
TORCS Training Interface: An auxiliary API for
developing TORCS drivers

Clara Caldeira
University of Brası́lia,

Institute of Exact Sciences,
Department of Computer Science

claramcaldeira@gmail.com

Claus Aranha
University of Tsukuba,

Graduate School of Systems and Information Engineering,
Department of Computer Sciences

caranha@cs.tsukuba.ac.jp

Guilherme N. Ramos
University of Brası́lia,

Institute of Exact Sciences,
Department of Computer Science

gnramos@unb.br

Abstract—Autonomous vehicles have many practical applica-
tions, and the process of developing controllers for them can
be aided by the use of simulators. Among several available such
softwares, TORCS stands out for being one of the most advanced
and for being used as benchmark for comparison of controllers in
international competitions. In order to aid the inherently iterative
process of developing controllers for this platform, we present
TORCS Training Interface, a free open source solution that
provides greater agility in setting up and running simulations.

I. INTRODUCTION

Digital games in general offer a great test bed for experi-
mentation and study of Artificial Intelligence (AI), and there
has been a growing interest in applying AI in several problems
present in them, regardless of genre [1]. One of the standard
uses is the control of non-playable characters (NPCs), whose
behavior should be interesting and believable for the player,
a task that has become increasingly difficult to do [2]. Thus,
games can be seen as an excellent tool for evaluating how AIs
handle unforeseeable situations and adapt to the player.

Electronic games also present a well defined environment,
which may simulate extremely complex situations. Since input
and output are constrained by the game’s characteristics, these
games provide the ideal test bed for comparing solutions. This
evaluation may be done individually, such as in the Mario AI
Championship1, or collectively, as in the Simulated Car Racing
Championship2.

The increasingly realistic simulations used in games can
be readily applied in other industries. For example, the control
of a humanoid robot and that of a human non-playable
character [1] or autonomous vehicle control. Self-driving cars
bring the promises of improved traffic in urban roads by aiming
at shorter response times, better fuel consumption, and lower
levels of pollution. Other possible benefits include more accu-
rate driving, more independence and mobility for individuals
who cannot drive for themselves, and less accidents. However,
the development of such drivers face a number of difficult
challenges, including perception, navigation and control [3].

Creating and testing solutions for these problems can be
greatly aided by car racing games, because these can realisti-
cally simulate the roads, other vehicles and their interaction.

1http://www.marioai.org
2http://cig.ws.dei.polimi.it

The Open Racing Car Simulator (TORCS) is one of the
most advanced racing games available, and is frequently used
when developing artificial intelligence techniques around the
world [4], [5]. Not only does it provide a very realistic
experience with its physics engine and detailed graphics, it also
stimulates research with features like platform independence,
a command-line AI interface, and a GPL license.

The AI controller in TORCS handles a car by receiving
the input data from the sensors and sending commands to its
actuators. This input/output data involved in the simulation is
similar to an abstraction of the data collected by the sensors of
the robot Stanley [6], the winner of the DARPA Challenge for
autonomous driving cars in 2005. Clearly, this indicates that
a racing game can be used as a tool for aiding AI research,
enabling several tests and development before moving on to
real applications.

TORCS has been used as a platform for an annual champi-
onship of simulated racing since 2007 [5]. The competition is
composed of three legs of competitions between controllers
submitted by researchers from around the world. Among
the submissions, there are several examples of computational
learning and artificial intelligence techniques, such as neu-
ral networks, fuzzy logic, potential fields, and genetic algo-
rithms [5]. This competition provides an opportunity for the
scientific community to perform a straightforward comparison
among these approaches in complex environments containing
multiple continuous variables [4].

TORCS provides a very customizable environment, so-
phisticated 3D graphics, a powerful physics simulation plat-
form [7], which takes into consideration factors such as
collision, traction, aerodynamics, and fuel consumption. It
also provides a variety of circuits, vehicles, and controllers
leading to a wide set of possible in-game situations [4], [5].
Additionally, since it is open source, there is the possibility of
modifications to better fit the specific needs.

This work approaches the problem of the high costs in-
volved in repeatedly testing TORCS controllers, a necessary
step in developing a driver which is also a bottleneck in the
process. To this end, we propose the TORCS Training Interface
(TTI), to aid researchers by facilitating the configuration and
execution of multiple simulations.

SBC - Proceedings of SBGames 2013 Computing Track – Short Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 13



II. HOW TORCS SIMULATIONS WORK

The TORCS software is composed of a racing simulator
and a graphical interface to interact with it whose basic purpose
is to simulate a single race, configured by the user. The race
can be between AI controllers only, to be observed by the
user, or he/she can take part by controlling one of the cars.
To improve research in artificial intelligence, later versions
of TORCS provides a command-line interface, bypassing the
need to display the simulation graphics and, thus, reducing
considerably the time necessary to get the results.

The racing simulation is executed in a client-server archi-
tecture. Each client is assigned to the controller of one of
the racing cars. Data about the vehicle’s sensors is received
from the simulator through an UDP connection. Values for the
actuators are sent in the same fashion. This process is executed
in parallel for each client, and the information exchange occurs
continuously until the end of the simulation.

The controlling client can collect data about the circuit
it is running on from the vehicle’s sensors, and information
about its performance in the race. It is possible to evaluate
different race configurations, a standard necessity in develop-
ing AIs with techniques such as genetic algorithms and neural
networks.

The client has the option of restarting a race whenever
desired, which makes it possible to run iterative evaluations.
However, in the latest version (1.3.4), the one being used here,
this option only works for the current race being simulated,
meaning that the training process will be limited to the
behavior of the client in that specific circuit. There is no
option for the client to change the track, or any other race
configuration e.g. number of laps.

Features like the length of the evaluation period, the set
of tracks used and the starting order greatly influence the
results. Longer and more diversity-filled evaluations provide
more complete and thorough information on the controller’s
behavior, despite increasing the costs involved in testing. These
costs are specially relevant when such evaluations need to be
done repeatedly.

TORCS in text-based interface receives as a parameter
a XML file which contains the settings for the race to be
simulated, such as length in distance or number of laps, the
track, the participating controllers and their order. It then
executes the corresponding simulation and exits as soon as
it is finished.

The completion of a lap in text interface in the latest
version of TORCS takes time in the order of seconds in a mid-
range model notebook computer. Although this is a significant
improvement on real time racing/simulation, it is still too
slow for the repeated evaluations required in training processes
based on iterative evaluations.

Additionally, any change in the configurations in terms of
length, selected track or quantity of cars involved must be
modified manually in a specific file in XML format or in the
graphical interface of the game.

III. TTI

The required manual intervention and the reduced flexi-
bility in the repetitive tests involved in the development of

drivers for TORCS increases the effort involved in using it as
a research platform. Providing services that solve, or at least
improve on these problems will reduce the time spent with
these manual labors, and improve the productivity of research
efforts using this platform.

With this in mind, we decided to develop a tool which
works as an interface between the TORCS server and a compu-
tational evolution algorithm (or any other approaches based on
iterative evaluation processes), offering useful functionalities to
interact with the simulation software.

An open application programming interface (API) pro-
viding utilities for automating processes related to running
TORCS simulation should reduce the effort spent in manual
and repetitive tasks, as well as the replicated development of
project specific scripts. The maintainers of the simulator itself
have recently added resources intended to ease this process,
such as a text based interface for test execution, and the
possibility of requesting a race restart. However, we believe
that there is still is room for significant improvement of the
available resources, giving us the motivation for the current
work.

In this section we first describe the API, explaining how it
works and how it differs from currently available mechanisms
used to interact with the simulator. Then, we discuss a few
points identified as having potential for optimizations that
could result in considerable reductions in the overall costs of
automatized simulations, or in better information they are able
to provide.

A. How TTI works

TTI’s goal is to facilitate the process of developing an
AI for TORCS, trying to speed up the simulation iterations
and providing a simple way to schedule various tests. Every
controller has a collection of parameters which have to be set,
and which may change depending on the race’s features. The
evaluation of a controller’s performance is ultimately defined
by the simulated race’s result, in terms of time and distance,
even if the parameter values are updated during the race. Thus,
it is essential to have several races to properly assess one or
more controllers.

The TORCS Training Interface works as an interface for
the simulator (see Fig. 1). It receives input parameters to
configure the simulation and the types of results that will be
returned. The tool manages all the interaction between the
clients (controllers) and the server (simulator), from running
the races to the collecting the data available.

TTI is implemented as a shared library for Unix envi-
ronments (.so format). It works work alongside the TORCS
server, sharing some of its resources. We simplify the process
of executing a race, which originally consists of:

1) Creation or adjustment of a XML file containing the
race configurations

2) Call of the server by a text-based interface
3) Individual call of each client in its own process

and configuration of the port used by each client to
communicate with the server;

In contrast to these three steps, the interface in our tool
needs only a single method call. Its parameters are an identifier

SBC - Proceedings of SBGames 2013 Computing Track – Short Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 14



Figure 1. Interaction of TTI with TORCS and with a training algorithm.

for the track (track’s name), the number of laps, and a
collection of 1 to 10 controllers, which is the range of cars
allowed in a single race. The tool returns a collection of data
describing the results for each controller in the race.

B. Running on multiple tracks

The first point which we aimed to improve through the pro-
posed tool was the management of server instances. Because
the text interface executes only a single race and interrupts
immediately after it is completed, two options were considered.
The first and simplest, although less efficient, is to call a new
instance for every race. The second one, possible only if the
same track set is used for every iteration, consists of keeping
an instance active for each track and only to ask the restart
of the race at the beginning of each iteration. This second
option, however, doesn’t allow changes on the amount of
controllers in a race or its length, since the parameters cannot
be changed during the execution. It is only possible to change
the controller’s order by adjusting the ports used by each of
them in the connection.

The execution in multiple tracks requires the call of at least
one instance of the server for each track. It is possible to keep
them running continuously, but the parallel execution of the
server instances might lead to delays affecting the resulting
behavior of the controllers.

There are a number of possibilities when it comes to
the ordering in a the race. We can select the ordering by
rotation, i.e., shifting of the positions in one unit n times where
n is the amount of controllers, order inversion, exhaustive
evaluation of all possible combinations, or, as is often used
in real life competitions, an individual classification round to
determine the order of the race. Clearly, the more evaluations
are performed, more complete is the resulting information and
larger are the associated costs. It is up to the user to determine
which is the best option, and thus our tool allows each ordering
scheme to be selected through a configuration parameter.

C. Early termination

A work by Haasdijk et al. [8] suggested that in some cases
the evaluation process should be interrupted early. To this
end, an estimate is made on the probability of an individual
being good enough to join the current population at different
points throughout its evaluation. If it is determined that the
individual’s quality is significantly inferior in comparison to

the worst individual of the population, continuing with the
process is likely a waste of time, specially when the algorithm
uses an elitist selection process. The results presented indicate
that this interruption has a good influence on the achieved
results when the evaluation process is expensive.

To this end, our tool allows the user to chose a minimum
distance to be covered in sub-intervals of the evaluation. This
allows for quickly disposing of individuals which do not move
at all, drive too slowly, go in the wrong direction, or are
unable to get unstuck efficiently. This minimizes the time spent
evaluating poor controllers.

D. Comparisons as metrics

Storing the best known values for distance or lap-time for
a circuit/car configuration can be used as a quality measure
for the training algorithm. This comparison provides a quick
assessment of the client’s performance, which can be used, for
example, to stop the current simulation and proceed to the next
test configuration.

These values could also be used for estimating an optimal
trajectory in a given track would allow for an evaluation based
in how much the actual resulting path taken adheres to it.
Usually, it consists of a compromise between that of shortest
length and the one which minimizes curvatures, i.e., maximizes
curve radius. The shortest path is that which is traveled fastest
by a body of constant speed while the maximum curvature
allows for a vehicle to achieve the highest possible average
speed. It is known that the time a car takes to complete a
lap is inversely proportional to its average speed and directly
proportional to the length of the path taken. Minimizing the
time, therefore, can be understood as maximizing the average
speed and minimizing the length. Because the two paths differ
significantly, there is an intermediary one which offers the best
combination [9].

This is a simplistic model, since the actual ideal path takes
into consideration physical properties of the vehicle such as its
acceleration and breaking efficiency, and opponent interaction
in each point, e.g. overtaking. Still, it can make for a useful
tool, even as a complement, for estimating controller quality.
Its math is extremely simple given the ideal trajectory for the
track and the information provided on the quality is, in relation
to the associated cost, quite relevant and complete.

Choosing a specific controller as basis for comparisons
could be done amongst those included in the TORCS distribu-
tion or among the best seen in the competitions, all of which
are freely available. This option makes for relevant information
about how close individuals are, in quality terms, to the
best of the previously developed. Values above 100% would
indicate surpassing. This strategy could consider simply the
time resulting or it could choose a more sophisticated analysis
of the decisions taken by the controllers. This last one is
specially useful when it comes to evaluating complex specific
behaviors which are difficult to determine or measure, such as
overtaking [5]. It is desirable that resulting drivers are skillful
enough to outstrip adversaries, doing so without spending
too much time, in the best possible point and without losing
significantly in performance. Like the choice of precluding as
much as possible to be overtaken, which is another complex
behavior, it could be easier and faster to make comparisons

SBC - Proceedings of SBGames 2013 Computing Track – Short Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 15



Table I. COMPARISON OF TTI WITH CURRENT PROCESSES

With TTI Without TTI
Server and client
instance calls and
settings handling

Automatically managed and
configurable

Manual, possibly aided by
custom scripts

Simulations on
multiple tracks

Automatically managed and
configurable

Only with frequent manual
interventions

Acquired data
comprehensiveness

Possibly high Limited

Code
modifications

Only the driver object and
derived classes

Any class and source file of
the module

of the decisions taken by the individual under evaluation and
those of another which is considered skilled in it.

IV. WHAT TTI DOES

In this section we make more focused comparisons of
TTI features with the processes currently used for developing
TORCS drivers, noting in which points it is beneficial and
what limitations it introduces in a development process. Table I
shows the difference TTI makes in four relevant points.

Handling server and client instances is complicated, spe-
cially when dealing with multiple clients. Because evaluating
a group of drivers at once is faster than doing so individually
and the ability of the driver in interacting with other cars
is taken into consideration, racing multiple clients alongside
each other is important. Communication ports have to be
consistently configured since the race doesn’t start until there
are established connections in all participating ports, drivers
using the wrong one are unable to connect and same port
conflicts lead to similar problems. TTI provides automatic
management of instances, allowing some adjustments with
configuration parameters.

Working with multiple tracks is also greatly simplified
when using our API, only a collection containing their names is
needed. Otherwise, keeping individual XML files or repeatedly
manually modifying one would be necessary, as would be
restarting every client instance at each step, which is difficult
to handle manually and very prone to cause problems as stated
previously.

We consider that the information extracted from a step of
evaluation would be higher in accuracy when options such
as comparisons, multiple track or ordering are active. These
provide much relevant information about a driver’s behavior.

The biggest limitation introduced by TTI is related to the
freedom the developer has in modifying the code in the client
module. Since all communication with the server happens
through a UTP connection, it is only necessary that the transac-
tions stay consistent. However, because TTI deals directly with
driver objects, all relevant control-related modifications must
be done at that class or at a derived one, without overriding
non virtual methods or attributes.

V. CONCLUSION

Artificial Intelligence can be applied to solve several prob-
lems, and the development of solutions can be aided by the use
of simulators. TORCS stands out as one of the most advanced
car racing simulators, and is a benchmark tool for comparing
AIs in international competitions. In order to aid the process of
developing controllers for this platform, we present the TORCS

Training Interface, a free open source solution that provides
greater agility.

TTI is used to automatically run a sequence of various
simulations in TORCS, speeding up the evaluation a controller
and enabling the developers to use the simulation results as
part of the AI training process. We observed significant ease
provided by the tool, as discussed in section IV.

By developing a tool with this functionality, we relieve
other researchers from the burden of having to implement these
basic features over and over again in their clients. The API of
this project provides a fully configurable way to access the sim-
ulation features, so that it can be adapted to specific projects,
removing the need of spending redundant time dealing with
these issues. This time can now be better employed on ad-
vancing the controller itself, the result of which could be an
extremely competitive driver for TORCS as a game or even
an AI to handle an autonomous vehicle.

TTI was developed in C++ for Unix, limiting the projects
which could potentially use this tool, but its resources could
be implemented in other languages and adapted to other envi-
ronments. Nevertheless, this choice of programming language
means the interface could readily be incorporated by The Open
Racing Car Simulator project. Additionally, one could work
on similar projects directed towards other games, aiming to
provide better interfaces for artificial intelligence techniques
which need to use them for training.

REFERENCES

[1] S. M. Lucas, “Computational intelligence and games: Challenges
and opportunities,” International Journal of Automation and Com-
puting, vol. 5, no. 1, pp. 45–57, 2008. [Online]. Available:
http://dx.doi.org/10.1007/s11633-008-0045-8

[2] ——, “Computational intelligence and ai in games: a new ieee transac-
tions,” IEEE Trans Computat Intell Artif Intell Games, vol. 1, no. 1, pp.
1–3, 2009.

[3] T. Luettel, M. Himmelsbach, and H. J. Wuensche, “Autonomous ground
vehicles - concepts and a path to the future,” Proceedings of the IEEE,
vol. 100, no. Special Centennial Issue, pp. 1831–1839, 2012.

[4] D. Loiacono, P. L. Lanzi, J. Togelius, E. Onieva, D. A. Pelta, M. V.
Butz, T. D. Lönneker, L. Cardamone, D. Perez, Y. Sáez et al., “The 2009
simulated car racing championship,” Computational Intelligence and AI
in Games, IEEE Transactions on, vol. 2, no. 2, pp. 131–147, 2010.

[5] D. Loiacono, “Learning, evolution and adaptation in racing games,” in
Proceedings of the 9th conference on Computing Frontiers. ACM, 2012,
pp. 277–284.

[6] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann et al., “Stanley: The robot
that won the darpa grand challenge,” Journal of field Robotics, vol. 23,
no. 9, pp. 661–692, 2006.

[7] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Simulated car racing
championship: Competition software manual,” ArXiv e-prints, Apr. 2013.

[8] E. Haasdijk, A. Atta-ul Qayyum, and A. E. Eiben, “Racing to improve
on-line, on-board evolutionary robotics,” in Proceedings of the 13th an-
nual conference on Genetic and evolutionary computation. ACM, 2011,
pp. 187–194.

[9] L. Cardamone, D. Loiacono, P. L. Lanzi, and A. P. Bardelli, “Searching
for the optimal racing line using genetic algorithms,” in Computational
Intelligence and Games (CIG), 2010 IEEE Symposium on. IEEE, 2010,
pp. 388–394.

SBC - Proceedings of SBGames 2013 Computing Track – Short Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 16




