
Towards a Library of Game Components
A Game Design Framework Proposal

Marcos S. O. Almeida
Computer Science Coordination

Federal University of Technology – Paraná (UTFPR)
Campo Mourão, PR, Brazil
marcossilvano@utfpr.edu.br

Flávio S. C. da Silva
Computer Science Department

University of São Paulo (USP)
São Paulo, SP, Brazil

fcs@ime.usp.br

Abstract—“Game Elements” is a commonly referred term in
games related publications. The notion that games are
constituted by parts is widely accepted but no formal definition
has been set. Designers commonly play a large amount of games
in order to build a knowledge base over games concepts. At the
same time, researchers and designers have an agreement upon
the need for more formal design tools, highlighting approaches
based on collections of reusable game concepts. While some
implementations have been created, none have succeeded as
practical tools, focusing too much on high level design
abstractions. We believe that games can be dismembered into
their forming components and these can be structured, analyzed
and combined in order aid the build of new games, allowing an
engineering based approach through a framework of building
blocks-driven game design. This paper discusses the steps
towards a conceptualization of this framework.

Keywords— Game design tool; engineering-aided game design;
game components; game elements.

I. INTRODUCTION

It is common to find references in game design texts to the
idea that games are built upon a specific set of parts. Usually, if
we desire to create a platform game, we need to play the major
titles of the genre, find out what they have in common, what
makes each one unique and what doesn’t work for them. As a
result of this task, we get a conceptual database of the forming
elements of games from this genre. From then on, we start
having some tools to aid on the creation of a standard platform
game. If we want to go a little further, making some
innovations, we may also play games from other genres to find
interesting elements that could be mixed with those commonly
found on platform games, creating some cross-genre
characteristics. Generally speaking, what we have done here is
mining the forming elements of existing games in order to use
them as a toolbox to the creation of new games. Although this
may not represent the entire process of game creation, it does
define an important part of it.

While not formally defined, this practice is widely applied
by designers, whether they are part of big studios or
independent creators. We believe that this practice can be
formalized and concretized as a conceptual tool, a game design
framework that will produce a library of game components,
which could allow component-focused analysis and
experimental design through the trials of different

combinations of components. Throughout this paper, we will
discuss and present the concepts and the structure towards the
conceptualization of this tool.

II. A COMMON BUT NOT FORMALIZED TERM

Game publications and specialized media have been
implicitly or explicitly referred to the idea that games have
forming elements. When reviewing a game and pointing its
main features, authors usually describe them as having
elements that define or contribute to its gameplay and user
experience. These elements can be described as the unities that
constitute the key characteristics of games, varying from
gameplay to narrative aspects of the storyline. The idea that
one game borrows elements from others is often referred.
Furthermore, there is a common understanding that game
genres and themes, such as adventure, action, RPG or horror,
define characteristic elements for its games. Thereby, cross-
genres titles have elements from the genres that classify them.
Overall, those “game elements” are a common part of the
designers and analysts vocabulary. In that sense, the concept
that games are constituted by parts is largely applied but no
formal definition has been set. In this context, "formal" does
not refer to mathematical models, but to organized,
standardized and structured models and tools to aid the game
design process.

In any product creation craft, it is vital to creators to keep
up to date with the achievements of other professionals. Two
facts can be highlighted about that need: we want to know what
the competition plans are and it is vital to have an overall
picture of the ideas already implemented, to decide if they can
benefit our work. This is no different in games production.
Like any other usual player, game designers play lots of games,
though with a different purpose. As a very informal practice
and an important part of their craft, designers constantly
experience a vast amount of games through an analytical
perspective in order to increase their knowledge over the
elements that define them and lead to their uniqueness. The
existing games typically act as a foundation to new ideas and
designers want to find what works for them.

Researchers and designers have an agreement upon the
need for more formal and standard design tools [1][2]. Game
studies publications have mostly discussed this need and
presented approaches that vary from the building of a shared

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

1XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013

design vocabulary to the creation of visual modeling languages
for game design. One of its highlights is an approach based on
a collection of reusable design concepts. While some
implementations based on this approach have been made, none
have succeeded as a design tool of practical use. Although
some authors have urged for a tool that allows designers dissect
games in order to understand how their parts balance and fit
together, the implementations have focused on defining a high
level set of abstract concepts rather than game forming
components.

As observed, in these three presented scenarios –
publications, industry and academia – there have been common
references to the notion that games can be analyzed and created
by looking to their forming components, but no previous work
has specifically addressed this as a possible design tool. As a
convention and a formal definition, in the framework described
throughout the present work, we have chosen to use the term
“game components” instead of “game elements” because we
understand a component as the structured part of a whole. By
this structure, we mean a very strict form of description,
relation and modeling of game components.

III. RELATED WORK

Game designers and researchers have developed a
discourse around the need for more formal and standard design
tools [1]. They consider the main current design tool – the
design document – as too restrictive, creating a barrier to the
evolution of the game design area. Costikyan [3], one of the
first authors to address the issue, suggested the search for a tool
based on a common vocabulary of design concepts. He
believed that designers should have a way to analyze games,
understand them and identify the elements that make them
good or bad. Others authors that, directly or indirectly echoed
Costikyan’s speech, made references do the same idea. Church
[4] suggested the lack of a common design vocabulary as the
main inhibitor of the game design methods evolution. Fullerton
(2008) followed the same direction.

The first attempt to establish a design tool based on a
collection of design concepts was Church’s FADT (Formal
Abstract Design Tools). Church [4] indented to be able to
dissect a game, identify and separate their forming components
in order to understand how they fit and balance together, thus
analyzing which ones benefit or harm certain games or game
genres. Although his work hasn’t been concretized as a tool, it
certainly inspired other authors. Falstein and Barwood [5]
initiated “The 400 Rules Project” aiming to identify, to record
and to share practical experiences of designers as guidelines. In
a more structured way, Björk, Lundgren and Holopainen [6]
were based on the design patterns model of software
engineering [7] to define design concepts as Game Design
Patterns. Although more structured, the tool fails to deliver a
practical tool by lacking adequate software support and
documentation, and by not having enough correspondence
between patterns and the games or genres that use them.

Some years later, LeBlanc, Hunicke and Zubek [8]
theorized the MDA, a framework to organize and describe
elements of games under three layers – mechanics, dynamics
and aesthetics – but no collection of elements was provided.

More recently, Järvinen [9] presented an academic study about
theories and methods of design and discussed the creation of a
library of game mechanics at a highly theoretical level.
Currently, the GiantBomb1 website is the only attempt to
maintain a practical source of design concepts, but remained
fairly informal and aimed at end users. Although at an
academic level the proposed approaches brought contributions
to the area in the form of improved discussions over the issue
early addressed by [3], as practical tools they show an evident
lack of maturity and computational support for adoption and
experimentation in real world scenarios.

Some authors have analyzed the use of visual languages to
aid the game design process. They have found in the visual
modeling a strong ally in communicating the designer’s vision
of the game to the development team. Librande [10]
emphasized that visual models are more synthetic, naturally
communicative and scale better. He presented the One-Page
Design, a comprehensive game design map freely created with
textual and visual artifacts. Other authors have suggested the
use of more formal approaches to build game design diagrams.
Demachy [11] and Blumenthal [12] have shown examples of
application of the software engineering UML [13] for this
purpose. Sicart [14] presented an approach for game design
based on the object-oriented model, suggesting the use of
UML.

A key element that has not been explored in the previous
works discussed is the integration between the collection of
design concepts and the visual language for design modeling.
Diagrams of the design of a game could be made through the
gathering of the concepts that the game implements. It would
make easer to see the interrelations between these concepts
and, the games and genres that employ them. Beyond that, it
would take the visual documentation to a more concrete level,
once the concepts of a game wouldn’t be more just a collection
of scattered game parts.

The Game Components Framework (GCF), subject of this
paper, will be discussed in the following sections. It is a
doctoral project aligned with the earlier speeches around the
need for game design tools published by [3] and [4], having as
main objective allowing designers to analyze and to create
games through their forming parts. Furthermore, it is
fundamentally a fusion of the two game design tools
approaches presented in this section: the constitution of a
common design vocabulary, through a collection of design
concepts, and the standardization of visual design maps built
with a formalized language, to express the concept
interrelations and their use in games and genres.

IV. THE GAME COMPONENTES FRAMEWORK

In opposition to some heavily theoretical attempts to bring
game design tools, this paper approach is strongly based on
real world observations. By this observation, we mean the
experimentation and analysis of games. We do not intend to
perform deep studies about the theories behind games,
engagement, “gamification” or player interaction. The GCF
was idealized and will be built upon the existing and

1 http://www.giantbomb.com/concepts/ (visited on 2013/03/13)

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

2XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013

consolidated results of the designer’s work, which are the
games they have created. We believe that there is an extensive,
though not formally addressed, design knowledge base
embedded into the vast library of the existing games. In this
sense, we also believe that new games can be planned as a
composition of interconnectable smaller parts, whether they are
designed for the game or reused from existing titles. Also, by
documenting the forming components of games, we expect to
understand the relations between games, their forming
components and genres, in order to discover which lines can be
traced between games and their commercial and critical
success or failure, thus aiding in the creation of new games.
Considering that all of the existing games reuse or combine
concepts found on past games somehow, this work of practical
observation may bring a significant contribution to the area.

Generally speaking, the GCF establishes a formal structure
that helps designers to see games through a composition of
small forming parts and their relations. In this sense, the
framework serves both as a design and analysis tool. As a
collateral effect, the resulting components will be stored into a
library, allowing querying and reusing of these, thus
encouraging design experimentations through combinations of
game components.

A. What are game components?

Some authors refer to term “game mechanics” as the
components of game or gameplay [9] [8] [14]. Others describe
games as systems of rules [15]. However, a game uniqueness
doesn’t rely solely on its mechanics or rules. Aside from the
obviousness that part of a game identity is built upon its sound
and artistic style, there are many other characteristics that lead
to its uniqueness. The game controls, narrative, point of view,
level design and even the HUD (head-up display), have a
strong influence on how the player experiences the game. In
that sense, a game component is any recognizable part of a
game that can be identified, separated and presents some
aesthetical influence. It can be a rule, a mechanic, a narrative
aspect, a type of camera or any other part of game that makes it
work. It can be very specific to a game implementation or
generically applicable to most games of a genre or a platform.
It can be a very small part of a game, at the lowest level of
structural granularity, or comprise a more abstract concept.
Overall, by looking to a visual model of game components a
designer must be able to understand the game main
characteristics.

Based on the definitions from the MDA framework [8], we
want to reach the designer’s perspective by a reverse path,
starting from the player point of view. Thus, by “reverse
engineering” the game through the player’s perspective we will
identify components that directly or indirectly have
significance over the gameplay experience. For this reason,
game components cannot be restricted to mechanics or rules.

If we look to the contemporary games, we will see that
many of their characteristics were borrowed or modified from
past games, whether they belong to the same genre or not. To
demonstrate this idea, let’s take by example the platform games
genre, also known as “platformers”. Two earliest well known
platformers are Super Mario Bros [16] and Super Mario Bros 3

[17]. By comparing these games with others of the same genre,
like Kid Chameleon [18] or Donkey Kong Country [19], or
more modern titles, such as Braid [20] or Super Mario Galaxy
2 [21], we clearly perceive that they all borrow components
from the two earlier games. The main component of Mario’s
attack, the “head stomp” movement, reappears in all of those
games (and in many others). Another component of Super
Mario Bros 3, the “world map” – the main place by which all
of the game stages can be accessed – it is often reused by many
platformers.

Besides borrowed, components can be modified or
combined to form new ones. As an example, the “head stomp”
found in games like Ducktales [22] and Castle of Illusion [23]
slightly differs from Mario’s attack, needing a button press to
be performed. Little Big Planet [24], by the other hand, allows
the “head stomp” attack only on certain levels. Moreover, this
process is not restricted inside one genre only. In the game
Retro City Rampage [25], an open-world action-adventure, the
player’s character uses “head stomp” attacks, as well as Chun-
Li, a character from Street Fighter [26] games.

Within the context of the examples cited, one may ask: why
have designers opted to adopt the “head stomp” attack in their
games? One probable explanation is that the games where this
component was first seen, Super Mario Bros 1 and 3, made a
huge commercial and critical success, being considered icons
of their genre. Also, aesthetically speaking, the “head stomp”
strongly contributes to the main game element of platformers:
the “jump”. There is an intrinsic relation between these two
elements that may lead to some questions: it is possible to use
the “head stomp” without the “jump” element? What attack
elements are used in other platformers that don’t have a “head
stomp”? The practice of studying the constitution of success
cases may improve our knowledge over the designer’s craft
and add a powerful tool for reusing and experimenting with
past good ideas.

Through the discussion presented in the examples, we can
observe the existence of a complex inheritance relationship
between the games through the components they borrow,
modify or combine, which can lead to the elaboration of
inheritance maps. If we could trace a chronological line
relating these maps and the commercial or critical outcome of
the games, we would be able to cross and extract valuable data
that could help us to identify what components can possibly
contribute or harm new game projects. In this sense, a
framework for describing games as grouping of components
alone can’t answer these questions, but if we store the designed
components into a database, we can.

B. How will designers use the GCF?

The GCF represents a top-down approach in which
complex game systems can be decomposed into smaller,
simpler parts. It also defines a “components-driven” approach
to the design in which new games are built by a set of parts.
Furthermore, it is a tool based on software engineering object-
oriented approach and as such, the Unified Modeling Language
(UML) serves as the basis for a specific tailored modeling
language to express games through its forming elements.

The GCF tool is comprised of three parts:

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

3XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013

• A structured framework for describing components
(Components Framework - CF);

• A library of the designed or reverse engineered game
components (Components Library - CL);

• A visual language for modeling games through its
components, as well as, to represent components
interrelations (Components Design Language - CDL).

In the CF, components are described through its definition,
attributes and its relations with games, genres and other
components. Every game component, whether designed for a
new game or reverse engineered from an existing one, is stored
in the library for future reuse (CL). Also, the library enables
analytical views by different dimensions, such as genre,
platform or time, based on data crossing with market and critic
data. Finally, modeling of games and relations between
components is done via visual diagrams with a language
tailored from UML to the specificities of the game components
approach (CDL).

In the GCF, the diagrams made via CDL are the key
expression tools to design game through components, as well
as, to the relations and specificities about their use. Although
composed of more formal structured elements when compared
to Librande’s On-Page Designs, the CDL doesn’t imply into
more restrictions to the game designer. They are allowed to
merge illustrations, concept arts, schemes, game or character
pictures, within the diagram. Also, it is possible to embed small
graphical elements into the game components to visually
iconize them. The overall concept of the CDL game diagrams
is to facilitate the comprehension of the designer’s vision and
to contribute to the communication across the development
team.

As a data analytical tool, the library (CL) acts as a
searchable design database that allows navigation along
components, diagrams and modeled games, and visualization
of statistics about components use, gathered from market and
critics data. By combining the tree parts of the GCF, it allows
designers to start a blank game project, search the desired
components and select them for use. They can also start a
project from a combination of existing games.

C. What are the framework features?

To summarize every feature described so far, we present a
simple list of the key characteristics of the GCF and its
approach:

• It is a design framework as, it forces designers to plan
games through its small forming parts that are later
related and grouped into bigger components, until the
game is fully described.

• It is an analysis tool, as it forces designers to see and
describe the features of the existing games as
components. Also, it presents analytical data about
relations between components and different dimensions,
such as genres, sale numbers, platforms, users and
chronology of game releases.

• It helps to define a design vocabulary, as it
standardizes names for every piece of a game.

• It is a knowledge library of game design, as it stores
every game component defined, whether designed for a
new game or reverse engineered from an existing one,
allowing the querying and reusing of these components.

• It is a top-down approach, as complex game systems
can be decomposed into smaller, simpler parts.

• It is a building blocks-driven approach, as games are
built by a set of components, which can be used with,
compose, be composed of, specialize or generalize other
components.

• It is an experimental driven approach, as it allows
designers to try combinations of game components from
previous created games.

• It is an engineering approach, as it forces the
conception of games by very strict construction rules as
oppose to focus on narrative and artistic methods.

• It adds standardization over the current game design
tools, as it allows traditional documentation to be
generated from game models and game components.

• It is a computer-aided design, as the library and the
modeling are made through a software tool built to help
designers to work with the approach.

• It is a communication tool, as it provides a standard
components vocabulary and a way to create visual maps
of game design that can be hanged on the wall to
communicate the designer’s vision to the development
team.

• It is built upon proven standards as it’s strongly
influenced by the approaches of object-oriented
software development and the Unified Modeling
Language (UML), as described in the section V.

D. What differentiates it from other approaches?

The GCF works towards the same directions of the
approaches discussed in the section III. Some of these
approaches focus on defining a framework for collections of
reusable design concepts. Others worked towards the
establishment of a visual language aiming to express the design
of games through diagrams. In this sense, the GCF combines
these approaches in one solution, comprised by a framework
for description of games via its forming parts (the
components), a library to stores and manages the described
components and a visual language to model the design of
games by using these components. Apart from this, what
differentiates the GCF from the other approaches? As
discussed in section IV.B, the GCF is comprised of three main
parts: the framework for describing the components, the library
to manage them and the visual language to apply them in the
design of games.

Approaches based on collections of concepts proposed so
far are more abstract and high level compared to the GCF.
These approaches are most based on collections of aesthetical

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

4XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013

elements of games. As an example, “Perceivable consequence”
is a FADT [4] and a game design pattern [6]. Its definition is “a
clear reaction from the game world to the action of the player”.
Another example is the pattern “Exaggerated Perception of
Influence: Players perceive that they can influence the outcome
of the game, regardless of whether this is correct or not”. These
concepts are clearly concerned in describing the outcome of
some game parts regarding to the player experience, and not
the parts itself. On the other hand, the GCF aims specifically to
the parts of games, which consequentially will promote
aesthetics. As an example, the “Third Person Over-the-
Shoulder” is a kind of POV (point-of-view) that is a very
characteristically component of modern shooter games.
Originated in Resident Evil 4 [27], it generates more
“immersiveness” than the traditional “Third Person Behind-
the-Character POV” and still allows the player to view its
avatar in very close details, valuing the graphical quality of the
character. The employment of such component brings a lot of
difference in the final player experience and that’s why so
many newer shooters have done it.

Overall, the previous works are most concerned on game
aesthetics, towards a more narrative perspective of the game.
On the other hand, the engineering perspective, which
fundaments the GCF, is concerned on how things work and on
how they are built. In this sense, we aim at the forming parts of
games, and consequently, their outcome as gameplay
experiences. The engineering perspective also brings another
concept: the elaboration of game designs through grouping of
game parts. This approach is based on building blocks, which
allows a top-down analysis of games by decomposing them
into its forming parts and a bottom-up construction process, in
which games are built upon a set of elements. In this sense, the
components work as implementation objects, whether concepts
work as guidelines. Although the later do have relations, it’s
not possible to create a game design by just selecting a group
of concepts.

In the GCF, designers will describe games as an interrelated
group of components. By doing that, they are populating a
library of components that allows reusing and analysis of them.
In this scenario, the composition construction has as key role:
components can be reused and blended in order to create
"bigger" ones, which in turn, may compose entire games.
Games can also be seen as components, which allows new
games to be designed as a grouping of entire games or as a
mixture of some of their components. Furthermore, with a
comprehensive library of components, it’s possible to use data
mining techniques and crossing of information, such as market
and critics data, in order to answer questions like “What are de
most successful applications of specific components?”. Also,
it’s possible to apply techniques that will inform how much
close are a group of games in terms of their forming parts, or
even, what successful titles of a particular genre have in
common. Similar approaches already discussed don’t allow this
kind of tool as they don’t focus on their proposed frameworks
and not in the operation of the collection of concepts itself.

The third and final part of the GCF is the design visual
language (CDL). Other approaches based on collections of
concepts don’t define a language that allows designers to build
schematics of their designs based on these concepts. On the

other hand, there were studies of application of proven visual
languages for game design, but they were mostly based on
application of raw UML into game projects and did not tailored
the language for the designer’s specific needs. Also, the UML
cases are totally disconnected from the approaches based on
collections of concepts. The only approach that allows designer
to express the vision of a game through a visual representation
is Librande’s One Page Designs, but the elements used to draw
these design maps don’t have standardization and thus, reusing
is not a conceivable option.

Lastly, the GCF works towards the discourses of Costikyan
(1994) and Church (1999), which highlighted the need for a
tool for dissect a game, identify and separate its forming
components, understand how they fit and balance together, and
analyze which ones benefit or harm certain games or game
genres.

V. THE ENGINEERING BUILDING BLOCKS APPROACH

The heterogenic nature of the people who have worked as
game designers often leaded to different comprehensions of
what defines the designer’s craft and in which it relies. In the
earlier days, a game was basically built by one person who had
software development skills. As programmers, they had a very
strict engineering way of doing things. As the time passed by,
games gradually became more story-oriented and narrative
skills started to play an important role in its creation. However,
as Costikyan [3] pointed, games do not have the unique
function of telling a story as they don't follow a linear structure:
the outcome is result of the player actions. LeBlanc, Hunicke,
and Zubek [8] presented a similar perspective, emphasizing the
dynamic nature of games as systems that exhibits emergent
behaviors through gameplay experiences. In this sense, even
that some authors have advocated a strongly narrative-driven
development with minimal constraints [28], a structured
approach is better suited. Thus, the approach presented through
this paper is strongly influenced by methods and tools of
software engineering.

A. Drawing inspiration from Object-oriented paradigm

The key concept of the OO development paradigm is the
abstraction of real world things and concepts into autonomous
components called objects, which process its own data and
communicates with other objects. Programs are seen as a
collection of interacting objects. Each object has attributes,
which qualify it, and execute actions through methods. Objects
are instances of classes. Each class defines the type of many
objects, which are called instances of the class. Thus, an object
can be described as the application of a class into a specific
scenario. Each object only belongs to a single class. Through
OO, software are planned, designed and built by their forming
components.

A game component is a part of a game that exhibits
influence over the gameplay experience. A game can be seen
as a collection of interacting autonomous components. A
component may relate to others: it may uses, depends on,
generalizes, specializes or even composes other components. It
has its own attributes that vary according to its use in games,
helping to define the game uniqueness. In this sense, the GCF

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

5XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013

has close relations with the OO paradigm. More formally, a
component is an OO class and its application in a game, an
instance, like an OO object.

The structure of the game components is presented in the
following text. We will analyze the relations of the present
approach and the OO paradigm. Samples of the CDL, the
components design language used for games diagramming, are
provided throughout the paper for illustration purposes.
However, these must be taken as sketches of an initial
planning, once the GCF it's in early development stages as a
doctoral project.

Although a game component definition explicitly draws
inspiration from the OO paradigm, some fundamental
distinctions must be made. As an abstraction from real-world
objects, the OO would imply that all the objects from the game
world should be mapped to game components, such as
characters, enemies, vehicles, buildings, bullets, explosions or
even environment parts, like trees and rocks. However, not all
of these objects have explicit meaning over the gameplay
experience. By the other hand, a jump movement, an auto-aim
feature or a spin attack strongly influences and differentiates
the player’s experience when playing games. In this sense, the
objects that we are interested on are not those which
necessarily abstract the game world objects.

Another fundamental differentiation of the GCF from the
strict OO approach is regarded to what constitutes a game
component. A class has its own attributes and actions.
However, game components can be both abstractions of objects
from the game world as actions. As an example, in the context
of the OO approach, a “jump” may be an action of a
“character” object, which means, it cannot be detached from it
and has no meaning by itself. Actions belong to objects and
must be attached to them. However, the “jump” is a part of a
game that brings meaning to the player’s experience. As an
example, the lack of the “jump” component in a horror-
adventure game may lead to restriction and tension, which are
desired player emotional responses in this genre. On the other
hand, in platform or action game genres, the same lack would
probably lead to frustration. Thus, a “jump” is an autonomous
part of a game in the sense that it brings aesthetical significance
when inserted or removed from a game design. Thereby,
differently from a strict OO approach, in the context of GCF, a
“jump” is a component by itself, which may be attached to the
“character” component.

The Fig. 1 shows a graphical representation of the “jump”
component and its instance in a game with the CDL. These
representations are inspired in UML Class Diagram. The
component (Fig. 1, left image) describes a more generic game
part, containing attributes that define its characteristics. It is
described by name, category (type of component) and short
explanation. When used in a game composition, the component
becomes an “instance” (Fig 1, right image), which is, an
application of the component to a specific scenario. Then, the
component attributes must have its values defined and optional
game descriptions and illustrations may be attached.

Instances in games are made through games components.
For every instance in a game, there must be a component. Any

Fig. 1. Visual representation of an component in CDL. The left image shows
the component structure. The right image shows an instance, an application of
the Jump component in the Super Mario Bros game.

modification in the structure of a component must generate a
new component. In other words, if a game needs to apply an
existing component in its design, without modifications on the
component structure, it just has to instantiate it. However, if the
designer needs a slightly different version of an already
existing component, he needs to extend it (as explained in the
next section) and generate a new component, which now can
be instantiated into the design of the game.

B. Use, composition and inheritance relations

As another reference to the OO paradigm, components
exhibit relations between them. The possible relations are: use,
composition and inheritance (generalization or specialization).
The “use” relation defines that two components or instances
interact in some way. In the example provide by Fig. 2, the
Mario’s action of throwing a turtle shell is modeled as follows:
an instance of a “Throw Object” action component uses a
instance of a “Bouncing Object” throwable component. The
specific details of the two instances are shown in their
attributes and descriptions.

The composition relation implies that a set of components
can be grouped to form a new “bigger” one. These “bigger”
components can also be grouped to form new ones. There are
no restrictions to the “size” of a component, which is, the
number of component it contains. Both “smaller” and “bigger”
component can be related to other components, games or
genres. By this simple mechanism, every game character can
be expressed as the composition of two or more component, if
desired by the game designer. Fig. 2 shows an example of how
composition can be used in games diagrams to represent a
character. The Piranha Plant character contains two instances
of components with their attributes values defined. After
designed, it can be included in the library as a new game
component. Furthermore, a whole game can be represented as a
component in the library. This allows a game to be easily
expressed as the union between two or more games. The
composition relation gives a clear perception of building blocks
with a top-down approach: complex component can be
dismembered into simpler ones.

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

6XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013

Fig. 2. Example of “use” relation between instances of components for the
Super Mario Bros game in order to represent the “throw” design
concept.

The third type of relation allowed in game components is
the inheritance, another fundamental construction of the OO
paradigm. As an abstraction of the real world, the inheritance
allows a class to include the characteristics of another class. In
this relation, the inheriting class is known as sub-type or
specialized class, and the inherited is known as super-type or
generalized class. This mechanism is called an “is-a” relation
to symbolize the fact that the sub-class’s type becomes the
same of the super-class. To the context of the GCF,
components may specialize a more generic component to
specific uses, maintaining the originator characteristics.
However, a “type-of” relation is better suited to describe the
kind of inheritance relation between components.

The Fig. 3 shows an example of inheritance relation
between some different types of jump components. As
illustrated, the “jump” component is the most generic type of
jump. Other sub-types of jump elements, like “attack jump”,
“assisted jump”, “triggered jump” and “multiple jump”, inherit
the “jump” component attributes. The relations presented in the
example may continue expanding as long as new types of jump
components are being identified. In this sense, a “head stomp
jump”, common in platformers, and an “aerial attack”, found in
beat’em up games, would be types of “attack jump”. Other
examples would be the “double jump”, a common type of
“multiple-jump” found in side-scrollers, and the “chain jump”,
found on Super Mario 64 [29] and a type of “enhanced jump”.

Another example of the inheritance flexibility is the use of
metaphors. A designer can describe a character of its own
project as a modified version of a character from another game.
Let’s take an example. If we want to explain a character
behavior as “a Piranha Plant that fires a glue ball” we can make
this character inherit the Super Mario’s Piranha Plant (see Fig.
3) and add the glue ball component. Just like in software
design, the combination of composition and inheritance brings
a powerful tool to game design modeling.

The three relations types presented in this section – use,
composition and inheritance – can be freely used in a
components diagram of a game by designers when meaningful
to their vision of the game representation. As in software
engineering, the game modeling activity has as inherent
abstract interpretation, which means that different designers
can create slightly different map versions of the same game.
This is due to the fact that modeling is an activity of creation
and by no means can be restricted to one absolute
interpretation. It is the direct result of the modeler’s vision.

Fig. 3. The Piranha Plant instance, a NPC character from Super Mario Bros.
Its is composed by two other components that represent its behavior.

C. The Game Components Library (CL)

The documentation of the game components in the library
follows a very strict structure, similar to those found on the
Game Design Patterns [6] and the collection of concepts from
the GiantBom website. Each game component must be
uniquely identified and clearly defined in order to facilitate its
use and recognition in games. The documentation structure is
organized into two sections: component definition and
relations.

Each component is documented by name, description,
category, attributes and consequences of use. The “name” field
must be unique and as short as possible. The “definition” shall
include illustrations of the concept, which can be schematics or
games screenshots. The “attributes” are the component key
characteristics and have its values defined when the component
is used in a game as an instance (Fig. 1). The “consequences”
field describes the implications of using a component in a
game. Some implications are usually related to aesthetics and
can be defined when an instance of the component is made.

The second section of the documentation of an component
in the library is composed by its relations with games, genres
and other components. The relations of components with
games and genres are the following: games that instantiate the
component; game where it had first appeared; genres that it

Fig. 4. A example of inheritance relations between jump components.

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

7XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013

defines; and, genres that use it. The relations between
components are those previously presented in this paper: use,
composition and inheritance. Thus, the possible relations are:
inherits from; is inherited by; uses; is used by; composes; is
composed by; and; frequently used with.

Together, all the documented relations are necessary to
allow data crossing between components, games, genres and
general reception data by specialized media. By associating the
information documented in the library with data about market
sales and critics scores of games, gathered from specialized
websites, chronological lines can be traced to aid in the
discover of what components may had helped a game to
achieve its success or failure, thus contributing to the design of
new games.

VI. EARLY EXPERIMENTS AND FURTHER EVALUATIONS

The framework is in early stages of development. The
library software tool is also being built. Some first experiments
with sketches of the visual language were done for Super
Mario Bros., as already shown in the section V. The game was
used as a case study for the development of the GCF. Through
reverse engineering of the game, the components definitions,
the framework structure and the visual language are being
tailored to best fit the engineering approach for game design.
This process will be iteratively performed with other games in
order to evolve the GCF.

On Super Mario Bros., more than sixty components were
documented over various categories: movement, property, NPC
behavior, “throwable” object, status, action, reward, attack,
enemy, level construction, item displacement, level
progression, environment, hud, multiplayer, game progression,
world structure, item, power-up and pov. These categories are
still under study and will change. A large percentage of the
documented components presents reusing cases on a many
other games, including platformers and other genres.

When mature enough, evaluations with the GCF will be
conducted by employing the tools into game development
projects as cases studies, in order to discover how the GCF will
influence the development project in both positive and negative
ways.

VII. FINAL THOUGHTS AND NEXT STEPS

The concept that games are constituted by parts is widely
applied but no formal definition has been set. Game
publications and specialized media have been implicitly or
explicitly referred to the idea that games have forming
elements. On industry, designers commonly experience a vast
amount of games to increase their knowledge over the parts
that makes than fun and unique. At the same time, researchers
and designers agree upon the need for more formal design
tools. Attempts have been made to create collections of
reusable game concepts, but none have succeeded as practical
tools.

The concept that games can be thought as a assembling of
smaller and structured components is fairly discussed. The
problem is not the concept itself, but how to structure these
components. Here lies the real challenge: how to conceive and

bring to real world usage a database of design knowledge
easily accessible that can be applied to the analysis and design
of games in a productive way.

As pointed by Costikyan [3] and Church [4], designers
would have a way to analyze games and dissect them, thus
identifying, separating and understanding how their forming
components work and recognizing which ones benefit or harm
certain games and genres, thus helping to establish a shared
vocabulary, an ontology of game design. The Game
Components Framework (GCF) was planned towards this
discourse. By reverse engineering the game through the
player’s perspective of the gameplay, we can not only
recognize the game components, but also their aesthetics. From
an engineering perspective, recognizing games as a
composition of smaller components makes possible to design
them as object-oriented (OO) systems, a proven approach long
applied in software engineering. Thus, we can benefit from
tools strongly consolidated in this area by tailoring them to the
needs of the game design. By applying the OO concepts to
game components we can understand them as objects that have
attributes and can be used with, compose and inherit other
objects. We can also modify UML diagrams to create visual
maps of these relations and their applications in games and
genres, leading to a very synthetic practice of game design
diagramming. In this practice, we can use, mix and discover
components in games and genres, allowing an experimental
and building blocks-driven design approach.

The GCF will allow designers to analyze the forming
components games and to create new games concepts from
these components. More than that, when accomplished as a
concrete software tool, it will enable designers to discover
essential facts about games such as:

• The core, common and uncommon characteristics of
specific games or genres;

• The usual characteristics of a user profile;

• The often characteristics found in better and worse rated
games of a genre;

• The characteristics often borrowed from one genre to
another.

Further enhancements may be made over the GCF. As an
example, concepts from other computer science areas may be
borrowed and specifically tailored as game design tools. If
games can be seen as groupings of parts stored in a database,
we may use a “Games Query Language” to cross data and
discover interesting facts and tendencies about games, genres,
market and their users. We may also apply techniques from
Data Mining [30] to discover commonalities between games
through its compositions, more specifically to define how far or
how close two or more games are, thus allowing the generation
of family trees of games. Furthermore, as a long-term planning,
if components become concrete game software objects,
designers will be able to play test the conceived games through
a prototype generated from the component diagrams of these
games.

As seen, many further tools may be envisioned starting
from the concept presented in this paper. They range from a

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

8XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013

component-driven analysis and design to the construction of
prototypes from components associations. Thus, the GCF will
serve as the basis for an entire game design experimentation
environment.

REFERENCES
[1] K. Neil, Game Design Tools: Time to Evaluate. Proceedings of DiGRA

Nordic 2012 Conference: Local and Global – Games in Culture and
Society, 2012.

[2] J. Dormans, Engineering Emergence: Applied Theory for Game Design.
Teste de Dou-torado. Amsterdam University of Applied Sciences, 2012.

[3] G. Costikyan, I Have No Words & I Must Design. Interactive Fantasy,
Eng., n2, 1994.

[4] D. Church, Formal Abstract Design Tools. Gamasutra, Jul. 1999.
http://www.gamasutra.com/view/feature/3357/formal_abstract_design_t
ools.php

[5] N. Falstein, H. Barwood, More of the 400: Discovering Design Rules.
Presentation at GDC 2002. http://www.gdconf.com/archives/2002/
hal_barwood.ppt

[6] S. Björk, S. Lundgren, J. Holopainen, Game Design Patterns. Level Up -
Proceedings of Digital Games Research Conference (DiGRA). Utrecht
University, 2003.

[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[8] M. LeBlanc, R. Hunicke, R. Zubek, MDA: A formal approach to game
design and game research. Proceedings of the AAAI-04 Workshop on
Challenges, 2004.

[9] A. Järvinen, Games Without Frontiers: Theories and Methods for Game
Studies and Design. Doctoral Dissertation. University of Tampere, 2008.

[10] S. Librande, One-Page Designs. Presentation at GDC 2010, San
Francisco CA, Mar. 2010. http://stonetronix.com/gdc-2010/

[11] T. Demachy, Extreme Game Development: Right on Time, Every Time.
Gamasutra, http://www.gamasutra.com/view/feature/2827/extreme_
game_development_right_on_.php

[12] R. Blumenthal, Space Invaders: A UML Case Study. Regis
University,class notes, 2005.

[13] M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language . Boston, MA: Addison-Wesley, 3a ed, 2004.

[14] M. Sicart, Defining Game Mechanics. Game Studies: The International
Journal of Com-puter Game Research, v. 8, n. 2, dez. 2008.
http://gamestudies.org/0802/articles/sicart.

[15] K. Salen, E. Zimmerman, Rules of Play: Game Design Fundamentals.
MIT Press. MIT Press, 2003.

[16] Nitendo, Super Mario Bros. Nintendo Enterteinment System: NES
[Cartridge], Japan: Nintendo Co. Ltd, 1985.

[17] Nitendo, Super Mario Bros 3. Nintendo Enterteinment System: NES
[Cartridge], Japan: Nintendo Co. Ltd, 1988.

[18] Sega, Kid Chameleon. Mega Drive [Cartridge], United States: Sega
Technical Institute, 1992.

[19] Nintendo, Donkey Kong Country. Super Nintendo Enterteinment
System: SNES [Cartridge], England: Rare Ltd., 1994.

[20] Number One, Braid. Games for Windows [Digital], United States:
Number One Inc., 2009.

[21] Nintendo, Super Mario Galaxy 2. GameCube [Disc], Japan: Nintendo
EAD Tokyo, 2010.

[22] Capcom, Ducktales. Nintendo Enterteinment System: NES [Cartridge],
Capcom Co. Ltd., 1989.

[23] Sega, Castle of Illusion. Mega Drive [Cartridge], Japan: Sega AM7,
1990.

[24] Sony, LittleBigPlanet (LBP). PlayStation 3 [Disc], England: Media
Molecule, 2008.

[25] Vblank, Retro City Rampage. PlayStation 3 [Digital], United States:
Vblank Enterteinment, 2012.

[26] Capcom, Street Fighter Series. Japan: Capcom Co. Ltd., 1987-2012.

[27] Capcom, Resident Evil 4. GameCube [Disc]. Japan: Capcom Co. Ltd.,
2005.

[28] B. Kreimeier, Game Design Methods: A 2003 Survey. Gamasutra, Mar.
2003. http://www.gamasutra.com/view/feature/2892/game_design_
methods_ a_2003_survey.php.

[29] Nitendo, Super Mario 64. Nintendo 64 [Cartridge], Japan: Nintendo
EAD, 1996.

[30] A. Rajaraman, J. Leskovec, J. D. Ullman, Mining of Massive Datasets.
2013, http://infolab.stanford.edu/~ullman/mmds.html.

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

9XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013

