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Abstract—Throughout the last decade, designers and 
researchers have made attempts to bring improvements to the 
game design process through proposals of tools and methods. 
Some studies have focused on the analysis of design elements of 
popular games in order to understand the factors that may have 
contributed to their commercial and critical success. Among 
them, the Game Design Patterns project has been discussed in a 
number of publications. However, the identification of the 
patterns of a game is a long term process that must be entirely 
done by designers. No attempts of using computer tools to aid 
this process were documented. In this context, this paper presents 
an experimentation of use of textual analysis techniques to 
suggest patterns that may be contained in games. The results 
show that, while not mature enough to be used in real world 
scenarios, its achievements were positive and have room for 
improvements. 

Keywords—game design; game design patterns; similarity 
analysis applied 

I.  INTRODUCTION 

The primary task of game designers can be synthesized as 
the creation of successful games, whether commercial or 
critical. Throughout the last decade, designers and researchers 
have made an attempt to bring improvements to the game 
design area by proposing new tools and methods. Their 
objective is to help designers to create better games. Most of 
such efforts are summarized in the work of [1]. Some of these 
attempts have focused on recognizing the recurring 
characteristics of the design of existing games in order to build 
a structured collection of reusable design concepts. In such 
works, there is a belief that the analysis of the parts of 
successful games may help in the creation of new ones, by 
reusing them. Among these works, the Game Design Patterns 
(GDP) approach [2] seeks to extract and document recurring 
patterns of game design in order to provide a framework for 
analysis and design of games. 

The identification of which patterns are used in a game is a 
long term process that must be entirely done by designers. 
Currently there are almost four hundred patterns documented in 
the project wiki1 but more may be added. What if designers 

                                                           
1 http://gdp2.tii.se/index.php/Main_Page (visited on 2013/06/24) 

would have to read thousands of patterns before deciding 
which ones could benefit their project? To facilitate this 
process, designers could do opposite: take a known game they 
judge to have interesting features for their project and then, 
from the collection of patterns for this game, select the desired 
ones. But to achieve this, we would need a way to suggest 
which patterns were contained in the game chosen by the 
designer. No attempts of using computer tools to aid this 
process were documented. On the other hand, computer textual 
analysis techniques are frequently used to check the similarity 
between contents. They are often applied in content suggestion 
for users in web based services for movies, music and games 
rental and acquisition. In this context, would be feasible to use 
these techniques to help designers to identify the patterns used 
in a game? We believe that is possible to analyze a game 
description and match it with the patterns in order to discover 
which ones are used. Throughout this text, we will present an 
experiment towards this effort. 

In this paper we present the initial experiments with 
computerized textual analysis techniques towards a game 
design patterns suggestion system. Firstly we present a brief 
conceptual background of the research field. Next, we describe 
the textual analysis method implemented and a description of 
the tool tailored for the experiment. Finally, we discuss the 
preliminary results obtained. 

II. CONCEPTUAL BACKGROUND 

Since the early years of game designing, the Game Design 
Document (GDD) has been widely adopted as the mainstream 
tool in the industry [3]. However, some authors have pointed a 
considerable lack of formalization and standardization in the 
document [1]. They agree that, despite the visible success of 
the industry, the lack of game design tools hinders the 
progression of the design process as currently known.  

In 1994, Costikyan [4] started a discussion about the need 
for greater formalism on game design. He suggested the build 
of a common design vocabulary as a framework that could 
allow designers to analyze and describe games. According to 
him, designers should have a way to dissect games, to 
understand the elements that compose them and to identify 
those elements that benefit or harm them. His speech has been 
echoed by many authors that have followed the same research 
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field: the constitution of a framework for the analysis and 
design of games through a collection of reusable design 
concepts. Among then, the Game Design Patterns (GDP) 
project [5], seeks to extract recurring design concepts and to 
structure them as design patterns, much like in software 
engineering [6]. The project has achieved a collection of almost 
four hundred patterns, currently documented in the project 
wiki, becoming the most active work in its field of research. 

A. Related Work 

The game design patterns approach has been subject of 
analysis and discussion in a number of publications by many 
authors, which are related in the GDP project wiki. Some of 
these works have applied the GDP framework to analyze and 
compare existing games and design concepts.  

Loh and Soon [7] applied the GDP framework to analyze 
and compare the fundamental concepts presented in some 
board and computer games through the patterns they present. 
The patterns were identified in the selected games by a reverse 
engineering approach, in which analysts did observations and 
experiments over the games. Although a common practice for 
analyzing games, the resulting set of patterns from the reverse 
engineering may vary if the analysis is performed by distinct 
designers, which directly relates to the different interpretations 
of each designer.  

To help addressing this bias, Tolmie, DiPaola and Charles 
[8] proposed to represent the set of patterns of a game as a 
graph structure, which graphically highlights the inter-relations 
between patterns and allow a better overview of a game’s 
patterns, thus facilitating its comprehension. As a result of their 
work, they have built a software application for interactive 
visualization of the GDP graph structure which is generated 
from a previously selected set of patterns. The application does 
not automatically identify the patterns from the game 
description: this must be done by the designers. 

Samarnggoon [9] tried to diminish the bias resulting from 
identification of a game’s patterns by using graph mining 
techniques. As an experiment, he used the board game 
Monopoly as a study case and asked ten designers to create a 
GDP graph for the game through manual reverse engineering. 
Then, he took the ten different graph versions and, using graph 
mining techniques, he converged then into one single version 
that would represent a consensus between the different visions 
of the designers. 

In the context of those two works, we intent to provide an 
input to the graph structure that represents GDP map of a 
game. More specifically, we want to aid the designers in the 
identification of which patterns are used in a game, a process 
currently done manually, by providing a suggestion tool based 
on textual similarity analysis. Fig. 1 illustrates this process. 

 

 

Fig. 1. Pure manual identification of patterns (on the left) and computer 
aided suggestion (on the right). 

B. Similarity Analysis and Content Suggestion 

Computer science’s data mining is the area concerned with 
information processing and retrieval techniques. Formally 
known as “knowledge discovering”, it comprises various 
research fields, including similarity analysis and 
recommendation systems [10]. Those two are specifically 
important to this paper experiment: the similarity analysis can 
show how close two documents are and a recommendation 
system may use it to suggest contents to a user. 

Virtually all of today major web sites that rent, sell or 
advertise any kind of products and services to end users 
employ some content suggestion, which is done by 
recommendation systems. According to [10], the main 
applications of recommendation systems are product 
suggestions at on-line retailers, movie recommendations and 
news articles. The key idea behind the technique is to discover 
the user’s preferences and, based on this, which content 
recommend to him. Blogs and other regular content providers, 
like YouTube, employ recommendation systems. Netflix has 
been using computer aided suggestion for a long time. It 
suggests movies and TV shows to the user based on the type of 
content he usually watches. Amazon does the same when 
recommending products to costumers. 

The techniques that a recommendation system employs 
may vary according to the type of data to be analyzed. 
Rajaraman, Leskovec and Ullman [10] classify two types of 
recommendation systems: content-based systems and 
collaborative filtering. The first type examines document 
contents in order to discover which of them seems to be more 
related. For instance, a book store system may analyze the 
summary of a reader’s books and, using content similarity 
analysis, match it with thousands of other book’s summaries in 
order to suggest the most similar. On the other hand, 
collaborative filtering is based on the user opinion: a movie 
retail web system may recommend movies to a costumer by 
matching his ratings of the movies he already watched with the 
ratings of others users in order to find similar costumers to him, 
and then, which movies they have already watched that he 
didn’t. 
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As for the present work, the content-based recommendation 
systems, which employ similarity analysis techniques, are very 
usefully to the suggestion of the most related GDP of a game 
based on the analysis of their content. The patterns wiki 
contains the full descriptions of the patterns and we can obtain 
the game descriptions from many sources from the web. The 
explanation of the techniques and the process employed are 
described in the following section. 

III.  THE EXPERIMENT 

The experiment consisted of selecting a game, obtaining its 
description and matching it with all the GDP descriptions in 
order to find the patterns which have the most similar content, 
thus suggesting them to the user. To achieve this, a software 
application was built in order to automate the entire process.  

A. Methods and Tools 

A software application (Fig. 2) to execute the experiment 
was built using the Java platform and Apache Lucene [11], a 
library for text processing. The software was a key element in 
the experiment once it provides functionalities that allowed us 
to agilely extract and check the necessary data. By using the 
app, we were able to get the patterns suggestion for the game 
by inserting the game’s name in the search field. As can be 
seen in Fig. 2, we could also configure the parameters of the 
similarity analysis process. Those parameters are: the number 
of terms of each document that will be used in the similarity 
matrix, the number of reviews for the selected game that will 
be processed during analysis and the size of the patterns list to 
be shown in the result box.  

Beyond helping us to collect the necessary data and 
executing the similarity algorithms, the tool allowed us to 
reduce the load of checking the correspondence between each 
suggested pattern and the game by providing the pattern 
description (this process is described in a later section). 
Another feature implemented in the software is the ability to 
plot a relationship map of a game design pattern for quickly 
visualization (Fig. 3). By looking into the map we can check 
the suggested patterns and the patterns to which these relate. 
While not specifically valuable to the experiment of this paper, 
it will serve in future works. 

 

Fig. 2. Screenshot of the suggestion tool built with Java. 

 

Fig. 3. Relationship map of a game design pattern. The related patterns are 
positioned around the selected pattern, which is at the center. 

The software application downloads all the necessary data 
for the experiment from specific websites. The patterns 
descriptions are obtained from the GDP project wiki. The 
textual data is then cleaned (removes formatting) in order to 
extract only the desired information to the experiment, which 
are the patterns description. For the game description, there 
were two options as source of data: game manuals or game 
reviews. Game reviews were considered more appropriated to 
this experiment as they contain game design analysis, whereas 
game manuals are more concerned in teaching the user on how 
to play the game. Thus, the website GameFaqs2 was used as the 
source of game reviews as it has many reviews for each game. 

The entire process performed by the software application to 
recommend patterns can be summarized in the following steps 
(see Fig. 4): 

1. When first used, the application will download, extract 
and clean the descriptions of all the patterns from the 
GDP project wiki. (The information regarding the 
patterns are indexed with Lucene and stored locally for 
better performance). 

2. The user enters a game name; 

3. The software obtains and cleans the game reviews 
from GameFaqs website; 

4. The data is indexed with the Lucene library and stored 
in a proper data structure. 

5. The game description data is compared with the 
description data of each pattern using a similarity 
algorithm, which indicates how close the two textual 
contents are. 

6. At the end, the suggestions of GDPs for the game are 
listed in a descending order of similarity. 

The data structure, the indexing process as well as the 
methods for similarity analysis are described in the next 
subsections. 

                                                           
2  http://www.gamefaqs.com/ (visited on 2013/06/24) 
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Fig. 4. Operation method of the suggestion tool. 

B. Similarity analysis method employed 

There are some techniques that can be used to denote how 
similar two documents are. In our case, we want the algorithm 
to tell us how similar a game description and a pattern 
description are. After discovering the similarity between each 
pattern and the game description, we can sort the resulting list 
in a descending order of similarity: from the most to the least 
similar. 

The first step of the similarity algorithm between two 
documents employed consists of extracting all the terms (words 
or other strings of characters other than white space [10]) from 
the document content. This is done with the Apache Lucene 
library, which removes the stop words and stems the resulting 
terms.  
 According to [10], stop words are the least important terms 
in the processing of natural language, once they help to build 
ideas but do not carry any significance by themselves. 
Examples of stop words are articles and pronouns. In the 
experiment, we used the same stop words dictionary from 
MySQL [12], Onix [13] and Ranks [14] systems. 

After removing stop words from the text, the Lucene stems 
the remaining terms. The stemming is the process of reducing 
inflected words to their root form [10]. As an example, the 
words “stemmer”, “stemming” and “stemmed” are reduced to 
the root form “stem”. 

After the processing is completed by Lucene, the (root) 
terms of a document are stored into an associated one 
dimensional matrix, which is used to store the terms frequency 
within the document: the number of times the term appears in 
the document. Each document has its own frequency matrix. 
The matrix length is equal to the total number of terms of all 
documents. Each position in the matrix corresponds to a term 
frequency inside the document (replaced later in this 
experiment by the TF.IDF score [10] for better results, as 
discussed bellow).  

When the frequency matrices of the two documents – game 
review and pattern description – are done, the cosine similarity 

[10] between them can be calculated. Singhal [15] states that 
the cosine similarity technique gives a useful measure of how 
similar two documents are likely to be in terms of their subject 
matter. This is especially useful for the experiment described in 
this paper. We are interested in finding documents with similar 
meaning and not character-level similarity, which wouldn’t say 
much about how close are a pattern and a game. With this 
objective in mind, we later combined another technique 
suggested by [10] that is taken as useful for measuring the 
similarity of meaning between documents: the TF.IDF score.  

After the first run of experiments, we soon noticed that the 
pattern suggestions tool was overvaluing common terms like 
“game” or “player” in the frequency matrix, as they really were 
the most common terms in the analyzed documents. However, 
the importance of these terms was very low to our analysis. 
Thus, we had to consider the importance of each word within a 
document to discover its most meaningful terms. For this, we 
replaced the frequency matrix by a matrix of TF.IDF scores of 
the terms. The TF.IDF (Term Frequency times Inverse 
Document Frequency) gives a score based on the importance of 
a word in a document [10], which gave us better results in the 
experiment (as demonstrated in the next section).  The TF.IDF 
obtainment process is explained hereafter. 

C. The TF.IDF Score 

According to [10], the TF.IDF score can be used to find the 
terms that best describe the document they belong to. To obtain 
the score of the importance of a term i in a document j, we use 
the equation (1). 

 score(i, j) = TFij x IDFi (1) 

The TFij in (1) represents the Term Frequency of the term i 
in the document j. The IDFi in (1) represents the Inverse 
Document Frequency of the term i over the entire collection of 
documents under analysis. They are calculated by the equations 
(2) and (3), respectively. 

 TFij = fij / Ntermsj (2) 

The equation (2) shows us how the term frequency is 
calculated. In (2), the frequency of the term i in the document j 
(fij), which is the number of times the term occurs in the 
document, is normalized by the total number of terms of the 
document (Ntermsj). If a term count is equal to the total 
number of terms in the document, then the TF for this term will 
be 1. Otherwise, the TF will have a value between 0 and 1.The 
more the term appears in a document, the higher will be its TF 
value. 

 IDFi =log2(Ndocs/Ni) (3) 

In equation (3) we have the obtaining of the inverse 
document frequency (IDF), which gives us the presence of the 
term i in the entire collection of documents. Ni represents the 
number of documents in which the term i appears and Ndocs, 
the total number of documents in the collection. 
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D. Running the Experiment 

The results of the experiment discussed in this paper 
represent a work in progress.  The software tool built is not 
complete and mature enough to be used in real world scenarios, 
but the achievements done so far are very positive and 
encouraging. We chose to show the gradual results of the 
experiment instead of only the final (and better) results as a 
way to report the complete process and justify the decisions 
made. 

The games chosen to be tested were classic games from the 
third generation of videogame consoles. A total of three games 
were used to run the experiment: Super Mario Bros. [16], Ninja 
Gaiden [17] and Tetris [18]. Two of these games were select 
because they were the best selling games of their platforms 
[19] [20]: Super Mario Bros. for the NES [21] and Tetris for 
the Game Boy [22]. The third game, Ninja Gaiden, also for the 
NES platform, was chosen by a personal preference of the 
authors. 

The experiments were done comprising various trials 
towards better suggestions of patterns (the results are shown in 
the next section). By better suggestions we understand having 
more patterns related to a game in the list showed by the 
software tool. Instead of using just one game review, we 
progressively tested the patterns suggestions against all the 
available reviews for each game. In all the tests, we 
experimented the two similarity algorithms previously pointed, 
cosine similarity with frequency matrix and cosine similarity 
with TF.IDF score matrix. The former was the first 
implemented in the software and the later, as a measure to 
improve the suggestion mechanism. 
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Fig. 5. Progression of the correct suggestions of patterns over the number of 
reviews for the game Tetris (Game Boy). 
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Fig. 6. Progression of the correct suggestions of patterns over the number of 
reviews for the game Ninja Gaiden (NES). 
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Fig. 7. Progression of the correct suggestions of patterns over the number of 
reviews for the game Super Mario Bros (NES). 

E. Results and discussions 

The results for the experiments are synthesized in the 
graphs shown in the Fig. 5, 6 and 7. We ran the software tool 
for each one of the chosen games and collected the list of 
patterns suggested. We then checked each of the patterns to see 
which were accepted for the games, which means that, we 
manually verified if the suggested patterns were really 
contained in the games. This was comprised of a manual task 
of reading each one of the patterns description and verifying its 
acceptance to the game’s concepts. Then, we counted how 
many accepted patterns the tool suggested and used this as a 
measure of evaluation for the experiment. It is important note 
that, as a recommendation system, the tool doesn’t “know” 
when a pattern is accepted or not, it simply recommend it in 
order of similarity to the game description, in terms of their 
subject matter.  

Fig. 5, 6 and 7 show the graphs that contain the tests results 
for the three games selected for the experiment. As can be 
observed in the graphs, using the cosine similarity mixed with 
the TF.IDF score matrix gave notably better results. These 
results help to corroborate with the suspicion that, when 
combined, the cosine similarity and the TF.IDF score form a 
useful tool to measure the similarity between two documents in 
terms of their subject matter.  

The analysis of different games with an unequal number of 
reviews helped us to note another fact: as can be seen in the 
three presented graphs, the number of reviews has strongly 
influenced the results. More than that, it was directly related to 
the number of accepted suggestions of patterns. In most cases, 
the more game reviews we used in the analysis process, the 
more patterns were appropriately suggested by the tool. 

The suggestion lists obtained for the three games are shown 
in the Tables I, II and III. The accepted patterns in each table 
are presented in bold. In these tables, we limited the resulting 
list of suggested patterns to the first thirty positions (from a 
total of four hundred). Above this, we couldn’t find any 
accepted patterns in the list, although we don’t believe that 
“thirty” is a rule for all games, which will be subject of study 
on future experiments. While the perfect result would be 
having all the correct patterns grouped in the beginning of the 
list, and not scattered in the first thirty positions, the current 
result is very positive, if we consider that the suggested 
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patterns were all positioned between the first thirty positions of 
a four hundred list. This suggests that, although not perfect, the 
employed technique is going towards the desired results. 

TABLE I.  LIST OF SUGGESTED PATTERNS FOR TETRIS 

Nº. Pattern Nº. Pattern 

1 Line of Sight 16 Crossmedia Gameplay 

2 High Score Lists 17 Meta Games 

3 Puzzle Solving 18 Difficulty Levels  

4 Challenging Gameplay 19 Levels 

5 Time Limits  20 Zero-Player Games 

6 Casual Gameplay 21 Time Limited Game Instances 

7 Geometric Progression 22 AI Players 

8 Development Time 23 Obstacles 

9 Free Game Element Manipulation 24 Speed Runs 

10 Game Worlds 25 Score Tracks 

11 Non-Player Help 26 Back-to-Back Game Sessions 

12 Single-Player Games 27 Gameplay Statistics 

13 Split-Screen Views 28 Ghosts 

14 Extra-Game Consequences 29 Dice 

15 Tiles 30 Diegetically Tangible Game Items 

TABLE II.  LIST OF SUGGESTED PATTERNS FOR NINJA GAIDEN 

Nº. Pattern Nº. Pattern 

1 Back-to-Back Game Sessions 16 Cutscenes 

2 Levels 17 Feigned Die Rolls 

3 Backtracking Levels 18 Drop-In Drop-Out 

4 Challenging Gameplay 19 Avatars 

5 Crossmedia Gameplay 20 Loot 

6 Difficulty Levels 21 Trick Taking 

7 Quick Returns 22 God Fingers 

8 Death Consequences 23 Combat 

9 Lives 24 Traverse 

10 Enemies 25 Exaggerated Perception of 
Influence 

11 Invisible Walls 26 Game Worlds 

12 Weapons 27 Freedom of Choice 

13 Boss Monsters 28 Non-Player Help 

14 Split-Screen Views 29 Damage 

15 Dynamic Difficulty Adjustment 30 Illusion of Open Space 

TABLE III.  LIST OF SUGGESTED PATTERNS FOR SUPER MARIO BROS. 

Nº. Pattern Nº. Pattern 

1 Levels 16 Parallel Lives 

2 Warp Zones 17 Enemies 

3 Power-Ups 18 Thematic Consistency 

4 Crossmedia Gameplay 19 Lives 

5 Boss Monsters 20 Difficulty Levels 

6 Friendly Fire 21 Diegetic Consistency 

7 Back-to-Back Game Sessions 22 Avatars 

8 Dice 23 High Score Lists 

9 Speed Runs 24 Multiplayer Games 

10 Challenging Gameplay 25 Rescue 

11 Temporary Abilities  26 Big Dumb Objects 

12 Quick Travel 27 Movement 

13 Privileged Movement 28 Diegetically Tangible Game Items 

14 Ghosts 29 Backtracking Levels 

15 Traverse 30 Obstacles 

 

IV.  FINAL THOUGHTS AND FUTURE WORK 

Recommendation systems have been used successfully in 
on-line services for consumer’s content suggestion, like 
retailers, movie services and news articles. Even outside this 
scope, these systems can be applied to measure the similarity 
between groups of textual contents, thus recommending the 
contents with higher similarity. This is particularly valuable to 
the question that driven this work: would be feasible to use 
these techniques to help designers to identify the patterns used 
in a game? The results of the experiment described in this 
paper shows that it is possible, but improvements in the 
algorithm used may lead to a better outcome. 

The similarity method employed in the software tool 
specifically built for the experiment presented throughout this 
paper, has showed encouraging results. It helped us to confirm 
that both the cosine similarity and the TF.IDF score are really 
useful methods to analyze the similarity between two 
documents in terms of their subject matter. The cosine 
similarity method alone was able to achieve some results, but 
the mixing with the TF.IDF score matrix gave a notably better 
outcome. While it didn’t have achieved the most reliable 
results, all the appropriately suggested patterns were grouped, 
with some scattering, at the first positions of the list, which 
brings a promising initial result. 

Another important fact that deserves to be noted is that the 
reviews used in the similarity analysis during the experiment 
were mostly written by end users. Although some of them 
cover important aspects of the game being reviewed, they may 
lack some more technical language, like the one usually 
employed by professional game designers or even the 
specialized media writers. Clearly, the problem is where to find 
a good source of game reviews with technical quality. 

During the evaluation phase of the experiment, when we 
had to confront each of the suggested patterns with the game 
by reading the patterns definition, we noticed that some 
patterns that should have been suggested for the game had 
relations with the suggested ones. We observed this fact when 
visualizing the patterns relations through the relationship maps 
generated by the software tool. In this sense, it’s possible that 
patterns that have some relations may translate them into the 
games that use these patterns, but this was clearly a suspicion 
and not an observed fact. However, this would be a probable 
subject of study and experimentation in the next step of the 
present work. 
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As future work, we intent to implement other similarity 
algorithms in order to compare the results with the ones 
presented in this paper. Rajaraman, Leskovec and Ullman [10] 
as well as Singhal [15] present other techniques that may be 
triable. 

Another possibility of a further study is the employment of 
collaborative filtering techniques in an attempt to enhance the 
suggestion algorithm. We can create a collaborative tool where 
designers and users may choose the most probably correct 
patterns for a specific set of games and, based on the similarity 
of these games with the ones under analysis, we may suggest 
the patterns. An experiment of this kind may allow us to 
combine collaborative filtering with automatic content analysis 
in order to get more adequate suggestions of game design 
patterns. 

With more solid results, we may have the tool available to 
public usage and experimentation, allowing a broader 
collecting and processing of usage data, thus improving the 
recommendation process via the combined techniques of 
content similarity and collaborative filtering. When we reach 
this mark, we will have a fully functional tool that may provide 
an easy way for big studio designers, independent developers 
and game specialists to analyze and create games using the 
game design patterns framework. 
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