
Requirements for game design tools
A Systematic Survey

Marcos S. O. Almeida
Computer Science Coordination

Federal University of Technology – Paraná (UTFPR)
Campo Mourão, PR, Brazil
marcossilvano@utfpr.edu.br

Flávio S. C. da Silva
Computer Science Department

University of São Paulo (USP)
São Paulo, SP, Brazil

fcs@ime.usp.br

Abstract—Although the computerized entertainment has
shown a splendid growth in the last decades, the knowledge base
and formal techniques of game design is still restricted if
compared to filmmaking and software development. While games
production software have clearly evolved, the game conception
process still relies too much on each designer’s capabilities. In
this sense, efforts have been made towards establishing
standardization through proposals of design toolsets and formal
methods, but only few have gained attention from designer's
community and none have succeeded as real production tools.
While valuable, the existing implementations of these approaches
have been serving only as reference to future works. In this
context, this paper presents a systematization over the
contributions and failures of researchers and designers aiming to
elicit the requirements for game design tools. At the end, we
propose a list of features for future tools and methodologies in
the form or requirements.

Keywords—Game design; game design methods; game design
tools.

I. INTRODUCTION

Game designers are responsible for a game outcome,
whether it succeeds or fails. It is the designer’s task to ensure
the game’s playability. However, they are the least served in
terms of tools. Development tools and methods have fairly
evolved. Software developers use modern engines and state of
the art techniques in order to create complex gaming
experiences. Drawing and 3D modeling software have shown a
huge leap in improvements, as well as sound creation support
tools. Overall, the emergence of new computing technologies
and processing power brought room for the evolution of
production tools. However, little has been made to improve the
support to game design.

Although the game industry has seen a continuous growth,
designers still made primarily use of the same instruments from
the earlier days of the area: text and paper. While some
designers have developed alternative methods, they haven’t
been widely adopted. Researchers and professionals consider
this lack of standard tools an important issue, a barrier to the
evolution of design tools and methods. They agree that the lack
of tools, whether conceptual or software, prevents the
possibility of a standardization in the area and hinders the
knowledge transfer between generations of designers.

Conceptual and concrete software tools have been proposed
by many authors in order to complement or replace the current
design tools and methods, aiming improvements to the games
creation process. Mostly, they have focused efforts in some
specific design threads, such as design vocabularies, collections
of good design principles, libraries of reusable design concepts
and visual languages for game design through visual modeling.
While none of these approaches have succeeded as tools of
practical use, they clearly bring some strong design needs.

This paper presents a systematization of these efforts
through a chronological overview of the main approaches and
their implementations, in order to elicit requirements to game
design tools and methods. The main objective is to clearly
propose a list of features for future tools and methodologies in
the light of the current tools and previous work under analysis.
In the end of each section, we present a partial requirements
discussion. The full requirements list is presented at the end of
this paper.

II. GAME DESIGN: THE CRAFT AND THE TOOLS

Since the earlier days of digital entertainment, game
creation has been a process with strong reliance on the
designer’s creative skills. Fun is not an aspect achievable only
through a strict formal process and a huge amount of financial
resources. Contemporary low budget independent games has
shown a strong success in sales and critics, most notability by
its simple, yet artistically beautiful presentation and deep
gameplay experience, provided by clever design. However,
while good games cannot be conceived through a factory style
“line production process”, the use of standards and unified
knowledge bases can aid the design process.

Inspiration for new games is usually crafted from books,
movies, music and real world facts and culture. Furthermore,
existing games typically act as a foundation for new ideas.
Designers usually analyze the aesthetics of existing games
while searching for elements that may contribute to their
projects. Thus, experimentation is an essential part of the
design process, which can be currently summarized into a three
steps process: design, documentation and prototyping.

A. The Game Design Document

While designers do use physical prototypes in the form of
board games and some visual aids to help them conceiving the

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

277

game, the main artifact produced by game designers is still, the
Game Design Document (GDD). The main objective of the
GDD is to communicate the designer's vision to the
development team. As a project document, it acts as a guide to
the whole development process and for this reason, it is
considered by many as a production method [1].

Considered the major artifact of game design and the
primary designer’s task, the GDD has been subject of many
discussions. Some efforts have been made in order to establish
more standardized content and format, but no major step was
achieved. While some authors strongly advocates the use of the
document in its most complete (and long) form, many others
have argued the opposite [1]. Dormans [2] states that the main
inhibitor of the creation of a universal design methodology is
the lack of standard in the design documents. For Keith [3]
many designers agree that the document usually becomes too
long, hard to used, being rarely used by developers in later
development stages, serving for contractual purposes only. He
also states that the size and format of the document can be
factors that lead to such practice.

Many authors agree that the GDD hasn’t evolved like other
development tools did and the document is still used by
contractual reasons. Costykian [4] advocates that even with the
use of visual aids, such as sketches and storyboards, the GDD
is not enough to describe the design. The static nature of a
document is often highlighted as issue. Changes in the design
of a game are common during the development process, due to
the idiosyncratic nature of the games conception. However, the
massive documentation style of the traditional GDD makes the
continuous updating of the document an unproductive task as
the project progresses [2]. To address this, Demachy [5]
suggests the use of lightweight documentation and
diagramming, and a development process that improves
responsiveness to design changes. He then discusses the
application of Extreme Programming, an agile software
development method, for production of games.

Visual artifacts applied to the design of games is the subject
of others works. Librande [6], during a presentation at GDC
2010 (Game Developers Conference), emphasized that people
involved in production feel little motivation to read the GDD.
He advocated the use of visual languages on game design,
more expressive and compact, by presenting results of his own
experience as a designer. More recently, Cerny [7] presented
his own experience as a designer at the GameLab 2013
narrating the transition between heavy, immutable GDD, to
lightweight, agile documentation.

B. Game Prototyping

Game development projects usually build testing
prototypes of the games being produced. Those prototypes are
often created during preliminary project stages, after the design
documents are mostly done. Prototypes have and intense focus
on gameplay and usually disregards artistic presentation. They
are commonly used as a proof of design concepts and an
experimentation environment to evaluate and evolve the
gameplay described in the GDD [8].

Game designers have unanimous agreement about the value
of experimentation through prototyping, regarded a critical part

of the game development process and considered the only
reliable method of verifying the design quality [9]. However,
with rare exceptions, they are not able to build the game
prototypes by themselves. Although there are reports of the use
of game creation tools for rapid creation of game prototypes,
they are considered too restrictive as they present a limited set
of construction options, often aimed at end users. Another
attempt for prototyping is the so called “analog prototypes”.
Built as board games, they simples representation of some
game rules, mostly numeric based mechanics, and are made by
designers with paper, glue and scissor. While valuable when
analysis situations of numerical balance in games, such as in
Real Time Strategy attack units or RPG combats, they are
ineffective for games with interaction mechanisms heavily
based on real time actions [10].

Game prototypes are usually built by software developers
and graphic designers, guided by the GDD. Even with the
guidance of the game designers, the prototypes are post-
constructed, after a substantial part of the GDD is complete.
This creates a gap between the conception of the game
concepts, which are conceived during the documentation of the
GDD, and the experimentation process that could attest them
[9]. Prototyping becomes a costly and slow process, as it needs
the allocation of specialized people to build it and as it’s away
from the direct control of the designer.

The importance of the prototype is especially impaired
during the game conception phase, once the prototype is
usually built only after the completion of a significant part of
the GDD. This makes impossible for designers to do instant
gameplay experiments during the game conception phase.

III. EARLY DISCUSSIONS TOWARDS NEW DESIGN TOOLS

Although widely adopted as the mainstream tool in the
industry, there are lots of criticisms about the use and
production of the GDD. Despite the industry success,
researchers and professionals have long discussed that the lack
of tools in game designing hinders the knowledge transfer and
the evolution of design process [9].

In 1994, Costikyan [4] pointed the need for greater
formalism on game design. He suggested the creation of a
common vocabulary for game design. According to his
arguments, this tool would allow designers to analyze and
describe games. He advocated that designers should have a
way to analyze games, understand them and identify the
elements that make them good or bad. He was clearly not only
referring to an ontology, but to a collection of design concepts
that could be used to analyze and build game designs. While he
didn’t propose the tool, his speech has been echoed by many
others researchers and designers.

In a later work, Church [11] pointed the lack of a common
design vocabulary to describe games concepts as the main
inhibitor of the design methods evolution. For him, this issue
could hinder the transfer of knowledge between generations of
designers. Fullerton [12] also expressed the same opinion,
pointing out the lack of a common vocabulary as one of the
biggest problems faced by the games production industry of its
time. Over the years, practitioners and researchers have
identified the need for formal models and tools to support game

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

278

design. In this context, "formal" does not refer to mathematical
models, but to organized, standardized and structured models
and tools to aid the game design process.

The need for a vocabulary of game design that not only
standardizes names and meanings in the area, but allows the
usage of a collection of design concepts is an important
indication of a relevant requirement for game design. It does
not only defines a tool, such as the vocabulary itself, but leads
to a different approach, a concepts-oriented game design,
where designers would be able to dissect a game, identify and
separate its forming components, understand how they fit and
balance together, and analyze which ones benefit or harm
certain games or game genres.

IV. GAME DESIGN VOCABULARY APPROACHES

The approaches towards the constitution of a vocabulary of
design had split into several slightly different directions. Four
main branches can be summarized: collections of design
concepts, game taxonomies, dictionaries of design terms and
project and design guidelines. Through the following two
subsections we will discuss each of these approaches in order
to and summarize what design tolls requirements can be
elicited from them.

A. FADT: Formal Abstract Design Tools

One of the approaches based on design vocabularies is the
collection of design concepts. Following the speech of
Costikyan [4], they believe that we can identify, organize and
reuse the parts that compose games. Church [11] presented the
FADT. The Formal Abstract Design Tools (FADT) was the
first attempt to bring a vocabulary of recurring game design
concepts. By the author definition, each FADT should be
precise (i.e. “Formal”), unambiguous and yet applicable to as
many situations as possible (i.e. “Abstract”) as a “Design
Tool”. Although a “formal” approach, the FADT structure is
rather simple, being composed by only two field: name and
description. Also, the FADT defines very abstract concepts and
designers and not game parts, as initially desired by the author.
This can be noticed in one of only three terms defined by the
author: "Perceivable Consequence: a clear reaction from the
game world to the action of the player."

The FADT structure doesn’t allow relations with games,
genres and other FADT. It also lacks usage guidelines with
information about the implications of use of each FADT in a
game design and it’s up to the designer to decide how to use it.
In fact, Church [11] doesn’t try to expand the collection of
concepts in every aspect. It rather discusses the general idea
behind it. In Church’s discussion, three FADT were presented
and in the end, only twenty five were documented at total [1].
Between 1999 and 2002, the Gamasutra1 website hosted a
forum where people discussed and expanded Church's tool,
although there are no reports of its use on real world projects
[2].

1 http://www.gamasutra.com/ (visited on 2013/03/13)

B. Patterns in Game Design

Although simple and short lived, the FADT was the first
attempt to discuss the idea of a collection of design concepts.
Later approaches employed more structured models to
document and relate the design concepts. Kreimeier [1]
suggested the application of the Design Patterns model [13]
from software engineering, to document of design concepts as
pairs “problem-solution”, allowing relations between patterns.
As a step forward, Björk, Lundgren and Holopainen [14] used
the design patterns model as inspiration to the Game Design
Patterns project (GDP). Although similar to the original work
of [13], they introduced significant modifications in order to
better adequate it to game design. Most notably, they don’t
follow the approach of pairs "problem-solution" when
structuring patterns, once game concepts are not solutions to
design problems: they are tools to build game concepts. The
GDP project document recurring concepts of game design,
representing games mechanics as well as high level concepts,
like Church's FADT.

The GDP model document each design pattern by a well-
defined structure, which includes name, definition, usage
examples, application instructions, narrative aspects,
consequences of use, and relationships with other patterns. The
objective is to allow analysis and design of games through the
patterns they may contain. The project has a wiki2, in which
there are almost hour hundred patterns documented mostly
written by the tool authors summed to later contributions of
designers. The project is referenced in a number of publications
listed in the wiki.

The GDP project represents a clear evolution over the
FADT. It uses the design patterns documenting structure to
organize reusable design concepts, which enables the
highlighting of relevant aspects of each pattern and their
interrelationships. However, shortcomings hinder his usage in
real projects. Like a problem pointed in the FADT, there is not
enough correspondence between patterns and the games or
genres that use them in order to allow a games-centered
analysis. Also, by using collaborative documentation, there is a
need for a moderation mechanism. But the GDP doesn’t have
it. It is common to find incomplete and contradictory
documentation on patterns, with disagreements between title,
definition and usage examples.

Finally, FADT and GDP models lack graphical models to
facilitate the design concepts understanding and to allow the
visualization of the hierarchy and relationships between
concepts and games. Still, just like FADT, there is no guidance
on how to design games with the GDPs. Together, all cited
issues makes the GDP in a little intuitive scattered collection
that requires a high learning curve.

C. Mechanics and MDA

Church[11], Kreimeier [1] and Björk, Lundgren and
Holopainen [14] proposed approaches based on collections of
design concept, focusing on defining the structure of the
collection and, at some extent, on populating the collection. On
the other hand, LeBlanc, Hunicke and Zubek [15] chose a

2 http://gdp2.tii.se/index.php/Main_Page (visited on 2013/03/13)

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

279

different path. They proposed a framework to describe games
through a three layer framework of interrelated components.
The MDA framework separates game concepts into three
dimensions: mechanics, dynamics and aesthetics. The
mechanics describe the static rules of the game system, usually
documented in the design document. The dynamics represent
the run-time behavior of the mechanics when implemented in
prototypes or games. Finally, the aesthetics comprehends the
desired emotional responses of players that emerge when they
are playing the game. These are usually obtained from tests and
experimentations with the prototypes or games. This three
layered scheme allow us to observe three distinct parts of each
game concept: how we plan it, how it works inside the game
and which is the outcome of it to the player.

LeBlanc, Hunicke and Zubek [15] highlighted the
importance of considering both the perspective of the designer
and the player when designing games. In this sense, the
designer “produces” the mechanics of the game and the player
“consumes” them when playing the game, which is the exact
moment where aesthetics emerges. This process highlights the
focus on gameplay experiences when designing the game rules,
and with it, the importance of building software prototypes for
testing the outcome of the designed concepts.

The attention to the aesthetics of gameplay ratifies a very
common practice of designers: the investigation of the
emotional result of mechanics implemented in the existing
games. As part of their work, designers constantly experience a
vast amount of games in an analytical way, which is quite
costly. In his sense, the importance of building a database of
design concepts drawn from existing games becomes evident,
though neither of the existing implementations has been
successful on structuring it and putting it to real use.

Similar approaches to FADT [11] and GDP [14] were
discussed in the work of the “Library of Game Mechanics”
[16] and the definition of game mechanics inspired by the
object-orientated paradigm [17]. There is also a collection of
game concepts documented in the GiantBomb3 site, which
although presents an informal approach and a focus clearly
aimed at end users, without the apparent intention of
establishing a tool for designers, features a simple and
functional solution based on collaborative construction. On the
site's database, the understanding of the concepts is facilitated
through the use of illustrations. Moreover, it has a considerable
range over the library of available games, relating them to the
concepts used. Although devoid of formalism, this collection of
game concepts presents functional characteristics that may
inspire future works in the area.

D. Game Design Guidelines and Dictionaries

Still aimed at defining a collection of commonalities in
game design, but not specifically focused on design concepts,
Falstein and Barwood [18] initiated the "The 400 Rules
Project" in 2002. It aimed to identify, to record and to share a
list of practical experiences of designers, thus indicating
directions to be taken or avoided into a game project. Although
the project title mentions 400 rules, only 112 were documented

3 http://www.giantbomb.com/concepts/ (visited on 2013/03/13)

on the project's website4. Once more, the collaboration of
various designers was a key component in order to define and
document the practices, which also demonstrated an intention
to make it an artifact of practical use (like the GDP project).
Fabricatore, Nussbaum and Roses [19] also worked towards a
list of design principles from an analysis of the influence of
gameplay mechanisms in player's motivations. Overall, both
projects aims to aid in the knowledge transfer between
designers. However, guidelines alone don’t constitute a tool
that actually supports the idiosyncratic process of games
creation, but help to avoid pits.

Other works addressed specifically the subject of defining a
game design dictionary. Two of these projects were
documented in publications, being the Videogame Lexicon
[20] and the Games Ontology [21]. These projects aimed to
create shared design dictionaries to provide unambiguous
definitions of terms commonly used in game design. As a tool,
these dictionaries would be digitally available to searching and
to be embedded in design documents via XML or other markup
languages. The Games Ontology project was published as a
wiki 5, as an attempt to allow collaborative construction of the
dictionary. There were a total of 179 definitions of design and
videogames terms. Like the other works already discussed in
this section, there were a strong focus on theoretical study and
few results of practical use. Kreimeier [1] observed that
although dictionaries alone cannot constitute design tools, they
are necessary foundations to any method or conceptual tool. In
fact, all the approaches addressed in this section aimed, at some
extent, on establishing a collection of definitions for game
design commonalities, which leads to the conclusion that this
really is desired and important for designers.

Related works with vocabulary comprised studies about
videogame taxonomies. Age, target audience, purpose and
genre are examples of criteria used to classify games. The most
popular is the genres classification, which organizes games
with similar interaction characteristics under the same group.
As a common language practiced by industry, academia,
specialized media and end users, the hierarchical system of
genres and subgenres are the most concrete example of use and
value of a games vocabulary. Lindley [22] proposed a non-
hierarchical model of games taxonomy called “Orthogonal
Taxonomy”. It defines a spatial system of characteristics,
where games and genres are positioned according to their
proximity to these characteristics, such as simulation, ludology
and narratology.

The terminology used in games classification helps to
define what to expect from a specific game type. It also it helps
to identify the typical elements of each game genre and how
the mixing between genres occurs. This is specially valuable as
further studies could relate the taxonomies in games and the
collections of design concepts in order to investigate which
quantitative and qualitative relationships can be drawn between
elements, market and user preferences. The outcome of these

4 http://www.finitearts.com/Pages/400page.html (visited on

2013/03/13)
5 http://www.gameontology.com/index.php/Main_Page (visited on

2013/03/13)

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

280

studies could suggest which elements are desirable for a
particular game project that fit into a classification.

V. V ISUAL LANGUAGES FOR GAME DESIGN MODELING

Aside from the discussed approaches that addressed the
elaboration of a standard vocabulary for game design, and
specially trying to define games as a composition of design
concepts, other authors have focused on attempts to set up a
visual language for game design. Although the currently main
design documentation model, the GDD, has predominantly
textual content, designers often embed visual artifacts into the
document as auxiliary communication tools [9]. In such cases,
game graphics are previewed with the use of conceptual
illustrations and, diagrams and story boards are often used to
describe game events and characters behaviors inside design
documents.

Some designers have found in the visual modeling a strong
ally in communicating their game vision to the development
team. However, both this practice and the visual language used
are not standardized. These designers often create their own
visual notations to express a portion of the design [8]. The
Librande’s [6] “One Page Design” graphical schemes are an
example of this practice. It comprises a sort of “game design
map” freely created with textual and visual artifacts that
represents an overview of the design for a game. He hangs the
design map in a place where all development staff can easily
access in their everyday work. Librande [6] emphasizes that
visual models are more synthetic, naturally communicative and
scale better. He used his schemes in various projects with
success, as he states that they facilitated the understanding and
update of the game’s design.

Kuittinen [23] tried to create visual associations of Björk’s
Game Design Patterns through a software called CAGE –
Computer-Aided Game Design. As one of the few initiatives to
build concrete tools that can be integrated into the current
design standards, his goal was to allow designers to select the
patterns that will constitute the game concept and visualize
their inter-relationships in a diagram. The descriptions of the
selected patterns are then integrated into the design document.
Although simple and academic, this work represents an
interesting attempt to apply a conceptual model and to integrate
it to the methods currently used in industry. This integration
with current design tools should be a must-have feature of any
attempt to bring new tools or methods to real usage, as it is
very unlikely that someone will dispose all of their working
tools, which has its value, to riskily try something totally
different.

As another example of an attempt to bring visual artifacts to
game design through computational support, the software
Sketch-It-Up! [24] provides a visualization of the design
narrative via animatics (animated sequences of game play),
created during a brainstorming session by the participants,
which simultaneously interact in the software. Although not
related to any formal approach of design modeling, the Sketch-
It-Up! is another proof of the need for computational support
on game design.

Librande [6] observed that the diagramming practice forces
designers to extract the essence of the gameplay in few visual

elements, driven to specify the relationships between the
components of gameplay through a top-down approach that
breaks larger problems into smaller concepts. In fact, visual
languages for systems designing are not a novelty. Software
development has been using visual diagramming in the entire
production process for decades. The Unified Modeling
Language (UML) [25], a comprehensive vocabulary of visual
languages for various diagrams has been a proven approach
long applied in software engineering. The fact that designers
tried to use informal approaches to document the game
concepts leaded them to pure textual language, far from
structured visual languages. However, designers are gradually
seeking for structured languages. Many authors have suggested
the use of formal approaches to build game design diagrams,
such as Petri Nets and UML. They are attempting to bring
standardization to design documentation through these
languages.

The use of visual languages for representing the design
resembles the requirements and design modeling on the
software development. This similarity has been noted by some
authors, who discussed the use of UML diagrams to create
design maps. Sicart [17] presented a definition for game design
based on the concept of object orientation and suggest the use
of UML for modeling. While discussing the appliance of agile
methods of software development into the production of
games, Demachy [5] also pointed to UML as a game design
diagramming tool, especially for describing the elements of
gameplay.

Some publications have reported study cases about the
appliance of UML in the designing of games. As an example,
Blumenthal [26] designed the Space Invaders game as a
pedagogical demonstration, using UML to capture the
requirements and design of the game. However, as can be seen
in these publications, raw application of UML into game
design will not work effectively. Further studies of UML
application must be performed to make it suitably adapted to
the needs of game design.

Finally, in contrast to design modeling, some academic
approaches had focused on a lower level of game description.
They are trying to put together a language of logical
constructions to allow the representation of game mechanics,
often described as the game’s rules. Brom and Abonyi [27],
Araujo and Roque [28] and Natkin and Vega [29] have
addressed applications of Petri Nets for this mechanics
representation. Koster [30] and Bura [31] presented adaptations
of Petri Nets with several own customizations to the same
purpose. In the practical field, Dorman [2] and Smith, Nelson
and Mateas [32] built software tools for mechanics modeling
and simulation in real-time. Dorman’s Machinations employ a
Petri Nets based visual language to specify the mechanics of
the game. Once completed, the rules in the diagrams can be
executed, allowing a “game simulation”. Similarly, Smith,
Nelson and Mateas tool called Ludocore allows the same, but
uses a high level textual programming language to describe the
game mechanics models. Although promising, both languages
are mostly unintuitive and the "game simulation" of these tools
focuses solely on the “producer” perspective, not allowing
experimentation of the “consumer” point of view through the
game aesthetics.

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

281

VI. REQUIREMENTS GATHERING

Af ter reviewing the current design tools and the major
attempts to bring contributions do the game design process, we
will analyze them and, in the light of their previous attempts,
we will propose a list of features as requirements for future
design tools and methodologies.

A. Gathering requirements from current design tools

Kreimeier [1] surveyed the state of the art of game design
tools and methods of its time and suggested that more agile
methods were needed. In a similar discussion, Neil [9] pointed
that while designers are searching for more formal and
structured tools, these cannot impose restrictiveness and work
load.

The GDD has been the standard documentation artifact
since the earlier steps of the games creation profession,
probably a legacy from the old software specification
documents, later replaced by more synthetic approaches in that
area. As already pointed, the GDD lacks standardization, both
in textual structure and visual aids. As narrated by some
designers, visual languages are well suited for the
documentation and communication of the designer’s vision.
Moreover, a more agile approach for game design is desired
once changes often occur in game projects and preventing them
is not a practicable solution.

Regarding the prototyping process, designers need a tool
that would allow them to build experimental prototypes
directly from the definition of a set of game characteristics.
This could provide a way to perform instant proof of concepts
while conceiving the game, through an iterative process of
design and testing of gameplay.

We can gather the following requirements based on what
was pointed by designers and researchers as necessities:

• The design process must allow changes in the game
definitions. Changes are necessary once the gameplay
evolves along the game conception.

• The design documentation must be lightweight and
minimalist: it cannot adds workload to the designer;

• The design documents must be easy to create and
maintain by using standard languages or tools;

• The design documentation must allow the use of visual
languages in order to express design concepts through
visual models.

• The design tools must provide a way to build some
“design knowledge base” in order to allow the reuse of
already proven past concepts and ideas.

• The prototype tools must provide a Game Design IDE
(Integrated Development Environment) in order to
allow designers to visually model and “playtest” games
instantly.

In fact, some of these gathered requirements appear to be
rather vague, not indicating a straight direction to follow in
possible future design tools. However, they will serve as
foundation to the analysis of the new approaches of design

tools and methods, proposed by various authors since 1994,
especially because these approaches mostly focused on
fulfilling these requirements.

B. Gathering requirements from the proposed approaches

The works towards improved design instruments previously
presented mainly focused on two approaches: the conceiving of
a shared vocabulary of design concepts and the set up of a
standardized visual language for design. Their aim can be
mostly synthesized as to improve communication and
knowledge transfer through more standardized and structured
documentation. Thus, they expected to bring contributions to
the whole game design process, as the design documents are its
guidance.

Four main approaches of conceiving a shared design
vocabulary were discussed throughout the present paper:
collections of design concepts, design guidelines, dictionaries
of terms and taxonomies in games. Although all of them are
described by their authors as design tools proposals, their use
with such objective is not accomplished. Overall, all
approaches show an evident lack of maturity and
computational support for adoption and experimentation in real
world scenarios. On the other hand, the approaches based on
dictionaries, taxonomies and guidelines do have an intrinsically
practical nature and although cannot surface as tools, they are
significant contributions to the conception and adoption of a
common vocabulary.

The approaches based on collections of design concepts has
promising applications as supporting tools for game analysis
and design, as they may allow designers to see games as a
collection of small, structured and interrelated parts that can be
assembled in a different combination to create new games.
Furthermore, the concept that games are made upon groupings
of smaller parts is very intuitive, as we can observe a lot of
commonalities between elements of the existing games,
whether they belong to the same game genre or not. The
problem is not the concept itself, which is fairly accepted, but
how to structure the collection of components and what exactly
they are. This is where the real challenge lies: the building of a
database of design knowledge that can be easily accessed, that
allows to be evolved and can be mapped to the existing games
in a productive way. If accomplished, this tool may help to
improve the entire process of game design. However, the
existing implementations still do not accomplish this.

The GDP is the most significant contribution in trying to set
up a database of design concepts. The use of a collaborative
construction tool, such as a wiki, shows a clear intention of
turning the GDP into a practical tool of game design. Church
[11] tried the same with the FADT project by allowing
designers to collaboratively propose and discuss the FADTs
through a forum hosted in the Gamasutra website. Therefore,
any attempt to bring a database of design concepts for real use
needs strong support by software tools. The tool must provide
guidance to designers in order to the correct organization of
each concept. As the collection of concepts grow, it is needed a
place to store and management them. Furthermore, advanced
search and application mechanisms are necessary to allow the
use of the collection. Both FADT and GDP fail in this

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

282

requirement. A forum is a tool made for discussion, not a
system for content management. The same occurs in GDP,
once he wiki documentation and navigation model hinders both
the understanding and the use of the patterns. Aside software
support, both approaches tried to define a formal structure of
the collection, most notably the GDP, with the use of the
design patterns structure of description and interrelation. Also,
both tried to allow collaboratively construction of the
collection of games concepts, as they realized that is
impracticable to one designer to build and maintain the whole
database, of possible hundreds or thousands of design concepts.

Regarding the attemps to bring visual languages to game
design, we have found two main approaches: game design
modeling and mechanics composition. Mostly aided by
software tools, these languages have one single purpose: to
facilitate communication. In order to not “reinvent the wheel”,
their authors have drawn inspiration over proven languages
from other areas, especially software engineering, which is a
clever decision, as these known languages have a strong user
base, built along many years of proven usage. These known
languages are not strictly related to programming only, but to a
wider focus of analysis and design of systems, whether
software or not. Games can be approached as object-oriented
systems, and thus, adaptations of UML or other standards can
be accordingly applied.

A key element that has not been explored in the previous
works discussed, with the exception of the work of Kuittinen
[23], is the integration between the collection of design
concepts and the visual language for design modeling.
Diagrams of the design of a game could be made through the
gathering of the concepts that the game implements. It would
make easer to see the interrelations between these concepts
and, the games and genres that employ them. Beyond that, it
would take the visual documentation to a more concrete level,
once the concepts of a game wouldn’t be more just a collection
of scattered game parts. Although designers who heavily base
their work on narrative techniques may show some resistance
to the use such formal visual languages, these languages
represent a trend and a necessity already highlighted by
researchers and practitioners.

By bringing together the features discussed and reviewed in
both design vocabularies and visual languages approaches, we
may provide the following requirements:

• It must provide software tools to aid game design, not
only at a conceptual level;

• It must provide integration with the tools currently used
in game industry, mostly the design document and the
prototyping approach.

• It must define a formal structure for the concepts
documentation, with well defined fields and relations;

• It must provide guidance on how to build and use the
collection;

• It must relate concepts, games and genres;

• It must allow designers to use and extend the concepts
in order to compose the design of new games;

• It must considerer both the designer’s perspective
(game rules) and the player’s perspective (aesthetics)
when describing each concept;

• It must provide analysis of concepts, games and genres
related to market, critics and player data.

• It must provide a formal visual language to model
games through assembling of smaller concepts and to
allow visualization of relations between them.

• The visual modeling must address different aspects of
the design, both high (design overview) and low level
of abstractions (concepts details).

• The visual language should be based on a proven
existing language from other area, but must be
specifically tailored to game design.

• It must provide a database tool in order to manage the
concepts collections, its maintenance and usage.

• It must allow a collaborative environment in order to
allow designers to work and evolve the collection.

• It must have a moderation mechanism to ensure that
erroneous concepts are not added to the database.

VII. FINAL THOUGHTS

Game design lacks a shared tool box that contains both
solutions of broad application and specific to certain genres of
games. Researchers, renowned designers and independent
developers search for better design tools. While game
programmers, graphical designers and musicians are well
served by sophisticated tools powered by constantly improving
software and hardware technologies, designers still work with
text tools, which seems a primitive solution when consider the
matter of their work: the conception of complex interaction
mechanisms. Beyond that, there is even no standardization on
the current design tools, though most authors agree that the use
of standardized tools can bring industry and academia closer,
contributing to build a universal knowledge base of game
design.

In general, designers crave for productive and standardized
tools and techniques that do not sacrifice the freedom and
creativity inherent to their craft. Several attempts to set up new
tools have been made and some overall characteristics are
clearly identifiable across them: more agility, less workload
and more standardization. However, none of the previous
approach had succeeded as tools of practical use. In these
implementations, the use of unfamiliar and counter intuitive
languages, the high learning curve required to use them and the
uncertainty of practical gains, keep designers away. Moreover,
these tools have been evaluated in academic environments,
applied to restricted work groups, usually composed by
academics and beginners, which does not reflect the area. Even
its authors are uncertain about the gains that such tools will
bring to other designers and highlight the need to evaluate them
on the field. Neil [9] proposed to carry out such evaluation.

Beyond than recognizing the designer’s wishes, we needed
to know their particular methods, those not widely

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

283

documented. The commercial success of the industry since its
beginning cannot be overlooked, a fact that certainly
contributes to certify these “secret” methods. Valuable tools
may have already been developed to a project and thrown
away. The work of Librande [6] is an example of such “secret
weapons” that need to be known. Becoming aware of such
tools, crafted for specific design situations, may contribute with
the approaches discussed in this paper towards a productive
design toolbox. The fact that industry and academia agree
about the needs of game designers indicates that both know
what must be done, but the rejection of using the conceptual
and physical implementations available, makes it clear they yet
do not know how to do it.

REFERENCES

[1] B. Kreimeier, Game Design Methods: A 2003 Survey. Gamasutra, Mar.

2003. http://www.gamasutra.com/view/feature/2892/game_design_
methods_a_2003_survey.php, 2003.

[2] J. Dormans, Engineering Emergence: Applied Theory for Game Design.
Doctoral Dissertation. Amsterdam University of Applied Sciences,
2012.

[3] C. Keith, Agile Game Development with Scrum, Addison-Wesley
Professional, 2010.

[4] G. Costikyan, I Have No Words & I Must Design. Interactive Fantasy,
Eng., n2, 1994.

[5] T. Demachy, Extreme Game Development: Right on Time, Every Time.
Gamasutra, Jul. 2003, http://www.gamasutra.com/view/feature/2827/
extreme_game_development_right_on_.php, 2003.

[6] S. Librande, One-Page Designs. Presentation at GDC 2010, San
Francisco CA, Mar. 2010. http://stonetronix.com/gdc-2010/, 2010.

[7] M. Cerny. The Road to the PlayStation 4. Presentation at GameLab
Conference 2013. http://www.ign.com/videos/2013/06/29/the-road-to-
the-playstation-4, 2013.

[8] K. Salen, E. Zimmerman, Rules of Play: Game Design Fundamentals.
MIT Press. MIT Press, 2003.

[9] K. Neil, Game Design Tools: Time to Evaluate. Proceedings of DiGRA
Nordic 2012 Con-ference: Local and Global – Games in Culture and
Society, 2012.

[10] T. Sigman, The Siren Song of the Paper Cutter: Tips and Tricks
from the Trenches of Paper Prototyping. Gamasutra.
http://www.gamasutra.com/view/feature/2403/the_siren_song_of_the_p
aper_.php, 2005.

[11] D. Church, Formal Abstract Design Tools. Gamasutra, Jul. 1999.
http://www.gamasutra.com/view/feature/3357/formal_abstract_design_t
ools.php, 1999.

[12] T. Fullerton, C. Swain, S. Hoffman, Game Design Workshop:
Designing, Prototyping, and Playtesting Games. CMP Books, San
Francisco, 2004.

[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[14] S. Björk, S. Lundgren, J. Holopainen, Game Design Patterns. Level Up -
Proceedings of Digital Games Research Conference (DiGRA). Utrecht
University, 2003.

[15] M. LeBlanc, R. Hunicke, R. Zubek, MDA: A formal approach to game
design and game research. Proceedings of the AAAI-04 Workshop on
Challenges, 2004.

[16] A. Järvinen, Games Without Frontiers: Theories and Methods for Game
Studies and De-sign. Doctoral Dissertation. University of Tampere,
2008.

[17] M. Sicart, Defining Game Mechanics. Game Studies: The International
Journal of Computer Game Research, v. 8, n. 2, dez. 2008.
http://gamestudies.org/0802/articles/sicart, 2008.

[18] N. Falstein, H. Barwood, More of the 400: Discovering Design Rules.
Presentation at GDC 2002. http://www.gdconf.com/archives/2002/
hal_barwood.ppt, 2002.

[19] C, Fabricatore, M. Nussbaum, R. Rosas, Playability in Action
Videogames: A Qualitative Design Model. Proceedings of Human-
Computer Interaction 17:4, 311-368, 2002.

[20] P. Burkart, Discovering a lexicon for video games: New research on
structured vocabularies. International Digital Media and Arts
Association Journal, 2(1), 18-24, 2005.

[21] J. P. Zagal, M. Mateas, C. Fernadez-Vara, B. Hochhalter, N. Lichti,
Towards an Onto-logical Language for Game Analysis. Proceedings of
the DiGRA, Canada, Jun. 2005.

[22] C. Lindley, Game Taxonomies: A High Level Framework for Game
Analysis and Design. 2003, www.gamasutra.com/view/feature/2796/
game_taxonomies_a_high_level_.php., 2003.

[23] J. M. Kuittinen, Computer-Aided Game Design. Master’s Thesis in
Information Technology, University of Jyväskylä, Jan. 19, 2008.

[24] B. Karakaya, C. Garcia, D. Rodriguez, M. Nityanandam, N.
Labeikovsky, and T. Al Tamimi. Sketch-It-Up! Demo. Entertainment
Computing–ICEC: 313–314, 2009.

[25] M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language . Boston, MA: Addison-Wesley, 3a ed, 2004.

[26] R. Blumenthal, Space Invaders: A UML Case Study. Regis University,
class notes, 2005.

[27] C. Brom, A. Abonyi, Petri-Nets for Game Plot. Proceedings of AISB,
Vol. 3, 2006.

[28] M. Araújo, L. Roque, Modeling Games with Petri Nets. Proceedings of
2009 Digital Games Research Association Conference (DiGRA). Brunel
University, 2009.

[29] S. Natkin, L. Vega. A petri net model for computer games analysis.
International Jour-nal of Intelligent Games Simulation 3 (1): 37-44,
2004.

[30] R. Koster, A Grammar of Gameplay. Presentation at GDC 2005, San
Francisco CA, Mar. 2005. http://www.raphkoster.com/gaming/atof/
grammarofgameplay.pdf, 2005.

[31] S. Bura, A Game Grammar, http://www.stephanebura.com/diagrams/
2006.

[32] A. M. Smith, M. J. Nelson, M. Mateas, LUDOCORE: A logical game
engine for model-ing videogames. CIG 2010 IEEE Symposium, 91–98,
2010.

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

284

