈ve
Bayes classification algorithm can provide competitive results.
The authors of the two studies [5], [6] did not consider datasets
in human pose classification in their experiments.

In this paper we propose and develop a detailed analysis,
using our own pose detection and tracking method, called
M5AIE method, with different algorithms: C5.5 Gain Ratio
Decision Tree [7], Naı̈ve Bayes Classifier [8] and K-Nearest
Neighbor (KNN) Classifier [9]. We provide results that can
help researchers to choose among the selected algorithms to
use in human pose classification in digital games context.

The main contributions of this paper include the following:

• How different classification algorithms can be used in
human pose detection in digital games context; and

• A comparative analysis of three classification algo-
rithms in human pose classification.

This paper is organized as follows: Section II presents
some of the related studies. Section III describes the M5AIE
method which is the body part labeling and tracking method.
Section IV describes the selected classification algorithms
for this study. The experiments and results are presented in
Section V. Section VI concludes the work with a discussion
and future directions for the research.

II. RELATED WORK

Human action recognition is a related area of Computer
Vision that addresses motion in videos. Mota et al. [10]
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introduced a video motion indexing scheme that was based
on modeling optical flow. In their work, the authors proposed
a global motion tensor descriptor for video sequences, and
optical flow was described with a polynomial representation.
In contrast to Mota et al.’s work, this work is concerned with
the detection and tracking of body parts in RGB-D image
sequences and with pose identification in single frames of the
sequence.

Movement recognition in games has many different ap-
proaches. Many of the movement recognition technologies
apply video or frames in real time as an input of a recog-
nition system. Raskar et al.’s work [11] presents one of the
approaches which use photosensitive tags to decode optical
signals can capture locations of each point, orientation, in-
cident illumination and reflectance. The photosensitive tags
are markers which are imperceptible. However, the usage of
tags can complicate their application in digital game context,
because they are very specific. Also, Raskar et al.’s work detect
movements but it does not classify human poses. A low-cost
approach is described by Wang and Popović [12]; these authors
propose an easy-to-use color glove. In that case, even the color
gloves are inexpensive; it was necessary to use instrumented
gloves in the construction of the database. The database is used
to recognize letters in sign language. Nevertheless, Wang and
Popović’s work performs pose virtual reconstruction, which
is unnecessary in the context of this work. Wang and Popović
applied their work on sign language finger spelling. Figueiredo
et al. [13] also make use of gloves, and their study made use
of a yellow gloves, which were applied to interaction only,
without pose or movement recognition. Almeida [14], as Wang
and Popović, worked with sign language and they made use of
a depth sensor to capture the movements. Wang and Popović
and Almeida use classifiers but they did not detail the used
classifiers. Figueiredo et al.’s work do not use classifier because
their focus is on interaction.

Bourdev and Malik [15] and Bourdev et al. [16] apply a two
dimensional image as input and estimates the three dimension
coordinates of the selected keypoints. Moreover, it is presented
the definition of Poselets as a particular part of the human pose
under a given viewpoint. This approach is defined with a set of
examples that are close in 3D configuration space. The main
contribution of [15], [16] is the notion of a part of a pose, a
“poselet”, and an algorithm for selecting good poselets. Each
poselet provides examples for training a linear SVM classifier.
However, none of these studies detailed why they chose the
selected classifier.

Bleiweiss et al. [17] describe a real-time framework that
blends the players actual movements, which are tracked using a
depth sensor, with pre-defined animation sequences. Accord-
ing to the authors, their depth-based framework enables an
enhanced visual feedback mechanism by understanding the
player’s full body motion and seamlessly blending it with pre-
animated content. Bleiweiss et al. made use of a full body
tracking algorithm proposed by Ganapathi et al. [18]. In [17],
the authors presented a system whose skeleton mimics the
player’s movements.

The work of Schönauer et al. [19] describes a full body
input for rehabilitation. The contribution of their work includes
the implementation of serious game targeting rehabilitation
of patients with chronic pain of the lower back and neck.

Schönauer et al. argue that the tracker used for their motion
capture system, which is an io-tracker [20], is marker based
and uses an infrared optical motion tracking system. In [19],
Schönauer et al. used a classification tree for posture estimation
and did not compare the classifier with any other algorithm.

An interactive dancing game was presented by Tang et
al. [2]. The motion recognition algorithm was developed based
on a finite state machine representation and a Block Matching
Cost. The game uses motion templates, and the Block Match-
ing Cost calculates the cost for matching a frame of the player’s
move with a frame of a template move.

Tian et al. [21] presented a semantic feature to represent
characteristics of different human motion classes. Cimen et
al. [22] describe how they classify human motion with descrip-
tors that are related to emotion classification. Sun et al. [23]
show how conditional regression forests can be used in human
pose estimation.

In our work, we chose the Kinect since it is a low-cost
device and it provides real-time movement recognition. There
are available technologies to integrate the Kinect with Unity3D
engine, which was used in the development of the Jecripe
game [24]. This game inspired the selected movements in
our experiments. The next section presents some games and
advantages of using movement recognition in digital games.
The following section describes the M5AIE method for human
body parts detection and tracking.

III. THE M5AIE METHOD

The M5AIE method aggregates different concepts; some
of them were not originally developed for detecting, tracking,
and pose classification. The computational flow of the M5AIE
algorithm is illustrated in Fig. 1. After the alignment of the
RGB and depth information of a given frame, we use the Min-
imum Background Subtraction algorithm [25] to address most
of the unnecessary information in the frame (Section III-A). In
turn, the area of the person facing the sensor is replaced by the
few pixels that define its discrete medial axis transformation
(Section III-B). The detection of body part candidates begins
by building a graph in which each pixel of the medial axis is
seen as a vertex that is connected to its neighbors by weighted
edges; each weight is given by the Euclidean distance between
a pair of pixels (Section III-C). Using this graph, body part
candidates are detected through the AGEX points detection
method (Section III-D). A labeling step is performed to relate
AGEX points to their respective body parts (Section III-E).
When labeling fails, the information computed in the previous
frame is used in combination with the ASIFT method for
tracking the body parts into the current frame (Section III-F).
Pose classification is performed in the last stage of our method
(Section IV).

A. Minimum Background Subtraction Algorithm

The Minimum Background Subtraction algorithm is com-
posed of training and subtraction stages. During the training
stage, the approach limits the background values regarding the
following assumptions: indoor environment, static background,
and static position and orientation of the sensor. The algorithm
is presented in [25]. We have chosen to use this background
subtraction algorithm because it had the best results in previous
experiments [26].
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Fig. 1. Flowchart of the proposed M5AIE approach applied to RGB-D images to identify the pose of the imaged subject. See Section III for details. The
question mark after the AGEX Points Detection stage verifies whether the Labeling stage of the algorithm can be performed.

B. Discrete Medial Axis Through Distance Transformation

The 2D medial axis transform constitutes finding the cen-
ters of the maximum disks that can fit inside of an object [27].
We use such a structure to reduce the number of pixels that
are to be considered as vertices in the graph computation (Sec-
tion III-C). By doing so, we reduce the processing overload of
the next stages of our method. We have performed medial axis
extraction by computing the distance transform of the binary
image that results from the background subtraction.

C. Graph Construction Based on Depth Image

We use image pixel coordinates to build a graph in linear
time, as implemented in Schwarz et al. [28]. In such a case, two
vertices are considered to be neighbors if the corresponding
pixels are separated by a maximum distance threshold δ. We
follow Plagemann et al.’s strategy [29] to connect two vertices
and Schwarz et al.’s scheme to weight the edges with the
Euclidean distance of the imaged surface points related to the
vertices. However, we build the graph with medial axis pixels
only, while previous works use the whole shape of the user.
As a result, we get an optimized graph.

D. Accumulative Geodesic Extrema Points

Accumulative Geodesic Extrema Points, known as AGEX
points, are selected while considering the distances of the
points according to the edges that connect the vertices in the
graph Gt [29]. This method maximizes the distances of the
points using the Dijkstra [30] algorithm. A detailed description
of AGEX is presented in [29].

E. Body Part Labeling

The initialization step for body part labeling comprises
a person facing the camera for a few seconds and taking a
snapshot on a T-pose. Because the first AGEX point (AGEX1)
is the centroid, we can define the lower and upper parts of the
body and separate the other points (from AGEX2 to AGEX6)
according to their coordinate values.

F. ASIFT-Based Body Parts Tracking

In our tracking strategy, ASIFT is used to identify the
features in the frame t that are related to the AGEX points iden-
tified in frame t− 1. However, ASIFT (more details in [31])
cannot be used directly in tracking due to some practical issues:
(i) the time execution increases as the input images become
larger; (ii) in the case of background segmented images, ASIFT
detects too many features in the border of the foreground
region; (iii) there is not necessarily a matching feature for every
pixel from one image to another; and (iv) ASIFT can match
two features whose positions are far away from an expected
conservative maximum distance. We addressed these problems
using the following heuristics.

Use of tiny images instead of complete frames: to avoid
the heavy computational load of ASIFT applied to the whole
image, we apply ASIFT on five tiny images that contain the
body parts in frame t− 1 and the sub-images of the regions
in which the same body parts can possibly be found in frame
t.

Blurring the background of sub-images: the ASIFT
method usually detects features only at the frontier between
the foreground and the background regions because of the high
contrast between fore- and background pixels. As a result, the
blurred images improve the detection of ASIFT features inside
the foreground region.

Searching in a region instead of searching for coordi-
nates only: this heuristic is related to the problem that there
is not necessarily a matching feature for every pixel from one
image to another. We handle this problem in the following
way: if there is no body part matching feature from the sub-
image at t− 1 with the sub-image at t, then we search for the
point P , which is the nearest body feature in t− 1 that has a
match in t. Then, P is considered the body part final result.

Body-parts position estimation: to assert the consistency
of the matching of ASIFT features in the sub-images of
consecutive frames, we estimate the expected location of the
feature in frame t using the uniform linear motion equation
considering its location in frames t− 1 and t− 2.

In our framework, the acquisition of the color and the
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depth images is performed by the same device (a Kinect),
and the RGB-D image alignment is performed by Kinect
SDK. However, due to the asynchronous nature of the image
sensors, the final aligned RGB-D image may be ill-formed. As
a result, background color pixels can be incorrectly mapped to
foreground regions. To make the proposed matching procedure
suitable for tracking, we found four major situations to be
handled: (i) the matched ASIFT feature and the point estimated
with the uniform linear motion equation correspond to well-
mapped background pixels; (ii) the matched ASIFT feature
resides in the well-mapped background while the estimated
point is part of the users body; (iii) the matched ASIFT feature
belongs to the human body, and the estimated point is part of
the background; and (iv) both the matched ASIFT feature and
the estimated point correspond to the actual body. Due to space
restrictions, this paper does not include a discussion about how
to handle each situations.

IV. POSE CLASSIFICATION

Classification techniques were used in this study to identify
categorical labels such as “Pose A” and “Pose B” for the
current subject, according to the position of each of the body
parts that are detected or tracked in a given image of the
sequence.

The human pose classification was performed using three
different algorithms: the C4.5 Gain Ratio Decision Tree [7], the
Naı̈ve Bayes classifier [8] and the K-Nearest Neighbor (KNN)
classifier [9]. These algorithms were selected due to their low
computational load and simplicity, which makes them suitable
for real-time applications.

A. C4.5 Gain Ratio Decision Tree

Decision trees follow the “divide and conquer” approach.
According to Amor et al. [6], the decision tree structure is
composed of the following elements: (i) decision node, which
specifies a test attribute that is responsible for the comparison
of an attribute value with a constant; (ii) an edge that is one of
the possible attribute values (the test attribute is placed here);
and (iii) leaf nodes that give the classification to which the
object belongs.

Decision trees have two stages: building the tree and the
classification itself. Building the tree constitutes selecting the
test value for each decision node and the classification labels of
each leaf. Decision trees are built based on a given training set.
The classification stage is made starting from the root of the
decision tree. To go down the tree, tests are made to achieve
one of the leaf nodes.

Many algorithms were developed for the construction of
decision trees for the classification task. In the experiments,
the considered decision tree was the C4.5 Gain Ratio Decision
Tree algorithm developed by Quinlan [7]. The C4.5 Gain Ratio
Decision Tree selects the attribute that has the largest number
of possible values to be assumed as the current node in the
tree construction. This criterion is an extension to information
gain. However, the Gain Ratio applies a normalization to
information gain. Then, the selection of an attribute to be the
current node in the tree is defined on the largest gain ratio
value. The Gain Ratio value is obtained by the information
gain and the normalization of the probability of each of the
attribute values.

B. Naı̈ve Bayes Classifier

Naı̈ve Bayes makes a strong independence relation in
which the features are independent in the context of a session
class [6], [8]. The Naı̈ve Bayesian classifier works, basically,
as follows: (i) the training set is composed of tuples, and these
tuples are attribute values in a predefined order; (ii) for each
class, a conditional probability can be calculated based on the
used training set; and (iii) the likelihood of a testing tuple
is defined based on the calculated conditional probabilities of
each class.

The main difference between the two mentioned classifiers
is that while C4.5 is a decision tree classifier, the Naı̈ve Bayes
is based on the Bayes rule of conditional probabilities. In
decision trees, the attributes are tested, and the final clas-
sifications are at the leaves. In this approach, the attributes
have a high level of dependency on each other. However, the
Naı̈ve Bayes classifier evaluates each attribute individually,
considering them to be independent.

C. K-Nearest Neighbor Classifier

In 1967, Cover and Hart [9] introduced the k-Nearest
Neighbor as a pattern classifier. A training set is built by
tuples and a tuple X, whose class is unknown, is then tested.
The tuple X is compared with each of the training tuples.
The k closest tuples to X are considered to predict its class.
“Closeness” is considered a distance metric, and it can be
calculated, for example, with the Manhattan, Chebyshev or
Euclidean distance. The unknown class of X is assigned to the
most common class among its k nearest neighbors.

D. Bounding Box and Grid

In this work, the algorithms receive as input the labels and
the locations of the body parts according to an N ×N grid
that is defined inside the bounding box that contains the whole
body of the imaged subject. Fig. 2 shows the grid squares
with N = 8. A bounding box was used to identify the cell
number of the body parts. The bounding box provides the
relative positions according to the detected human body. This
approach makes it possible to identify the cell number of the
body parts, independently of their occupied positions in the
whole segmented image.

Fig. 2. A bounding box limits the human body and it is divided into N ×N
cells. In this example, N = 8.
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The considered classification algorithms (C4.5, Naı̈ve
Bayes and KNN) require the execution of a training stage
to build a model to be used during the classification of the
poses (see Figure ??). In our work, the dataset is used both
for training and testing. The class of each tuple comprises the
cell-coordinates in the grid that body parts assume at each
image in a sequence. The pose classification of each training
tuple was made manually in each frame. In the classification
procedure, a tuple constitutes a sequence in which the cell
position of every individual body part is described in the same
order as the order that appears in the attributes definition. The
following code illustrates an example of how the attributes are
declared and a few training tuples:

@relation poses

@attribute headx NUMERIC
@attribute heady NUMERIC
@attribute rightFootx NUMERIC
@attribute rightFooty NUMERIC
@attribute leftFootx NUMERIC
@attribute leftFooty NUMERIC
@attribute leftHandx NUMERIC
@attribute leftHandy NUMERIC
@attribute rightHandx NUMERIC
@attribute rightHandy NUMERIC
@attribute pose {tpose, dancing, guitar,
drum, kick, punch, kickAndPunch}

@data
0, 3, 7, 5, 7, 3, 1, 0, 1, 7, tpose
0, 4, 7, 5, 7, 3, 1, 0, 1, 7, tpose
0, 4, 7, 6, 7, 1, 0, 0, 3, 7, dancing
0, 3, 7, 5, 7, 2, 0, 0, 3, 7, dancing
0, 5, 7, 6, 7, 3, 1, 0, 3, 7, guitar
0, 3, 7, 5, 7, 3, 3, 0, 3, 7, drum
...

The first ten attributes are numeric. Each of these attributes
is related to a coordinate of the considered body parts. The
pose attribute is the only one which is categorical. The training
data begins with the label @data. Each attribute is separated
by a coma. The last attribute is the testing class.

V. EXPERIMENTS AND RESULTS

The described approach was implemented in Python and
was evaluated on real image sequences. The ASIFT algorithm
was implemented in C++. We used the reference implementa-
tion provided by Morel and Yu [32]. To perform the distance
transformation, we used OpenCV adaptive thresholding and
other basic image processing procedures. The image sequences
were collected using a Kinect sensor, which provides both
depth and color images with a 640× 480 pixel resolution. The
resolution of the tiny images was set to 80× 80.

The classification algorithms were evaluated using the data
mining tool WEKA 3.6.8 (Waikato Environment for Knowl-
edge Analysis) [33]. To adopt the traditional classifiers C4.5
Gain Ratio Decision Tree, Naı̈ve Bayes and KNN, we used the
J48, Naı̈ve Bayes and Ibk implementations that are available
in the WEKA tool, respectively.

(a) T-pose (b) Dancing

Fig. 3. Illustration of T-pose and dancing human poses in a game developed
by our research group that inspired our experiments.

(a) Play guitar (b) Play drums

Fig. 4. Illustration of Play guitar and Play drums human poses.

We used k-fold cross-validation in our test. In this ap-
proach, the dataset is randomly partitioned into k subsets. Only
one subset is used as validation data for testing the model.
The other k − 1 subsets are used for training the classification
model. The cross-validation process is repeated k times. Each
of the k subsets is used only once for validation. The final
result is the average of the results obtained at each round. In
our experiments, we used k = 10.

The goal of these experiments is to answer the following
questions:

1) Can the classifiers make correct predictions with
different poses and the same class?

2) Is there any difference in the results when using
different users to build the data set?

3) Which is the best value for N in the grid N ×N?
4) Which of the three considered classification algo-

rithms is the best for human pose prediction in the
game context?

We previously collected sequences with human poses that
were inspired in the Jecripe game, developed by our research
group [24]. The poses define the classes, which are: T-pose,
dancing, play guitar, and play drums (see Fig. 3 and Fig. 4).
Three other movements, which were not related to the game,
were also included: punch, kick and kick + punch.

We characterize the classes as the following: The T-pose
constitutes a person with both arms and hands at the same level
as the shoulders. In the dancing class, one of the hands is on
the head; the other hand is on the hip, and one or both feet are
on the ground. As a consequence, we have six combinations of
poses for the class dancing: (i) left hand on the head and feet
on the ground; (ii) left hand on the head and moving left foot;
(iii) left hand on the head and moving right foot; (iv) right
hand on the head and feet on the ground; (v) right hand on
the head and moving right foot; and (vi) right hand on the
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TABLE I. IMAGE SEQUENCE EVALUATION FOR VOLUNTEER A.

Sequence Movement Number Tracking
Number of Images Until The End

Sequence A1 dancing (i) 140 yes
Sequence A2 dancing (i) 116 yes
Sequence A3 dancing (ii) 100 yes
Sequence A4 playing guitar 140 yes*
Sequence A5 playing drums 190 yes*
Sequence A6 playing drums 130 yes*
Sequence A7 playing drums 130 yes*
Sequence A8 punch (I) 84 yes
Sequence A9 punch (I) 81 yes**
Sequence A10 kick (a) 66 yes
Sequence A11 dancing (iii) 58 yes
Sequence A12 dancing (ii) 68 yes
Sequence A13 kick + punch (A) 57 yes
Sequence A14 dancing (iv) 104 yes
Sequence A15 dancing (v) 152 yes
Sequence A16 dancing (vi) 98 yes
Sequence A17 kick + punch (D) 55 yes
*Tracked until the end of the sequence but it had a problem

in the presence of self-occlusion.
**Problem caused by movement velocity.

TABLE II. IMAGE SEQUENCE EVALUATION FOR VOLUNTEER B.

Sequence Movement Number Tracking
Number of Images Until The End

Sequence B1 dancing (i) 99 yes
Sequence B2 dancing (iv) 84 yes
Sequence B3 dancing (iii) 84 yes
Sequence B4 dancing (ii) 62 yes
Sequence B5 dancing (v) 72 yes
Sequence B6 dancing (vi) 79 yes
Sequence B7 punch (I) 65 yes
Sequence B8 punch (II) 75 yes
Sequence B9 kick (b) 70 yes
Sequence B10 kick (a) 79 yes
Sequence B11 kick + punch (C) 73 yes
Sequence B12 kick + punch (D) 74 yes
Sequence B13 kick + punch (B) 99 yes
Sequence B14 kick + punch (A) 97 yes

head and moving left foot. All of the six poses have the same
class, which is dancing.

In the playing guitar class, the user imitates the moves
of playing an instrument, shaking the right hand while the
left hand stays at the same level as his/her shoulders. The
playing drums class is when the user shakes his/her hands up
and down alternately. There are two possible poses for the
punch class, both of which have feet on the ground: (I) right
hand and (II) left hand. Similar to the punch, the kick class
can be made with: (a) right foot and (b) left foot, with both
hands below the centroid. The kick + punch class can be made
in four different poses: (A) kick with left foot and punch
with left hand; (B) kick with left foot and punch with right
hand; (C) kick with right foot and punch with right hand; and
(D) kick with right foot and punch with left hand.

We used three different volunteers in our experiments: A,
B and C. For each user, we collected a different number of
sequences. Volunteer A is male, 1.76 meters tall, and has dark
hair. Table I shows the collected sequences with Volunteer A.
We collected 17 sequences with all of the classes.

Volunteer B is male, 1.90 meters tall and has blond hair.
Volunteer B made 14 different sequences in four classes, all
of them without self-occlusion. All of the possible poses for
each of the four classes were collected. Table II details each
of the collected poses from Volunteer B.

Volunteer C is female, 1.66 meters tall and has dark hair.
Similar to Volunteer B, we collected sequences of four dif-

TABLE III. IMAGE SEQUENCE EVALUATION FOR VOLUNTEER C.

Sequence Movement Number Tracking
Number of Images Until The End

Sequence C1 dancing (i) 48 yes
Sequence C2 dancing (iv) 69 yes
Sequence C3 dancing (iii) 45 yes
Sequence C4 dancing (ii) 54 yes
Sequence C5 dancing (v) 54 yes
Sequence C6 dancing (vi) 45 yes
Sequence C7 punch (I) 90 yes
Sequence C8 punch (II) 88 yes
Sequence C9 kick (b) 49 yes
Sequence C10 kick (a) 54 yes
Sequence C11 kick + punch (C) 90 yes
Sequence C12 kick + punch (D) 100 yes
Sequence C13 kick + punch (B) 85 yes

ferent classes with Volunteer C. Additionally, no problem was
detected during the collection of the poses, which shows that
the M5AIE method works well in sequences that do not have
self-occlusions. We collected 13 sequences with Volunteer C
because we wanted to test fewer training tuples with the pose
kick + punch (A).

We observed that the M5AIE method had problems with
poses that had self-occlusions. The problems were detected
in the playing guitar and playing drums poses. This problem
detection was crucial for the collection of the other users
sequences; as a result, we avoided collecting these poses.
However, we kept the results to make the tuples and test the
classification algorithms. In only one sequence, the tracking
method had problems that were caused by the movement
velocity, but the pose classification was not affected.

As mentioned in Section IV, the dataset that was used for
both the training and testing comprises the grid-coordinates
that body parts assume at each frame of a set of image
sequences that were produced for this work and the manual
classification of the pose in each frame. We varied the number
of cells of the grid in each frame, as follows: 8×8 (Table IV),
16×16 (Table V), 32×32 (Table VI) and 64×64 (Table VII).

The set of k values for the KNN algorithm is {1, 3, 5, 7, 9,
11}, and different distances were used in our experiments. We
combined the set of k values with the Manhattan, Chebyshev
and Euclidean distances. For each of the N values of the grids
N ×N , we made a data set that had all of the tuples from the
three different users that made the described poses and 2128
tuples.

Table IV, where N = 8, shows that the Naı̈ve Bayes
Classifier gave the highest number of incorrectly classified
instances (21.22%). For all of the other classifiers, the per-
centage of instances that were correctly classified were above
93%. The C4.5 Gain Ratio Decision Tree had similar results as
the KNN algorithm when k >= 3. As the k value increased,
the percentage of correctly classified instances decreased.
Nevertheless, the Manhattan distance had the best results for
every k value. The best of all of the results in Table IV were
with K = 1, primarily from using the Manhattan distance, with
a 98.24% correct. Most of the errors made by the classifier
were from confusing dancing with punch and kick + punch
classes.

Considering N = 16 (Table V), once more, the Naı̈ve
Bayes Classifier gave the highest percentage of incorrectly
classified instances, with 28.74%. For all the other classi-
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TABLE IV. RESULTS FOR N = 8.

Classification with Grid 8 × 8 Correct* Incorrect**
C4.5 Gain Ratio Decision Tree 97.26% 2.74%
Naı̈ve Bayes 78.78% 21.22%
KNN with K=1 and Manhattan Distance 98.24% 1.76%
KNN with K=1 and Chebyshev Distance 98.07% 1.93%
KNN with K=1 and Euclidean Distance 98.24% 1.76%
KNN with K=3 and Manhattan Distance 97.79% 2.21%
KNN with K=3 and Chebyshev Distance 97.01% 2.99%
KNN with K=3 and Euclidean Distance 97.66% 2.34%
KNN with K=5 and Manhattan Distance 96.89% 3.11%
KNN with K=5 and Chebyshev Distance 95.94% 4.06%
KNN with K=5 and Euclidean Distance 96.60% 3.40%
KNN with K=7 and Manhattan Distance 96.23% 3.77%
KNN with K=7 and Chebyshev Distance 94.22% 5.78%
KNN with K=7 and Euclidean Distance 95.99% 4.01%
KNN with K=9 and Manhattan Distance 95.94% 4.06%
KNN with K=9 and Chebyshev Distance 93.32% 6.68%
KNN with K=9 and Euclidean Distance 95.86% 4.14%
KNN with K=11 and Manhattan Distance 96.31% 3.69%
KNN with K=11 and Chebyshev Distance 93.20% 6.80%
KNN with K=11 and Euclidean Distance 96.15% 3.85%
*Correctly Classified Instances
**Incorrectly Classified Instances

TABLE V. RESULTS FOR N = 16.

Classification with Grid 16 × 16 Correct* Incorrect**
C4.5 Gain Ratio Decision Tree 97.39% 2.61%
Naı̈ve Bayes 71.26% 28.74%
KNN with K=1 and Manhattan Distance 98.84% 1.16%
KNN with K=1 and Chebyshev Distance 98.31% 1.69%
KNN with K=1 and Euclidean Distance 98.79% 1.21%
KNN with K=3 and Manhattan Distance 98.36% 1.64%
KNN with K=3 and Chebyshev Distance 96.33% 3.67%
KNN with K=3 and Euclidean Distance 97.97% 2.03%
KNN with K=5 and Manhattan Distance 98.02% 1.98%
KNN with K=5 and Chebyshev Distance 95.60% 4.40%
KNN with K=5 and Euclidean Distance 97.58% 2.42%
KNN with K=7 and Manhattan Distance 97.39% 2.61%
KNN with K=7 and Chebyshev Distance 95.22% 4.78%
KNN with K=7 and Euclidean Distance 97.29% 2.71%
KNN with K=9 and Manhattan Distance 97.20% 2.80%
KNN with K=9 and Chebyshev Distance 94.30% 5.70%
KNN with K=9 and Euclidean Distance 96.86% 3.14%
KNN with K=11 and Manhattan Distance 96.47% 3.53%
KNN with K=11 and Chebyshev Distance 92.90% 7.10%
KNN with K=11 and Euclidean Distance 96.18% 3.82%
*Correctly Classified Instances
**Incorrectly Classified Instances

fications, the incorrectly classified instances were less than
8%. The C4.5 Gain Ratio Decision Tree had only similar
results with k >= 7 considering the Manhattan and Euclidean
distances. If we consider only the values with the same value
k, the Chebyshev distance gave the worst results. On the other
hand, the Manhattan distance gave the best results. We could
observe that the best results were obtained again with k = 1
and the Manhattan distance. Again, increasing the value of k,
the results become worse for all of the used distances. The best
percentage of correctness with N = 16 (98.84%) was slightly
better than with N = 8 (98.24%), when both used k = 1 and
the Manhattan distance. The dancing class was confused with
the playing guitar, punch and kick + punch classes.

With N = 32, similar to with N = 8 and N = 16, the
Naı̈ve Bayes classifier gave the smallest percentage of correctly
classified instances (76.17%). All of the other results had
more than 95% correctness on instances of classification. If we
compare the C4.5 algorithm with KNN (without the Chebyshev
distance), we obtain similar results to when k >= 9. The
best results were with K = 1 but with the Euclidean distance
(99.77%), which was followed very closely by the Manhattan
distance (99.72%). This result is even better than the best

TABLE VI. RESULTS FOR N = 32.

Classification with Grid 32 × 32 Correct* Incorrect**
C4.5 Gain Ratio Decision Tree 98.59% 1.41%
Naı̈ve Bayes 76.17% 23.83%
KNN with K=1 and Manhattan Distance 99.72% 0.28%
KNN with K=1 and Chebyshev Distance 99.58% 0.42%
KNN with K=1 and Euclidean Distance 99.77% 0.24%
KNN with K=3 and Manhattan Distance 99.39% 0.61%
KNN with K=3 and Chebyshev Distance 98.45% 1.55%
KNN with K=3 and Euclidean Distance 99.34% 0.66%
KNN with K=5 and Manhattan Distance 99.34% 0.66%
KNN with K=5 and Chebyshev Distance 97.93% 2.07%
KNN with K=5 and Euclidean Distance 98.83% 1.17%
KNN with K=7 and Manhattan Distance 99.15% 0.85%
KNN with K=7 and Chebyshev Distance 97.32% 2.68%
KNN with K=7 and Euclidean Distance 98.64% 1.36%
KNN with K=9 and Manhattan Distance 98.73% 1.27%
KNN with K=9 and Chebyshev Distance 95.82% 4.18%
KNN with K=9 and Euclidean Distance 98.03% 1.97%
KNN with K=11 and Manhattan Distance 98.26% 1.74%
KNN with K=11 and Chebyshev Distance 95.21% 4.79%
KNN with K=11 and Euclidean Distance 97.37% 2.63%
*Correctly Classified Instances
**Incorrectly Classified Instances

TABLE VII. RESULTS FOR N = 64.

Classification with Grid 64 × 64 Correct* Incorrect**
C4.5 Gain Ratio Decision Tree 98.54% 1.46%
Naı̈ve Bayes 77.02% 22.98%
KNN with K=1 and Manhattan Distance 99.81% 0.19%
KNN with K=1 and Chebyshev Distance 99.62% 0.38%
KNN with K=1 and Euclidean Distance 99.81% 0.19%
KNN with K=3 and Manhattan Distance 99.62% 0.38%
KNN with K=3 and Chebyshev Distance 98.26% 1.74%
KNN with K=3 and Euclidean Distance 99.34% 0.66%
KNN with K=5 and Manhattan Distance 99.44% 0.56%
KNN with K=5 and Chebyshev Distance 97.23% 2.77%
KNN with K=5 and Euclidean Distance 99.20% 0.80%
KNN with K=7 and Manhattan Distance 99.25% 0.75%
KNN with K=7 and Chebyshev Distance 96.76% 3.24%
KNN with K=7 and Euclidean Distance 98.92% 1.08%
KNN with K=9 and Manhattan Distance 99.01% 0.99%
KNN with K=9 and Chebyshev Distance 95.39% 4.61%
KNN with K=9 and Euclidean Distance 98.50% 1.50%
KNN with K=11 and Manhattan Distance 98.50% 1.50%
KNN with K=11 and Chebyshev Distance 94.55% 5.45%
KNN with K=11 and Euclidean Distance 97.84% 2.16%
*Correctly Classified Instances
**Incorrectly Classified Instances

result in Table V. Most of the incorrectly classified instances
occurred with instances of dancing, punch and kick + punch.
Table VI shows the results for N = 32.

Table VII shows the results with N = 64. As was expected,
the Naı̈ve Bayes had 22.98% incorrectly classified instances,
followed by KNN with k = 11 and the Chebyshev distance,
which had 5.45% incorrect. All of the others gave more than
94% correctly classified instances. The C4.5 algorithm had
similar results with only KNN when k = 11. Similar to the
other best results, in Table VII, KNN with k = 1 gave the best
results with both distances, Manhattan and Euclidean, with
exactly the same value, 99.81%. Because the results are very
close to 100% using N = 64, we could observe a relatively
high number of errors using Naı̈ve Bayes, which gave errors
in the classes dancing, punch and kick + punch.

Until this point, we exposed the results, showing each
table in an isolated way. However, we can observe additional
results by comparing the tables with one another. All of the
algorithms had similar results while considering the same
algorithm with different N values. In all of the cases, the worst
results came from the Naı̈ve Bayes Classifier. The C4.5 had
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similar results with KNN depending on the k value of each
Table. Although the results are very similar from one table
to another, we can see that the results of the C4.5 algorithm
and KNN become better when N becomes higher. Considering
the distances, in general, the Manhattan gave the best results
if we compare the same k value in every Table. The Euclidean
distance gave very similar results to the Manhattan, and only
once the results from the Euclidean distance were better than
the Manhattan distance. In all of the KNN experiments, the
Chebyshev distance gave a percentage of incorrectly classified
instances that was higher than for the other two considered
distances.

Returning to the main goals of the experiments, we can
conclude that:

1) With the exception of the Naı̈ve Bayes, all of the
other classifiers had at least 92% of the instances
classified correctly. With this result, we consider that
the tested classifiers can make correct predictions
with different poses of the same class.

2) Even using three different users to build our data
set, we had a high number of instances correctly
classified. Thus, we consider that the usage of dif-
ferent volunteers in our experiments did not affect
the results. Moreover, these results showed that the
use of the M5AIE method for body part detection and
tracking works properly in movements without self-
occlusions. Further experiments should be performed
using dozens (or maybe hundreds) of volunteers to
check whether the classification models would be
affected. If this results are similar with a much larger
number of volunteers, then the classification models
are good for additional volunteers.

3) Because the results were improved with increasing
values of N , the best results were given with N = 64.
However, if we continue to increase the value of
N , the results could be improved until a certain
value. However, there is a possibility that, from a
certain value on, the results might not become any
better or they even might start to become worse.
The last assumption is justified because the number
of grids can become so large that each pixel could
occupy more than one cell in the grid. Again, further
experiments should be performed to find the exact
value of N for which the results obtain the best
percentage of instances that are correctly classified.

4) The classification algorithm with the best results was
the KNN algorithm with k = 1 while using the
Manhattan distance.

As mentioned in 3, we believe that if we continue to
increase the value of N , it could improve the results even
more until a certain limit value is obtained. From that limit
value for N onward, the results could start to become worse
(as mentioned in item 3, above). Perhaps if we normalized
the coordinates according to the bounding box instead of a
grid divided into cells, we could obtain the best results. We
consider the KNN with k = 1 and the Manhattan distance as
the winning algorithm in our experiments.

According to the concept of each distance measure, our
inference for why we obtained the worst results using the

Chebyshev distance is that this distance undervalues the dis-
tance between the body parts in each frame and the classifier
makes mistakes when making its predictions. The Chebyshev
distance gives the longest distance considering all of the axis
distances from point A to another point B. Then, the body parts
can be closer than they actually are to each other. However,
the Manhattan and Euclidean distances can be more realistic
for human movements. This last assumption should be the
reason for the best results for the Manhattan distance, and the
Euclidean distance gives very similar results in comparison to
the Manhattan distance.

VI. CONCLUSIONS AND FUTURE WORK

We made a comparison among classification algorithms in
human pose recognition and game context. In this paper we
proposed and develop a detailed analysis using our own pose
detection and tracking method, called M5AIE with different
algorithms: C5.5 Gain Ratio Decision Tree [7], Naı̈ve Bayes
Classifier [8] and K-Nearest Neighbor (KNN) Classifier [9].
We applied the M5AIE method for detecting and tracking
five main parts of the human body (head, hands and feet) in
sequences of RGB-D images. Our method generates tuples that
which can be used with different classifiers.

The proposed M5AIE algorithm was implemented in proof-
of-concept programs. At this moment, we did not consider
the computational load of this specific implementation to be a
fundamental requirement because the main goal of this work
is to assert the possibility of using a technique for body
part detection, tracking and pose classification. The literature
provide real-time results for the medial axis transform [34]
and the SIFT method [35]. We believe the M5AIE can be
efficiently implemented and used as part of real-time tracking
solutions that are applied to games.

We limited our experiments to an indoor environment,
static background, static position and orientation of the sensor
and to single-user segmentation. Experiments showed that,
to be correctly tracked, sequences must not have body part
occlusions. The selected pose classes were inspired by the
Jecripe game, developed by our group [24], and we added
three more poses in our experiments. We used three volunteers
with very different biotypes to collect the pose sequences
with varation of the number of images and poses. Besides
the different classification algorithms, we tested three kinds of
distances: Manhattan, Chebyshev and Euclidean. We consider
KNN with k = 1 and Manhattan distance as the winner
because it provided the best results in all experiments. We
believe the coordinates of the five main body parts could be
normalized in the bounding box because. In our experiments,
as long as we increased the division of the used grid (8, 16, 32
and 64), the results got better. However, we also believe there
is a limit on dividing the grid. Further experiments should
be done to find the value which the division does not make
sense anymore. Also, further experiments should be done to
prove that normalized coordinates could be a good choice in
the usage of a bounding box for cell definition.

Future work include more experiments using dozens or
hundreds of volunteers to check if the classification models
would be affected. Also, more experiments to find the exact
value of N which the results get the best percentage of
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instances correctly classified. This last task would give the
limit value for N which the results might start to get worse
or not getting better anymore. Another future work should be
the test approach. Instead of using k-fold cross-validation, we
could use more tests approaches. The aim of vary the test
approach is to combine results of each volunteer. For example,
if we use tuples generated from Volunteer A and B, we could
use as testing tuple only the generated tuples from Volunteer
C, and so on.

More, future work also include the improvement of the
M5AIE method with self-occlusion and partial occlusion
treatment between two users. The detection and tracking
method can be implemented to have real-time results. As
a consequence of real-time results, we could integrate the
M5AIE method in the game which motivated the poses in
our experiments. The inclusion of the KNN with k = 1 and
Manhattan distance would be also included in future research.
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