
Efficient Use of In-Game Ray-Tracing Techniques
Thales Luis Rodrigues Sabino

Paulo Andrade
Lucas Grassano Lattari

Universidade Federal Fluminense

Esteban Clua
Anselmo Montenegro

Universidade Federal Fluminense

Paulo Aristarco Pagliosa
Universidade Federal do Mato Grosso do Sul

(a) (b) (c) (d)

Figure 1: Stages of our hybrid ray-tracing implementation. (a) shows a visual representation of primary rays intersections, (b) shows only
the visible pixels of ray-traced objects. (c) shows the Sponza scene rasterized using a simple directional light by the using of the traditional
graphics pipeline. Finally, (d) shows the final scene representation obtained by merging images (b) and (c). The Sponza scene has 44.404
vertices and 67.462 triangles. The Stanford Bunny has 34.834 vertices and 69.451 triangles. The complete scene has 114.072 vertices and
206.364 triangles. The total number of valid rays is 66.252 rendered at 10 frames per second.

Abstract

Ray-tracing is a computational demanding image generation tech-
nique capable of create photo-realistic images. Due to its high
demand of computational power, ray-tracing is not used for real-
time applications, however, with the massive parallel capabilities
of current Graphics Processing Units, and the fact that ray tracing
is a suitable application for parallel processing, the use of GPU
based Real-Time Ray-Tracing started to be seriously considered.
This work investigates a GPU only approach for rendering images,
where both raster and ray-tracing strategies are used in a hybrid
approach, in order to improve visual quality while maintaining an
interactive or near real-time performance.

Keywords:: Rendering, Ray-tracing, GPU, Real-time, Raster,
OpenGL, GLSL, CUDA

Author’s Contact:

{tsabino, pandrade, llattari, esteban, anselmo}@ic.uff.br
pagliosa@ufmt.br

1 Introduction

In the world of computer generated graphics, it is a common be-
lief that raster techniques are better suitable for real-time render-
ing, while ray-tracing is a superior technique to create lifelike im-
ages. With the advent of massive parallel processors in GPUs,
the possibility of using Real-Time Ray-Tracing with mainstream
GPUs started to be considered as a serious option to substitute raster
based renders, since ray-tracing is trivially parallelizable as shown
in [Cook et al. 1984]. However, results of different approaches
indicate that Real-Time Ray-Tracing (RTRT) remains a challeng-
ing computational task [Aila and Laine 2009; Lauterbach et al. ;
Hachisuka 2009] and it is suitable only with special conditions and
constraints.

The idea of a hybrid RTRT was developed before our current work.
[Beck et al. 2005] proposes a CPU-GPU RTRT Framework and
[Bikker 2007] develops a Real-Time Path Tracing called Brigade,
which divides the rendering task seamlessly over available compute
units, being compute units, GPU or CPU cores. Our main objective
is to develop a GPU only renderer that uses both raster and ray-
tracing techniques in order to produce real-time images faster than
raster or ray traced only techniques. Rendering all the images only
in the GPU avoids the common bottleneck problem related to trans-
fer data between CPU and GPU main memories. It is not our goal
to replace the raster process, but to improve it directly in the GPU,

using ray-tracing only where it seems to be better suitable either for
image quality or speed.

This paper presents a real-time GPU only renderer that uses both
ray-tracing and raster techniques in order to achieve good perfor-
mance, when compared to a raster only renderer. Our approach
improve the raster process that happens inside the GPU, using ray-
tracing only where it improves image quality or render time.

2 Related Works

[Beck et al. 2005] proposes a CPU-GPU Real-Time Ray-Tracing
Framework with five render-passes. The first three passes are ex-
ecuted in the GPU and the results are moved to a Depth-Buffer, a
frame-buffer with every triangle visible for the camera identified by
its number in the RGB part of the frame-buffer, the shadow stored
in the alpha channel and a blur pass using the alpha channel men-
tioned. The fourth pass involves the copy of the frame-buffer to the
host memory, where the CPU uses the information generated by the
GPU to trace reflection and refraction rays. The last pass occurs in-
side the GPU, that receives from the CPU a texture that is processed
by a fragment shader in order to generate Global Illumination. Beck
argues that the CPU is the bottleneck in this process.

NVIDIA’s OptiX [Parker et al. 2010] is a ray-tracing engine that
runs on NVIDIA’s GPUs, also capable of running in general-
purpose hardware. OptiX architecture offers a low level ray-
tracing engine, a programmable ray-tracing pipeline, a program-
ming model, a domain-specific compiler and a scene representa-
tion. It is based on CUDA [NVIDIA 2007] and since NVIDIA
announced plans to port CUDA GPU programming platform to x86
processors, up to now, OptiX is a GPU only solution with very good
results for interactive ray-tracing for CAD visualization.

In his Master Thesis, [Bak 2010] implements a RTRT using DirectX
11 and HLSL. His work also uses rasterization in order to achieve
the best possible performance for primary hits. [Hachisuka 2009]
surveyed several ray-tracing algorithms for graphics hardware. An
overview of these different methods considering the graphics hard-
ware architecture is described.

Finally, [Chen and Liu 2007] presented a hybrid GPU/CPU ren-
derer, where a Z-buffered rasterization is performed to identify the
triangles visible in the scene in order to trace secondary rays. Tests
show that the performance of the GPU/CPU renderer outperforms
the CPU only version. Their paper also proposes to move the traver-
sal and shading operations to the GPU in order to reduce the mem-
ory transfer bottleneck. We extended Chen’s work allowing the use
of scenes without the need to merge the geometry into one single



mesh. We use one texture color channel as a mesh ID which allows
a natural bond of our system with existing ones. Additionally, we
remove the bottleneck of memory transfer between GPU and CPU
by using the general code execution capabilities of modern GPUs
to traversal and shading of secondary rays. Also, we used BVHs as
the acceleration data structure for ray-traversal computation.

3 Hybrid GPU Ray-Tracing

Some ray-tracers tries to divide the workload between GPU and
CPU in order to achieve maximum performance [Beck et al. 2005;
Bikker 2007]. The main problem of this strategy is the bottleneck
presented by the data transfer between CPU and GPU. Our ap-
proach avoids this using the existing raster pipeline inside the GPU
to determine the visibility of objects, simulating the results of cast-
ing primary-rays. Secondary rays are generated through fetches on
the previous render pass. This strategy takes advantage of the speed
of the raster process to define the visibility of the elements in the
scene and makes possible the use of ray-tracing to generate other
effects, improving visual quality. Other advantage of this strategy
is the possibility of ray trace only objects that will benefit of the
ray-tracing process, improving the overall performance.

3.1 Deferred Shading Approach

In computer graphics, deferred shading [Hoberock et al. 2009;
Deering et al. 1988] is a rendering technique that aims to minimize
the lighting computation by splitting the shader task into smaller
sub-tasks that are written into an intermediate buffer, the G-Buffer
([Saito and Takahashi 1990]). These subelements are then joined to
form the final image. Deferred shading only became more suitable
for real-time when the graphics APIs started to support Multiple
Render Targets (MRTs) and allowed the use of render-to-texture
techniques. One of the main advantages a deferred shading ap-
proach is it restricts the calculation of final pixel color only to visi-
ble fragments.

Our work combines the benefits of hardware capabilities such as
MRT and deferred shading to generate and intersect primary rays
using one extra color attachment while the other ones are used for
shading non-reflective/refractive materials in the composing stage.
The basic idea consists in render an extra color attachment in the G-
Buffer where this attachment is the entire scene rendered with col-
ored triangles in which each pixel has the information about where
and when it was hit by a primary ray, the distance from the eye
and to which object it belongs. This information is used for the
subsequent ray-tracing stage for shading surface points correctly as
well as to determine from where secondary rays should be traced
through scene.

3.2 Primary Rays Generation and Intersection

In a traditional graphics pipeline each vertex that contributes for the
final image is processed by a number of operations to determine the
pixels that are going to receive its color contribution. With the ap-
propriate attributes, these operations can be converted as an equiva-
lent of the primary ray generation and intersection, making primary
ray to scene intersection a raster process.

For each ray, the intersection vector (t, u, v) must be determined,
where t is the distance to the intersection point and the pair (u, v)
represents the coordinates of the collision inside the triangle. Ini-
tially, a frame buffer for offline rendering must be set up in order to
render a texture that contains each ray intersection. Note that trian-
gles are the only primitive currently supported. Instead of transfer
data vertices with its respective colors, each vertex is transferred to
the pipeline with one of the three orthogonal basis vectors: (1, 0, 0),
(0, 1, 0), (0, 0, 1) as color information (Figure 2).

In order to identify to which triangle belongs a certain pixel we
use a second color attachment on the frame buffer. Each triangle is
transferred to the pipeline to be drawn on the second color attach-
ment with color attributes that uniquely represents it. The red color
channel carries the triangle ID, starting with 0, of the object’s ID
stored in the green channel. To avoid interpolation, each vertex of

v1=(1,0,0)

v3=(0,0,1)v2=(0,1,0)

Figure 2: Each triangle is sent to the pipeline to be rendered on the
first color attachment. After rasterization, we get a vector (w, u, v)
interpolated from v0, v1 and v2 for each pixel inside the triangle.
(w, u, v) vector can be described as the barycentric coordinates of
each pixel inside the triangle.

a triangle is set up with the same color attributes in order to spread
this identifiers within fragments generated by that triangle (Figure
3).

After the rasterization is complete, it is obtained a vector (w, u, v)
interpolated from the three basis vectors. The (w, u, v) vectors rep-
resents the collision coordinates inside the given triangle. The in-
tersection point x = (x, y, z) can now be interpolated using the
following equation

x = wv0 + uv1 + vv2 (1)

where v0, v1 and v2 are the vertices of the given triangle. Figures
1(a) and 3 shows a complete scene representation of the primary
rays intersection. Note that there is not a visual representation of
the second color attachment since we use render-to-texture to write
identifiers of triangles and objects for each pixel.

In order to make our system as generic as possible, there is no need
to modify any existing shader program to use within our system. A
separate shader program is used in this stage at a cost of a render
pass.

Figure 3: Low resolution Stanford Bunny rasterized with colored
triangles. This is the an example of image stored on the first color
attachment.

3.3 Shading the Appropriate Elements

With the intersection point found on the first rasterization stage,
at least one type of secondary ray must be generated, known as
shadow ray. This is a special kind of ray in which it is only neces-
sary to find one intersection point regardless of whether this inter-
section position is. Reflection and refraction rays are also another
type of secondary rays, conditionally generated by the type of ma-
terial a primary ray hits. There are different approaches on how to
deal with secondary rays. The simplest one is to assume that every
primary ray will generate a secondary ray. In order to deal with this
assumption, there must be one CUDA thread per ray, which yields
one CUDA thread per pixel. The biggest disadvantage of this ap-
proach is that many compute units become inactive because many
primary rays could not hit any object, being shaded with scene’s
background color or texture. With the purpose of not have idle com-
pute units, we keep a list of active rays, which are actually rays to



be traced. The frame buffer is cleaned on the rasterization step with
a flag that indicates whether a ray hit or not an object. According
to this flag, the list of rays is compacted. The CUDA compute units
are then allocated so they can handle this new list of active rays.
This ensures that will be as many threads as active rays. Figure 4
shows an example of a list of rays to be traced after compression.

Figure 4: Representation of the two extra color attachments used
for primary rays generation and intersection. On the top left we
have the image generated with colored triangles where each pixel
contains the barycentric coordinate of the hit point relative to the
intersected triangle. On the top right it is shown the content of the
second color attachment which represents the object and triangle
IDs of intersected points for each pixel. NAN is a symbolic constant
representing areas that were not been achieved by any primary ray.
On the bottom we have a list of rays generated by this trivial scene
and the list of rays after being compacted.

One issue that needs to be handled in our hybrid approach is to
avoid hits of primary rays in rasterized objects that lies in front of
ray-traced objects. This issue can be solved naturally within the
graphics pipeline using the Z-Buffer. When rendering the scene,
only fragments of visible ray-traced objects will remain inside the
pipeline. Avoiding primary ray hits on rasterized objects could gen-
erate objects without shadow in areas that should be shadowed. In
order to deal with this, the entire scene receives primary ray hits, but
an extra attribute is stored in the frame buffer, indicating whether a
pixel belongs to a rasterized object or not.

Once primary rays are handled, shadows rays need to be traced from
the hit point through the scene in the direction of light sources. As
the entire scene geometry is known by the ray-tracer, such rays
can be blocked by objects where the ray-tracer is not being ap-
plied. This implies in rasterized objects ray-tracer shadows nat-
urally. Knowing that this kind of shadow is more accurate than
real-time implementations of shadow maps, this is an advantage of
our implementation. Precise shadows resulting from the shadow
map technique requires a large amount of memory in order to avoid
aliasing [Williams 1978].

Figures 6 and 5 shows two examples of objects appearance after
shading primary-rays. Figure 6 shows that only visible pixels of
objects affected by ray-tracing are shaded due to Depth-buffer al-
gorithm used in generation of the first hit color attachment.

3.4 Scene Rasterization of non-Reflexive / Refrac-
tive Objects

One major advantage of a hybrid approach on ray-tracing is the
possibility to have only certain objects to be affected by these ef-
fects such as crystals, glasses and any other kind of truly reflec-
tive/refractive material.

Using MRTs, any object can be rasterized using any kind of shader.
The result of the rendering will be written at the main color at-
tachment of the associated frame buffer and composed with the ray
tracer at the final stage. Note that this stage can require multiple

Table 1

Number of Vertices and Triangles
Scene Vertices Triangles
Sponza (Fig. 1(c)) 44.404 67462
Bunny (Fig. 5) 34.834 69.451
Toad (Fig. 7) 12.912 25.820
Teaser (Fig. 1(d)) 114.072 206.364

Table 2

Performance Tests
Scene Valid Rays FPS
Teaser Scene (Fig. 1(d)) 66.252 10
Toad Scene 1 (Fig. 7) 67.734 5
Toad Scene 2 5.876 10
Bunny Scene 1 (Fig. 5) 68.203 5
Bunny Scene 2 26.442 7

render passes to achieve the desired result. Since this stage is com-
pletely independent from others, this can be done in parallel with
primary rays generation and intersection stage only because the tar-
gets they aim are different and have no read and write hazards.

This step can be viewed as the result of current rendering tech-
niques, without any modification. Graphics shaders of any kind
can by used on this step allowing a natural bond of existing render-
ing passes with our system. Figure ??(c) represents a result of such
rendering. We use a simple directional light to render the Sponza
Atrium scene [Dabrovic 2002] with grayscale tones material in or-
der to best present the integration of ray-tracing effects in rasterized
scenes.

3.5 Final Scene Composition

This step consists in assembling the final image that will be dis-
played. This process is done by a weighted mean between the
rasterized image and the ray traced image. The weights for this
mean are relative to the desired amount of ray tracer effects the fi-
nal image will have. At this point, the frame buffer contains two
color attachments, the main one generated by the raster stage and
the second one filled by the ray-tracer stage. The depth-buffer and
normal-buffers must be fetched to shade appropriately rasterized
objects according to a specific material.

Figure 8 shows an example of composed rendered scene. The two
purple teapots are not affected by ray-tracing and were rendered
using the fixed-function OpenGL pipeline. The red, green and blue
planes are diffuse objects rendered with ray-tracing calculations.
The golden bunny has a specular property and reflects the back-
ground. This scene has two point-light sources which make the
bunny to cast shadows onto the background planes.

4 Results

We implemented the system using C/C++ language, OpenGL 3.1
and GLSL 1.2 library for rasterization purposes and CUDA C/C++
for ray-tracing related tasks. The performance results obtained are
presented on Table 2 and were measured in a computer equipped
with an AMD Phenom(TM) II X4 of 3.4GHz, 4GB of RAM with
a NVIDIA 9800 GTX+ GPU with 128 CUDA cores running Win-
dows 7 Professional. In Table 1 it is stated the number of vertices
and triangles for different scenes and models we used for test pur-
poses.

Table 2 shows the results of various tests performed with our imple-
mentation. For each scene, except the for the teaser (Figure 1(d)),
we presented the Frames Per Second (FPS) measurements. Scenes
marked with 1 has the camera near the objects, resulting in a greater
number of valid rays. On the other hand, scenes marked with 2 has
a more distant camera, which implies in a smaller number of valid
rays and a higher FPS rate. Note that the FPS rate has a strong de-
pendence on the number of valid rays and on the distance between
objects.



5 Conclusion

We have described a ray-tracer with first hits accelerated using tra-
ditional graphics pipeline taking advantage of the depth-buffer al-
gorithm implemented on hardware. We extended the work pre-
sented in [Chen and Liu 2007] through the possibility of having
multiple objects with unrelated meshes. The results were stated in
terms of performance for different models and scenes. Finally, it
was removed the read-back overhead of data from GPU to CPU
memory keeping scene data in GPU all the time.

Figure 5: Bunny rendered with primary rays shading. There are
68.203 valid rays on this scene.

Figure 6: Example of an image generated using ray-tracing where
only the visible pixels of objects affected by ray-tracing effects are
shaded. There are 66.252 valid rays on this scene.

Our system, however, it is not capable of handle interaction of light
between objects being rasterized or ray-traced. Also, we do not
trace and shade secondary rays other than shadow rays. These fea-
tures will be implemented in future. We also proposes the use of
NVIDIA Optix in the ray-tracing stage of our system taking advan-
tage of the optimized implementation they provide.

As stated, ray-tracing is a technique capable of generating high
quality images. With more efficient implementations, along with
the advance of computational hardware, it will be possible to simu-
late effects only reliable in offline rendering.

Figure 7: Toad model rendered with primary rays shading. There
are 67.734 valid rays on this scene.

Acknowledgements

The authors gratefully acknowledge, CNPq, for the financial sup-
port of this work.

Figure 8: Composed final image. The red, green and blue planes
together with the golden bunny are objects affected by ray-tracing.
The two teapots are rasterized objects. Note that the Depth-Buffer
keeps visible fragments in front.

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency
of ray traversal on gpus. In Proc. High-Performance Graphics
2009, 145–149.

BAK, P. 2010. Real Time Ray Tracing. Master’s thesis, IMM,
DTU.

BECK, S., C. BERNSTEIN, A., DANCH, D., AND FRHLICH, B.,
2005. Cpu-gpu hybrid real time ray tracing framework.

BIKKER, J. 2007. Real-time ray tracing through the eyes of a
game developer. In Proceedings of the 2007 IEEE Symposium on
Interactive Ray Tracing, IEEE Computer Society, Washington,
DC, USA, 1–10.

CHEN, C.-C., AND LIU, D. S.-M. 2007. Use of hardware z-
buffered rasterization to accelerate ray tracing. In Proceedings
of the 2007 ACM symposium on Applied computing, ACM, New
York, NY, USA, SAC ’07, 1046–1050.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing. SIGGRAPH Comput. Graph. 18 (January),
137–145.

DABROVIC, M., 2002. Sponza atrium.
http://hdri.cgtechniques.com/ sponza/files/.

DEERING, M., WINNER, S., SCHEDIWY, B., DUFFY, C., AND
HUNT, N. 1988. The triangle processor and normal vector
shader: a vlsi system for high performance graphics. ACM, New
York, NY, USA, vol. 22, 21–30.

HACHISUKA, T. 2009. Ray tracing on graphics hardware. Tech.
rep., University of California at San Diego.

HOBEROCK, J., LU, V., JIA, Y., AND HART, J. C. 2009. Stream
compaction for deferred shading. In Proceedings of High Per-
formance Graphics 2009, 173–180.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. Fast BVH Construction on GPUs. Com-
puter Graphics Forum 28, 2, 375–384.

NVIDIA. 2007. NVIDIA CUDA Compute Unified Device Archi-
tecture - Programming Guide.

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, H.,
HOBEROCK, J., LUEBKE, D., MCALLISTER, D., MCGUIRE,
M., MORLEY, K., ROBISON, A., AND STICH, M. 2010. Op-
tix: A general purpose ray tracing engine. ACM Transactions on
Graphics (August).

SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering
of 3-d shapes. 197–206.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces.
In In Computer Graphics (SIGGRAPH 1978 Proceedings, 270–
274.


