
SDM – An Educational Game for Software Engineering

Troy C. Kohwalter Esteban W. G. Clua Leonardo G. P. Murta

Universidade Federal Fluminense, Instituto de Computação, Brazil

Figure 1: SDM

Abstract

Software Engineering is an area of computer science

that focuses on practical aspects of the software

production. The Undergraduate courses of Computer

Science have disciplines of Software Engineering, but

they are usually taught in a theoretic way and with only

a few implementation exercises using the learned

techniques and tools. A practical approach for the

concepts studied during the Software Engineering

classes would help the student in understanding the

reason for using the presented concepts. Due to that,

we introduce Software Development Manager, a novel

simulation game where the player owns a software

development company that counts with the help of a

team, which is administered by the player, to develop

products desired by customers. The purpose of this

game is to assist in learning the knowledge of Software

Engineering in a way that takes advantage of the

benefits of fun and entertainment.

Keywords: games, software engineering, people

management.

Authors’ contact:

{tkohwalter, esteban, leomurta}@ic.uff.br

1. Introduction

Learning can and should be a fun process. Given this,

one option to make learning fun is by using games with

the aim to stimulate curiosity and provide motivation

for learning. Prensky [2001b] gives twelve reasons for

the fact that computer games are the most potentially

attractive pastime in the history of humankind:

1. Games are a form of fun. That gives us

enjoyment and pleasure.

2. Games are a form of play. That gives us intense

and passionate involvement.

3. Games have rules. That gives us structure.

4. Games have goals. That gives us motivation.

5. Games are interactive. That gives us doing.

6. Games are adaptive. That gives us flow.

7. Games have outcomes and feedback. That

gives us learning.

8. Games have win states. That gives us ego

gratification.

9. Games have conflict / competition / challenge

/ opposition. That gives us adrenaline.

10. Games have problem solving. That sparks our

creativity.

11. Games have interaction. That gives us social

groups.

12. Games have representation and story. That

gives us emotion.

There are other means that can provide some of

these characteristics, for example, movies and books.

However, games are the only process that conveys all

these aspects at the same time [Prensky 2001b].

In the area of Software Engineering, the traditional

teaching consists of lectures and some practical work

with the intent of using the theory learned in class.

However, these practical works are usually small and

do not stimulate the student’s interest.

The students do not show much motivation in these

types of proposed work because they belong to another

generation. This generation, called “Digital Natives”

by Prensky [2001a], is used to receive lots of

information in a short period of time, like to do parallel

tasks, and prefer graphics or visual interactions instead

of text explanations.

Prensky [2002] identified that one of the problems

in learning is the lack of motivation from the student.

To learn any subject it is necessary to make an effort,

something that is rarely done without a reason. While

the goal of educators is to convey the content, they do

not bother to keep the student involved. Computer

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1

games, on the other hand, have the main goal to keep

the users involved and consequently make them want

to devote more and more time playing.

 Considering these facts, in this paper we present the

Software Engineering concepts modeled in terms of

gameplay and game mechanics theory, in order to

present a possible game based approach for teaching

and simulating Software Engineering. Based on our

model, we describe how we created a new educational

game focusing at teaching Software Engineering. The

game, called Software Development Manager, or SDM

for short, is primarily intended to assist in learning the

concepts of people management, involving training,

assigning tasks, and workload. These concepts are

taught in theoretical lectures of Software Engineering

and can be better assimilated using SDM, keeping the

students interested in the subject through the fun

offered by the game.

 The SDM game conveys the importance of the

management of the development team and each

possible role that a member of the team can undertake.

However, the most distinct factor of this game is the

use of human characteristics to determine if the

employees are qualified to perform certain roles.

 This paper is organized as follows: Section 2

presents some related works relate to other education

games for Software Engineering. Section 3 presents the

modeling concept and approach of the SDM game.

Section 4 presents the implementation of the game.

Section 5 presents the experiments made to evaluate

the game. Finally, Section 6 presents the conclusions

of this work.

2. Related Work

In Software Engineering, students are exposed to

various theoretical concepts and end up having little

opportunity to apply all concepts learned in class. Due

to this problem, some educational games were

developed to address the concepts that are taught in

theoretical lectures, as well as to assist in

understanding the content.

 In Navarro [2002], the authors created a simulation

game of Software Engineering called SimSE. The

purpose of this game is to address the gap in the

traditional techniques of Software Engineering

teaching where students are exposed to various

concepts and theories, but have few opportunities to

transform these ideas into practice.

In SimSE, the player assumes the position of a

project manager who has a team of developers. As the

player manages the software development, he can

make hiring and firing decisions, monitor progress,

assign task and buy tools. This game counts with a

graphical interface that transmits all the necessary

information to the player by dialogues or information

windows. Figure 2 shows SimSE’s graphical interface.

The fundamental goal of the SimSE project is to allow

the customization of the simulated process model and

therefore to be used by professors during the

presentation of content related to the software life

cycle.

Despite having elements of staff management,

SimSE uses a basic employee system consisting on the

usage of two attributes, besides their name and

developer role. One attribute represents software

development experience and another coding

knowledge.

Figure 2: SimSE graphic interface

 In Baker et al. [2003], the authors created a card

game. The main focus of this card game, called

Problems and Programmers, is the teaching of

Software Engineering. Through a simulation of a

software development process, from conception to

completion, the players learn tactics to avoid problems

during the development of the product.

 In this game, players are project managers who

work in the same company. The goal is to compete

with each other in order to complete their projects in

less time. However, players who adopt strategies to

minimize the time or make risk decisions are affected

negatively, while players who choose to follow the

concepts of Software Engineering are rewarded. For

this, the game depends on different types of card for

each situation. Figure 3 show some of the cards in the

game.

Despite showing important phases of software

development, such as documentation, implementation,

inspection and testing, the game Problems and

Programmers lacks in some aspects, such as the card’s

structure and rules that make the game difficult to play

with several people and impossible to be played alone.

In Figueiredo [2010], the authors created a card

game called JEEES. The main focus of this card game

is the teaching of Configuration Management

[Estublier 2000] through a simulation of a project

development environment.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2

Figure 3: Problems and Programmers cards

In this game, players have the goal of finishing a

software project through the completion and releases

delivery. This can be accomplished by hiring

developer teams as workforce to develop the software.

The developer team card is illustrated in Figure 4.

Despite being a game for Configuration Manager,

JEEES can be adapted for other areas of Software

Engineering with the addition of cards.

Figure 4: JEEE's developer team card

 In JEEES, the management of the workforce is

done by firing and hiring an entire developer team.

There are only three attributes used to define the

capability of the hired team, which represent the team’s

development ability, testing ability, and tendency to

insert bugs in the project.

In Dantas et al. [2004], the authors created a

simulation game for teaching Software Engineering

named The incredible Manager, or in short TIM. The

focus of this game is project management, where the

player has the job of manager in a company. The

player main tasks are to plan and to manage software

development projects.

As project manager, the player establishes a

development plan for the project and has the options of

forming a development team to estimate the duration

of each task, assign tasks to developers, make project

plans, negotiate with stakeholders, control how many

hours the team will work per day and determine the

effort spent on quality assurance. All these options are

available through the graphical interface, as shown in

Figure 5.

Figure 5: TIM's graphical interface

 However, as in the SimSE game, it only presents

two types of roles that can be performed during the

development of the project: the manager, that is the

player himself, and developers, that are the employees

of the team. Nevertheless, these are not the only roles

that are played in the development of software. There

are others, which were not mentioned, but are equally

important, such as system analysts and software

architects.

While the mentioned works were modeled having

in mind the Software Engineering concepts as a first

requirement, there are other works that are mainly

focused at the entertainment and gameplay aspects,

such as Gamedev Story [2010]. Our work has a novel

approach, since it tries to model the architecture having

the fun theory in mind since the beginning of the

concept, but also intending to stay very close to the

Software Engineering theory and literature.

3. SDM Architecture

In the SDM game, proposed in this paper, the player

has a team of employees who are used to develop

software that are required by customers. The gameplay

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3

and game mechanics are modeled presenting

possibilities to the player to decide strategies for

development and define the roles for each staff

member. The software required by customers may

have requirements that must be respected during

development. From a gameplay point of view, these

requirements help to balance the mechanics and rules.

When the software is completed and delivered to the

customer, there is a quality assessment of the software

and a project completion payment.

 Since SDM focus is people management, the main

element of the game are employees, which represent

the player’s labor force. Since employees take a very

important role, several existing features where

expanded or added. These features include changes in

possible roles that an employee can perform and the

attributes used to calculate the employee’s

performance. Another element added is specialization,

used to define the employee working competence.

With the specialization system, it is possible for

employees to undergo training to learn new skills. Also

the concepts of working hours, morale, and stamina are

used to modify the employee’s productivity.

Figure 6 show a simplified version of SDM’s class

diagram focusing on the employee, showing his human

attributes, types of specializations and the possibility of

training to acquire specializations, and that the

employee is affect by other employees that belong to

the staff team. In small details it also illustrates the

project and its characteristics and requirements that

must be obeyed by the development staff.

Figure 6: SDM's Simplified Class Diagram

3.1 Employees

In SDM, the employees represent the player’s

workforce. They perform planning tasks and develop

the software through roles that are assigned by the

player. In addition to the tasks that can be assigned,

employees have certain characteristics that are used to

determine the affinity to perform each possible task.

Through a dialog interaction, illustrated at Figure 7,

it is possible to view the employee’s profile, detailing

all his characteristics. The profile is shown in Figure 8.

Figure 7: Dialog in SDM

Figure 8: Employee's sheet

3.2 Roles

The above-mentioned tasks are performed by the roles

that an employee can play in the game. When a role is

chosen for an employee, he will devote all his working

time performing the desired function.

 In the design of the SDM, six different types of

roles were chosen and can be assigned to an employee.

These roles are analyst, architect, manager, marketing,

programmer, and tester. The purpose of using these six

roles is to expand the scope of functions that can be

performed by staff members. Each of these roles has a

specific function that contributes to the development of

software, which is described in the following.

The systems analyst serves as a translator of the

user’s needs into the architect’s model that is used by

the programmers during development. For this, the

analyst must have a comprehensive knowledge of the

business area in which the system is being developed

in order to properly implement the business rules.

The software architect is the professional

responsible for design and development of the system

architecture. He is responsible for creating testing

procedures to ensure the software quality is at the

desired level, proposed by the customer. In addition, he

is responsible for generating prototypes to validate

requirements with the customer.

The manager is the individual responsible for

planning and controlling the execution of the work of

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4

team members. The manager, in the proposed

approach, also manages the team’s human resources

and is responsible for hiring new employees. In

addition to this task, the manager indirectly assists

almost all functions performed by other roles during

the project’s development.

The role of marketing is responsible to negotiate

the contract with the customer. The marketing can also

have influence in the requests made by the customer to

the system analyst, managing to convince the customer

that an initially unwanted functionality is acceptable.

Codes do not generate alone. For this, it is needed

programmers to develop the software. Therefore, the

programmer is responsible for generating the

software’s source code. However, the programmer is

also inadvertently responsible to put bugs in the

software during development. These bugs affects the

final quality of the project. The amount of bugs

introduced is influenced by the programmer’s

experience with the programming language used and

his capacity of working with the methodology adopted

by the team.

Finally, the tester is the person responsible for

carrying out the software verification to provide

information about its quality. This responsibility

includes the act of using the project in order to find

bugs and correct them. As mentioned earlier, the tester

works with the team’s architect.

In the game, these roles are chosen by the player, as

illustrated by Figure 9.

Figure 9: Roles window

3.3 Attributes

The employees have attributes that influence their job

performance. However, these attributes are not directly

related to each role, such as an attribute to be used for

the role of manager and another for programmer. To

make SDM more realistic and have a distinction of the

other games, the system adopted for attributes is the

usage of human characteristics of a person. These

human characteristics, called human attributes in our

work, are the attributes visible to the player so he can

consult and figure out the performance an employee

will have for a certain role. However, the mapping of

these human attributes to the performance attributes is

not informed to the player. With that, the player needs

to use the common sense and make some experiments

to be able to discover which attributes are more

important for each role.

 After performing a detailed study on employee’s

profiles [Santos 2005; Russo 2007] that plays certain

roles in software development, we selected nine human

attributes to represent the characteristics of the

employee. The attributes are:

 Adaptability: the ability to react to changes.

This attribute, specifically in our proposal,

reflects the employee’s ability to adapt to

changes in scope and planning of the

software. This attribute is widely used by

analysts and architects and is also important

for manager.

 Autodidact: responsible for the ability of

learning without having an instructor. The

individuals make their own research on the

material needed for learning. This attribute is

important for the programmer. Besides being

used to determine the performance, this

attribute is also applied when an employee is

training, decreasing the time needed to

complete the training.

 Meticulous: used to measure the employee’s

ability to pay attention to details of the

problem, point to point checking the level of

detail of the activities. This attribute is heavily

used by testes and is also important for

analysts and architects.

 Negotiation: used to determine the employee’s

ability to perform replacement persuasions, or

persuade the other part showing the most

relevant benefits of a point of view. This

attribute, as its name implies, is essential

during negotiations and is heavily used by

marketing, but alone it does not determine the

final performance of the negotiations.

 Objectivity: the ability to be objective. It serves

to seek the simplest functional solution,

especially during the software

implementation. Therefore, it is a good

attribute for programmers.

 Organization: the attribute responsible for the

structuring of work and combination of

individual efforts to make collective efforts. It

is also useful for planning and creating

schedules, thus making it a good attribute for

managers.

 Patience: the virtue to maintain a balanced

emotional control, without losing his mind

over time. It consists on the tolerance to errors

or unwanted events. The ability to endure

discomfort and difficulties of every kind, from

any time or anywhere, to persist in a difficult

task. This attribute is important for testes, but

no less important for other roles.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 5

 Logical Reasoning: define the ability to seek a

solution to a problem when data is available

as a starting point, but no one is quite sure

how to achieve the goal. A person with logical

reasoning it is able to identify errors

intuitively, understand the logic behind the

problem and make mathematical calculations.

This attribute is very important for

programmers and testers.

 Human Relations: responsible for the

interpersonal characteristic and

communications skills of persuasion. Human

relations help to explain ideas and to

distinguish the technical vocabulary of the

business. This attribute is heavily used by

employees who perform the role of analysts,

manager, and marketing.

The weight of the human attributes for the

performance of each role proposed for this work is

presented in Table 1. These weights are configurable.

Table 1: Human attributes weight for each role

An = Analyst Ar = Architect Ma = Manager

Mar = Marketing Prog = Programmer Tes = Tester

3.4 Specializations

Another important topic in our modeling is that each

employee has specializations. These specializations

can be from three types: programming languages,

which reflects the language that the employee is able to

work; techniques that are used to determine if the

employee is familiar with certain methodologies

adopted by the development team; and tools that are

used to assist the employee to perform his tasks.

 Programming language and techniques

specializations are used to determine if the employee is

able to work with the methodology and the

programming language adopted by the staff, giving

negative modifiers in case the employee don’t meet the

team’s development setting. The tools specialization is

used only to aid the employee, having no drawback for

the lack of it.

3.5 Training

We propose a model where it is possible to train an

employee so that he can acquire new specializations.

The type of specialization to be trained can be chosen

by the player at any time and have a duration of several

days, influenced by the autodidact attribute. During the

training period, the employee will devote his entire

time on training and will not be allowed to exercise

other functions simultaneously, such as working. Only

when the training is completed the employee may

resume his daily duties at the company.

 With the possibility of training, the player can see

that it is necessary, before starting the development or

when adding a new member in the staff, to train his

employees. If no training is made to meet the

requirements of the project, the employee’s

performance will be reduced and the software quality

will be negatively affected. Another learning that the

player can get from the training aspect is that if an

employee already belongs to the player’s staff since

older projects, it is very likely that he will need less

and less training for new projects. Figure 10 shows all

the possible skills an employee can be trained in the

game.

Figure 10: Training Window

3.6 Working hours, morale, and stamina

The number of working hours is another factor that

influences the performance of an employee and

directly affects the employee’s salary and his stamina.

Morale and stamina models the employee’s behavior

and is directly related to their performance.

 Stamina, as mentioned before, is affected by

working hours. If the employee is doing overtime

work, his stamina will start to decrease, thus causing a

drop in his performance due to exhaustion. On the

other hand, if he is working less hours, his stamina will

increase.

 With this relationship of working hours and

stamina, it is possible to conclude that when an

employee is working overtime, his productivity will be

higher in a short term and then will begin to drop

because of his exhaustion. After a few days, his

overtime productivity will be negated by his

exhaustion and if it continues, his productivity will fall

beyond his normal productivity levels.

Morale also affects the employee performance,

although not by fatigue but by the will to work. Morale

 An Ar Ma Mar Prog Tes

Adaptability 20% 25% 10% 5% 5% 5%
Autodidact 5% 5% 10% 5% 20% 5%

Meticulous 10% 15% 5% 5% 5% 25%
Negotiation 5% 5% 10% 25% 5% 5%

Objectivity 10% 10% 5% 5% 15% 10%
Organization 5% 10% 25% 5% 10% 10%

Patience 10% 10% 10% 20% 10% 15%
Logical

Reasoning
10% 15% 5% 5% 25% 20%

Human

Relations
25% 5% 20% 25% 5% 5%

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 6

is responsible for the employee’s desire to stay in

business. If his morale is low, the employee may resign

voluntarily from the team. Failure in payment is an

example that affects negatively the morale.

This system of morale, stamina, and working hours

provide the player other possibilities of strategic

development of the software. It is up to the player to

balance the benefits and drawback of using such

aspects. Figure 11 shows a summary of each staff

member which contain their daily salary and their

levels of morale and stamina. Morale and stamina are

also visually illustrated as bars that vary with size and

color and floating letters that appears when changes

occur, which are illustrated at Figure 12.

Figure 11: Staff summary window

Figure 12: Employee's working. Show changes on Stamina

due to different working hours

3.7 Hiring

The player’s staff can be changed during the game by

actions taken by employees or the player’s choice. The

first alternative has already been explained, which is

affected by morale. The second alternative, which is

made by the player, consists on hiring or firing one or

more employees.

 The player can fire employees at any time.

However, to be able to make a change in the staff in

order to add a new employee, it is necessary that at

least one employee in the staff is playing the role of

manager. Talking with the manager through a dialog,

the player can request additions to the team if the staff

is not at full capacity. Figure 13 shows the hiring

window, which allows modifying the staff. The

window is divided into sections, where the first row,

from left to right, shows the possible candidates for

hiring, the middle row shows their respective costs for

hiring, and the last row shows the player’s staff. When

a candidate is selected, his profile appears at the right

side of the hiring window.

Figure 13: SDM's hiring window

3.8 Prototyping

Just like hiring, it is possible to design prototypes to

elucidate some specific requirements with the client.

This is achieved during the development process via a

dialog with the staff architect, if there is any.

Prototypes, in SDM, are intended to aid the

comprehension and understanding of what the

customer wants from the requested software.

 Figure 14 illustrates the prototyping window, which

is accessed through an architect. There are three

possible types of prototypes, with the only difference

being their complexity.

Figure 14: SDM's prototyping window

3.9 Negotiation

During the software development, it is possible to

conduct negotiations with the client to change the

project plan. These negotiations are only possible

through a dialog with the marketing employee. The

possible changes in the project plan are related to

deadline, scope, quality, and resources. However, these

changes need to be balanced, meaning that if one

element is chosen, another one will need to be affected

as well to compensate the changes. As an example, if it

is requested more resources to the project, then the

deadline will decrease.

 Figure 15 shows the negotiation window, which

have two fields: the upper field contains beneficial

changes to the player’s point of view and the lower

field contains beneficial changes to the client. For a

negotiation to be concluded, the player needs to pick

one change from each field.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 7

Figure 15: SDM's negotiation window

3.10 Leveling

During the course of the game, the player’s staff gain

experience points after developing projects. As the

name imply, these points reflects in experience gained

by participating in the project. When a certain number

of cumulated experience points are reached, the

employee gains a new level, resulting in an increase of

attributes. However, the affected attributes during a

level up depends on the roles he had between each

level.

For example, if an employee works the entire

period between levels as a programmer, then he may

get an increase in all attributes, since all attributes are

used for every role. But as a result of focusing on the

programmer role, his autodidact and logical reasoning

attributes will have a higher chance of increasing as

well as the possibility of gaining multiple points in

these attributes. This differential is measured by the

time the employee spent on each role. So, if he had

spent half the time as programmer and the other half as

analyst, then his most affected attributes would be

adaptability, autodidact, logical reasoning, and human

relations. However, the increase in probability and in

possible quantity would be inferior in comparison of

focusing on only one role. Figure 16 is the window

responsible for showing all the changes on the

employee’s attributes due to his current level.

Figure 16: Attributes changes due to level

 During the game, the player’s company may also

evolve, or devolve, according to the projects results.

Initially, the company starts with just a few employees

and can only take small projects. At the end of a

project, the player company is rewarded with points

that are used to calculate the company equivalent of

level. This reward can be positive, in case the project

was a success, or negative otherwise. As the company

level increases, the complexity of allowed projects

increase, resulting in better payment, but harder

development. Due to the fact the company can lose

points, it can also lose levels, resulting in restricting

allowed projects. Figure 17 illustrates a completed

project and the awarded experience points. The amount

of experience is based on quality and complexity.

Figure 17: Project results

3.11 Differential

The SDM, in relation to the existing works, has many

new aspects as a game. Employees now are an

essential part of the development and as such they were

expanded in terms of complexity.

In SDM the employees have human characteristics

that determine their performance on the tasks, instead

of a performance attribute directly related to each task.

Besides, employees have specializations that affect

their performance and make it necessary to do training

in the initial phase of the development. They are also

capable of gaining experience. Aside from attributes

and specializations, the roles an employee can play

also increased from two to six, adding new important

roles that are used during the development of real

projects. The player’s company also evolves or

devolves according to performance on previous

projects. Lastly, SDM offers an infinite gameplay,

always generating new projects to be taken by the

player.

4. Implementation

The SDM game was developed using the game engine

Unity3D (2010). Unity3D is a game development tool

designed to let the user focus on creating games

without worrying about game engine aspects. Figure

18 shows SDM inside the Unity game editor.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 8

Figure 18: SDM on Unity game editor

 In SDM, the player has the option to assign tasks

and change the staff configuration by elements in the

interface as well as view the project details. It is also

possible to interact with employees through the usage

of the avatar. In the game interface there is a time

control mechanism, which in SDM is real time,

allowing the player to pause the game or change game

speed. Figure 19 shows the entire game interface, in

which the upper elements are for staff management and

lower elements for project details and game speed.

Figure 19: SDM interface

5. Experimental Evaluation

In order to evaluate the developed game, different

students, with different profiles, were selected to play

the SDM. The purpose of this experiment was to

investigate what would be the student perception with

the game and evaluate the contents of Software

Engineering presented. For this, we exposed the

selected people to a SDM gameplay session of thirty

minutes and gave them a questionnaire, which was

divided into two parts: participant characterization and

game evaluation.

 Among the selected twenty eight people, 92.6% are

undergrad student, 3.7% master’s students, and 3.7%

PhD students. In this group, 18.5% has studied

Software Engineering and 63% had no previously

contact with Software Engineering. All evaluated

participants enjoyed playing the game. Regarding the

gameplay, 11% found it easy, 25.9% felt that the game

was too complicated and the rest said it was normal in

terms of gameplay. Referring to learning the contents

of Software Engineering, 81.5% of the participants said

they learned something new with the game. When

asked if they would like to play the game again, 88.9%

answered positively, explaining that it is was possible

to apply the knowledge they learned about Software

Engineering and the way the game handled the staff

management. After having experienced the game,

85.2% said that the SDM sparked an interest in

Software Engineering. The questions and data are

presented in Table 2 and Table 3.

Table 2: Simplified Questionnaire

Question Answers

Education? PhD PhD student Master’s Master’s

student

Undergrad student

SE experience? Never Read Studying Studied Course

Liked playing? Hated Didn’t like Indifferent Liked Liked very much

Gameplay? Incompre-

hensible

Complicated Normal Easy Very Easy

Learned anything

new?

No Yes - - -

Want to play again? No Yes - - -

Aroused Interest? No Yes - - -

Table 3: Questionnaire's answers

Question Answers

Education 0% 3.7% 0% 3.7% 92.6%

SE experience? 63% 14.8% 3.7% 18.5% 0%

Liked playing? 0% 0% 3.7% 63% 33.3%

Gameplay? 0% 25.9% 63% 11% 0%

Learned anything new? 18.5% 81.5% - - -

Want to play again? 11.1% 88.9% - - -

Aroused Interest? 14.8% 85.2% - - -

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 9

6. Conclusion

In this paper, we have shown a new proposal of

modeling and implementation of an educational game

for Software Engineering that can be used to aid the

students to understand the various concepts that are

taught on theoretical classes. We described our SDM

game showing its aspects and differences on the other

educational games presented in literature.

 In our experiment, a game session in conjunction

with a questionnaire was provided to the volunteers.

The analysis of this experiment shows that the game

helps the player to understand Software Engineering

concepts that are shown in the game via an enjoying

experience.

 While developing this game, many other

possibilities emerged, such as to include a system of

affinity between the player’s employees. This system

would affect the integration of new employees in the

team, causing the player to reflect on the decision to

replace an employee in the middle of the software

development. The new member would need, besides

going through training, to meet the team’s

requirements and interact with other members to know

how the team works on a daily basis.

A weak aspect of our game is that in its current

version it is not possible to define iterations. Every day

the player receives a feedback of the performance of

each employee, but because of the huge number of

information shown, the player may be disoriented in

relation to assessing the pace of the project

development. A work around to this problem is to

allow the player to choose the size of iterations, in

which he would receive information about the team’s

performance and each individual employee

performance within the chosen period.

We consider that our goals where achieved with our

current implementation of the game, as we analyzed

the results of the experiments that shows the game as a

enjoyable way to help students to understand some

concepts of Software Engineering, especially about

people management.

Acknowledgements

The authors would like to thank CNPq and FAPERJ

for the financial support of this work. We are also

grateful to all the volunteers that participated on the

tests and validations.

References

Baker, A., Navarro, E.O. & Hoek, A. van der, 2003.

Problems and Programmers: An Educational

Software Engineering Card Game. In: ICSE, pp.

614-621.

Dantas, A., Barros, M. de O. & Werner, C.M.L., 2004.

Treinamento Experimental com Jogos de

Simulação para Gerentes de Projeto de Software.

In: SBES.

Estublier, J., 2000. Software Configuration Management: a

roadmap. In International Conference on Software

Engineering. In: ICSE.

Figueiredo, K. et al., 2010. Jogo de Estratégia de Gerência de

Configuração. In: III Fórum de Educação em

Engenharia de Software.

Games, F., 2010. Game Dev Story. Available at:

http://itunes.apple.com/us/app/game-dev-
story/id396085661?mt=8 [Accessed May 5, 2011].

Higgins, T., 2010. UNITY: Game Development Tool.

Available at: http://unity3d.com/ [Accessed May 5,

2011].

Navarro, E.O., 2002. SimSE: A Software Engineering

Simulation Environment for Software Process

Education. In: ICS.

Prensky, M., 2001a. Digital Natives Digital Immigrants. In:
On the Horizon.

Prensky, M., 2001b. Fun, Play and Games: What Makes

Games Engaging, In: Digital Game-Based

Learning.

Prensky, M., 2002. The Motivation of Gameplay. In: On The

Horizon.

Russo, R. de F.S.M., 2007. Tendência empreendedora do

gerente. In: Gest. Prod., pp. 581-593.

Santos, S.C.G., 2005. Psicologia em Estudo - The

information technology professionals and their

personality analyzed by Rorschach technique. In:

Psicol. estud.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 10

