
An Open Source Architecture for Building Interactive Dramas
Vinı́cius M. Müller

DGiovanni Project (http://dgiovanni.sourceforge.net/)

Abstract

This work presents DGiovanni, an open source multi-agent archi-
tecture for building interactive dramas. The architecture has been
developed in JAVA and uses the Jason’s BDI engine, being the Ja-
son’s agent-oriented programming language utilized as the means
for performing the drama management and for authoring the char-
acters’ behaviors. Additionally, it makes use of ontologies to sup-
port the creation of different stories and to feed the system with
story-related information. Also, the architecture can help in the de-
velopment and research of interactive dramas, by including several
facilities for developing the story. Finally, in order to demonstrate
the use of the architecture, it has been also created a story imple-
mentation that supports some interactivity mechanisms such as a
simple Natural Language Processing.

Keywords:: Interactive Drama, Multi-agent systems, Ontologies

Author’s Contact:

vmmuller@users.sourceforge.net

1 Introduction

A “... story is a narrative of events arranged in time sequence”
[Forster 1956, p.30, emphasis added]. A play, on the other hand,
“... tells a certain kind of story”: “... one that imitates an action”
[Rush 2005, p.30]. Certainly, in this case, action means more than
having someone running or doing something exciting. Actually,
there are plays, for example, where characters just speak with each
other [Rush 2005]. Thus, this action must have “... a certain kind
of depth” [Rush 2005, p.23]. In this sense, the “... unique kind of
action ...” that can be found in a drama is the dramatic action [Rush
2005, p.30]. “A dramatic action is a specific event that occurs over
a limited time in which a significant change occurs” [Rush 2005,
p.23]. “Dramatic action depends on conflict: If there is no con-
flict, there is no drama” [Pritner and Walters 2005, p.53, emphasis
added]. Hence, a dramatic event demands a conflict between char-
acters with “... mutually opposed wants, desires, or needs” [Pritner
and Walters 2005, p.53]. In [Forster 1956] view, like story, a plot is
a narrative of events, but here the emphasis on causality is stressed.
“ ‘The king died and then the queen’ is a story. ‘The king died and
then the queen died of grief’ is a plot” [Forster 1956, p.86]. Indeed,
“... plot refers to the deliberate selection and arrangement of the
incidents ...” [Rush 2005, p.35]. In this regard, according to [Rush
2005], there are several ways a play may be organized. The author
can arrange the incidents in the same order they happen in the story;
that is, in a chronological fashion: linear order. Conversely, a story
may also be not chronologically organized: nonlinear order. The
figure 1 shows the classical well-made play structure where events
occur in a chronological sequence and are causally connected.

Figure 1: Key points of a typical well-made play
Reference: [Rush 2005, p.39]

Knowing that plot relates to the process [Tobias 1993] of selecting
and arranging the incidents through time [Rush 2005; Mckee 1997],
one question must still be answered: how the addition of interactiv-
ity may affect the plot? In this context, [Meadows 2002, p.238]

defines an interactive narrative as “... a form of narrative that al-
lows someone other than the author to affect, choose, or change the
events of the plot”. Here, plot is still a function of time, but now the
act of choosing when the events occur is responsibility of both the
author and the player [Meadows 2002]. [Meadows 2002] also de-
scribes two primary forms of interactive narrative: the impositional
and the expressive. In the first, the plot is strongly determined by
the author that guides the player with strict sets of rules, thus al-
lowing him a narrow margin of choices and just a few moments of
interactivity. Conversely, in the second, it is the player that heav-
ily influences the plot, being allowed to walk freely, explore, and
change the environment. In addition, [Meadows 2002] points out
that seeking the appropriate balance between these two forms is a
major challenge that must be faced. The figure 2 shows examples
of three types of plots that represent the impositional and the ex-
pressive interactive plot structures1.

(a) Nodal plot structure

(b) Modulated plot structure

(c) Open plot structure

Figure 2: Interactive narrative plot structures
Reference: [Meadows 2002, pp. 64-66]

The nodal plot structure, figure 2(a), is the one where there is “... a
series of noninteractive events, interrupted by points of interactiv-
ity” [Meadows 2002, p.64]. This plot structure is the most imposi-
tional and has the most support for the classic dramatic arc. This
structure has one beginning and usually two endings (one where
the player dies and other where he finishes the game) [Meadows
2002]. In addition, the plot direction may not be changed by the
player, which may only influence the plot progression speed in the
course of its linear path [Hammond et al. 2007]. The modulated
plot structure, figure 2(b), has less support for the classic dramatic
arc, and does not necessarily determines the order of the events to
be followed [Meadows 2002]. Here,

“player action chooses which path the plot will follow
by choosing from finite sets of pre-defined options at
fixed decision points in the plot ... These decision points
provide affordances for player agency, but their finite na-
ture means that agency is somewhat limited” [Hammond
et al. 2007, p.388].

Lastly, the open plot structure, figure 2(c), is the one where the fo-
cus lies on the exploration, modification and investment, being the
dramatic arc usually abandoned. Moreover, the story is often char-
acterized by the development of characters or environments [Mead-
ows 2002]. “This form of narrative has no specific starting point
in the sense that there is an event that begins the story”[Meadows
2002, p.66].

1Differently from that presented in figure 1, these “... don’t have much
to do with emotional punch or aesthetic interest” [Meadows 2002, p.63]

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1



According to [Ryan 2008], the first step in designing an interactive
narrative is to choose the type of the story. In this case, [Ryan
2008, p.10] believes that the implementation of the dramatic plot
is the most difficult because of “... its emphasis on the evolution
of interpersonal relations”. This kind of interactive story that is
characterized by the dramatic plot is called interactive drama and
may be defined as follows:

“Interactive Drama is a narrative genre on computer
where the user is one main character in the story and
the other characters and events are automated through a
program written by an author. Being a character implies
choosing all narrative actions for this character” [Szilas
2005, p.193].

In other words, the main idea of an interactive drama consists of
enabling the player to be a major character within the story, interact
with the computer-generated characters, and have a strong influence
in the course of events [Szilas et al. 2008].

In this context, this work presents an open source multi-agent archi-
tecture for building interactive dramas. It has been mainly inspired
by the interactive drama Façade2 because this is ‘fully-realized’
and released as freeware for download. However, differently from
Façade, for the developed architecture, none specific-purpose au-
thoring language has been created. Actually, for performing the
drama management and the authoring of the characters’ behav-
iors, the well-known agent-oriented programming language Jason3

is utilized. In addition, the developed architecture also uses on-
tologies to support the creation of different stories and to feed the
system with story-related information. Finally, in order to demon-
strate the use of the architecture, it has been also created a story
implementation that supports some interactivity mechanisms such
as a simple Natural Language Processing. Notice, however, that
the use of sophisticated computer graphics and highly interactive
mechanisms is beyond the scope of this experiment.

The text is organized as follows: the section 2 shows some related
works and describes the interactive drama Façade. The section 3
presents an overview of the developed architecture. An experiment
in building an interactive drama using the developed architecture is
shown in section 4. Finally, the section 5 presents the final consid-
erations and discusses about future works.

2 Related Work

Interactive Drama has attracted a growing interest over the years
and several approaches to the problem have already been presented:
project Oz architecture [Loyall and Bates 1991]; IDtension [Szilas
et al. 2008], IDA [Magerko 2002], Façade [Mateas and Stern 2003].

This work has been mainly inspired by Façade because that is a
fully-realized one-act interactive drama and is released as freeware
for download [Mateas and Stern 2003]. “The Façade architecture
integrates story level interaction (drama management), believable
agents, and shallow natural language processing in the context of
a first-person, graphical, real time interactive drama” [Mateas and
Stern 2003, p.7]. Façade follows the Neo-Aristotelian theory of
interactive drama, which is based on Aristotle’s dramatic theory,
but with some modifications to address the interactivity added by
player agency [Mateas 2002]. In the Neo-Aristotelian approach,
to deal with the tension existing between interactive freedom and
story structure, the “... player has been added to the model as a
character who can choose his or her own actions ... But this ability
to take action is not completely free ...” [Mateas 2002, p.24]. He is
constrained by what is possible for him to do in the representation
(material cause), and even not perceiving it directly, by what the
story is trying to be (formal cause) [Mateas 2002].

Façade is composed of several threads running in parallel: A real-
time rendered 3D story world, the agent Trip, the agent Grace, the
player’s avatar agent, a thread for handling the natural language
processing, and a drama manager [Mateas and Stern 2003]. The
believable agents Trip and Grace are endowed with the ability to

2http://www.interactivestory.net/
3http://jason.sourceforge.net/

perform several intelligent activities such as to gaze, speak, walk,
etc. They consist of a large collection of behaviors written in ABL
(A behavior language) [Mateas and Stern 2003]. Based on the Oz
project architecture Hap [Loyall and Bates 1991], ABL is a reactive
planning language in which an activity (e.g. walking to the player)
is represented as a goal, and each goal may be achieved via one of
the supplied behaviors [Mateas and Stern 2003].

“A behavior is a series of steps, which can occur se-
quentially or in parallel. Typically, once a behavior com-
pletes all of its steps, it succeeds and goes away. How-
ever, if any of its steps fail, then the behavior itself fails
and the goal attempts to find a different behavior to ac-
complish its task, failing if no such alternative behavior
can be found” [Mateas and Stern 2003, p.8-9, emphasis
added].

These steps “... can be subgoals, mental acts (bits of computation,
often used to update character memory), or primitive acts (actions,
such as performing an arm gesture, that are native to the game
world)” [Zang et al. 2007, pp. 2-3]. The behaviors are dynamically
picked out to achieve goals. Thus, distinct behaviors can be used for
attaining the same goal in different contexts. For instance, if a char-
acter has the goal of expressing anger, this can be reached through
either a behavior in which he screams or other where he punches
a hole in the wall [Zang et al. 2007]. ABL supports sequential be-
haviors, where the steps are accomplished in a serial order; parallel
behaviors, where they are accomplished simultaneously; and joint
behaviors, where there is a mechanism for realizing a multi-agent
coordination [Mateas and Stern 2002].

In relation to the drama management, in the Façade’s architec-
ture, “... character behavior is organized around the dramatic beat”
[Mateas and Stern 2002, p.3]. In dramatic theory, the beat is “...
the smallest unit of dramatic action, consisting of a short dialog ex-
change or a small amount of physical action” [Mateas 2002, p. ii];
however, the Façade’s beats ended up being larger than the canon-
ical beats. The drama manager agent is the beat sequencer, which
chooses the subsequent beat in the story by considering the preced-
ing interaction history [Mateas and Stern 2003]. “As the story pro-
gresses, beats are sequenced in such a way as to be responsive to
recent player interaction while providing story structure” [Mateas
2002, p.4]. A beat supplies the characters Grace and Trip with a
collection of behaviors appropriate for a specific context [Mateas
and Stern 2003]. Beat behaviors are created in ABL, and are classi-
fied as beat goals, handlers (“responsible for handling player inter-
action”), and cross-beat behaviors (“behaviors that cross beat goal
and handler boundaries”) [Mateas and Stern 2002, pp. 3-4].

“In a beat sequencing language the author annotates
each beat with selection knowledge consisting of pre-
conditions, weights, weight tests, priorities, priority
tests, and story value effects — the overall tension level,
in Façade’s ... The unused beat whose preconditions are
satisfied and whose story tension effects most closely
match the near-term trajectory of an author-specified
story tension arc (in Façade, an Aristotelian tension arc)
is the one chosen; weights and priorities also influence
the decision” [Mateas and Stern 2005, p.4].

The player agent does not take part in the story world; however, it
is responsible for sensing the player’s actions and delivering this
information to the other agents. The player agent is also written in
ABL [Mateas and Stern 2003]. “Player interaction alters the per-
formance of a beat (local agency), and can have longer term effects
on future beats (global agency)” [Mateas and Stern 2003, p.11, em-
phasis added]. The player types to speak to the characters, whereas
they speak loudly their own dialog. To handle player interaction,
the natural language processing thread tries to interpret the player’s
action, and map it into one or more discourse acts [Mateas and Stern
2003]. “A discourse act is a concise representation of the general
meaning of the player’s action” [Mateas and Stern 2003, pp. 11-12,
emphasis added]. Examples of discourse acts used in Façade are
‘agree’, ‘disagree’, ‘positive exclaim’, ‘express happy’, etc. Subse-
quently, considering the current beat, the discourse act is mapped
into a potential reaction [Mateas and Stern 2003].

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2



3 An architecture for building interactive
dramas

This section presents the DGiovanni multi-agent architecture for
building interactive dramas. It has been developed in JAVA4 and
uses the Jason’s BDI engine. Jason is an interpreter that imple-
ments the operational semantics of the AgentSpeak language, and
provides a platform for developing multi-agent systems, including
many user-customizable features. “An agent is anything that can
be viewed as perceiving its environment through sensors and act-
ing upon that environment through actuators” [Russell and Norvig
2009, p.34, emphasis in the original]. In this case, a “percept is an
item of information received from the environment by some sen-
sor” [Padgham and Winikoff 2004, p.8, emphasis in the original].
An action, on the other hand, “... is basically an agent’s ability to
affect its environment” [Padgham and Winikoff 2004, p.8].

AgentSpeak is inspired on the belief-desire-intention (BDI) model,
which is a model where computer programs may be thought as they
have a “mental state”, in the sense that they have computational
analogues of beliefs, desires and intentions [Bordini et al. 2007,
p.15]. The beliefs are the information that the agent has about the
environment, even if this information is inaccurate or out of date;
desires are the world condition that the agent might like to achieve
[Bordini et al. 2007]; and intentions are related to the course of ac-
tion currently chosen [Padgham and Winikoff 2004]. Based on its
beliefs, desires, and intentions, a BDI agent determines what to do
by means of the decision-making practical reasoning model. This
model consists of two different activities: deliberation (decision of
what is to be achieved, i.e. intentions) and planning (decision of
how to act to accomplish the expected state of affairs, using the
available means) [Bordini et al. 2007]. In relation to planning, the
approach that has been adopted in Jason is that the programmer
develops collections of partial plans offline (i.e. at design time).
In this case, to handle any goal the agent is currently working to-
wards, the agent is responsible for assembling plans for execution
at run time [Bordini et al. 2007]. The Jason interpreter runs an agent
program operating by means of a reasoning cycle which consists of
the following steps [Bordini et al. 2007, pp. 67-86]:

1. Perceiving the environment;
2. Updating the belief base;
3. Receiving communication from other agents;
4. Selecting ‘socially acceptable’ messages;
5. Selecting an event;
6. Retrieving all relevant plans;
7. Determining the applicable plans;
8. Selecting one applicable plan;
9. Selecting an intention for further execution;

10. Executing one step of an intention.

This work has taken a multi-agent approach to interactive drama
because of several reasons. One is the reduction of coupling that
results from the autonomy, robustness, reactiveness, and proactive-
ness of agents [Padgham and Winikoff 2004]. In addition to re-
ducing coupling, agents can be used in unpredictable, unreliable,
and dynamic environments, in which fails may occur and recovery
must be done. Moreover, the proactiveness and the reactiveness
of the agents make them more human-like in the manner they deal
with problems: a fact that makes them useful in applications such
as games, in which software agents substitute humans [Padgham
and Winikoff 2004]. Furthermore, according to [Norling and So-
nenberg 2004], the use of the BDI paradigm may be interesting to
the creation of characters that must exhibit a wide range of complex
behaviors and interact with players that are usually unpredictable.

In summary, the DGiovanni architecture has the following features:

• Implementation of the infrastructure for communication and
control of the agents creation, running, and destruction;

• Customizable framework, compounded of classes and inter-
faces that have a terminology related to drama (i.e. including
terms like StoryCharacter, StorySetting, etc.);

4http://www.oracle.com/technetwork/java/index.html

• Support for the creation of different stories via the utilization
of ontologies that are also used to feed the system with story-
related information;

• An interface focusing on the research of interactive dramas:
– Visualization of the dramatic arc, selected beats/behav-

iors history and beat markers to delimit the beats (figure
3), state of the agents and environment (figure 4), and
analysis of the player’s input (figure 5);

– A new tab for each restart of the story;
– Support for showing text and emoticons;
– Generation of output in HTML format.

• Facilities for playing MP3 sounds (using JLayer5);
• A story implementation that uses some interactivity mecha-

nisms such as a simple natural language processing.

This work has adopted several ideas used in the interactive drama
Façade: the use of discourse acts [Mateas and Stern 2003]; the
use of the beat as the central building block of the interactive story
[Mateas and Stern 2000]; the use of the term behavior to mean an
activity that a character may perform [Zang et al. 2007]; the use of
a drama manager to provide the high-level plot decisions [Mateas
and Stern 2005]. However, differently from Façade, for the devel-
oped architecture, none specific-purpose authoring language (such
as the ABL and the beat sequencing language) has been created.
Actually, for performing the drama management and the authoring
of the characters’ behaviors, the Jason is utilized. Jason is used for
some reasons: First, the Façade’s authoring tools are not publicly
available at this time. Second, Jason is implemented in JAVA, thus
multi-platform. Third, it is available open source. Fourth, besides
being very powerful, it is highly customizable. Fifth, the elegance
of the AgentSpeak notation is particularly appealing to the sym-
bolic representation of beats and behaviors. Last, Jason is also a
reactive planning language [Bordini 2010]. [Mateas 2002, p.105]
comments about the importance of the use of a reactive planning
language in the interactive drama Façade:

“One of the strengths of a reactive planning language
such as ABL is the possibility of rich, dynamic com-
binations of behavior. While a behavior author defines
distinct behaviors for specific situations, much of the
richness of an ABL character comes from the interac-
tions between multiple behaviors as the character pur-
sues multiple goals in response to changes in the envi-
ronment”.

The developed architecture itself is shown in figure 6. The drama
manager controls the characters by sending messages to them, and
they reply with a message after completing the requested behav-
ior. Both the drama manager and the characters can affect (via an
action) and sense (i.e. perceive) the environment. As a direct conse-
quence of being the implementation of Jason agents, the characters
(including the player) can be seen as divided in three parts:

• A kind of mind that has a belief base, a plan library, and im-
plements the default selection functions of the AgentSpeak. It
uses the asl file that defines the behaviors of the characters.

• The base architecture class that defines the overall agent ar-
chitecture, being a kind of body. During the reasoning cycle
of the agent, its methods are called to take actions, establish
communication, and get the perceptions.

• The implementation that is visible in the story world and that
provides the concrete perception, action, and communication.

The player character is defined by the same class as the non-player
characters (NPCs); however, here the user’s implementation must
supply a module for handling the player’s input. In this case, the
architecture provides classes that abstract expressions and environ-
ment affecting actions. The first, which are accomplished by send-
ing a Jason message, are used to communicate feelings, opinions,
etc. by means of words or actions. The second relates to the actions
that are executed by an entity in order to affect the environment
(e.g. knock on the door). In such cases, percepts are added to the
environment after the execution of the actions.

5JLayer MP3 library (http://www.javazoom.net/javalayer/javalayer.html)

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3



Figure 3: The architecture’s default interface: enabling beat markers
Emoticons from the Pidgin emoticon theme (http://www.pidgin.im/). Dramatic arc created with JFreeChart (http://www.jfree.org/jfreechart/)

Figure 4: State of the agents and environment Figure 5: Analysis of the player’s input

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4



(a) The implementation of the infrastructure for communication and control
of the agents

(b) The developed architecture’s operation

Figure 6: The developed architecture

The drama manager agent is similar to the other agents. Never-
theless, there are some differences. The main difference is that
the class jason.asSemantics.Agent is extended to provide the drama
management; that is, the BeatChooser is used to select the next
beat of the story according to some criteria defined by the user of
the architecture, being the selection of the next beat done in the
eighth step of the Jason reasoning cycle (i.e. selecting one applica-
ble plan). For this, the architecture also provides classes for holding
information about each beat and behavior of the story so that in the
selection of the next beat may be considered the story context. The
asl file used by the BeatChooser has other purpose as well. It con-
tains the main structure of the story; i.e. the definition of the beats.
Indeed, in this architecture, it is considered a beat every plan with
the word beat as functor6 and a behavior every plan with the word
behavior as functor. Lastly, other difference between the drama
manager agent and the characters is the fact that the concrete im-
plementation of the drama manager (i.e. DMAgentArchInfraTier) is
not visible to the player in the story world.

DGiovanni also makes use of ontologies to support the creation of
different stories and to feed the system with story-related informa-
tion. An ontology, according to [Noy and McGuinness , p.3, em-
phasis in the original],

“ ... is a formal explicit description of concepts in a
domain of discourse (classes (sometimes called con-
cepts)), properties of each concept describing various
features and attributes of the concept (slots (sometimes
called roles or properties)), and restrictions on slots
(facets (sometimes called role restrictions)). An ontol-
ogy together with a set of individual instances of classes
constitutes a knowledge base”.

In the developed architecture the ontological knowledge is repre-
sented by the Web Ontology Language (OWL), more specifically
the OWL DL sublanguage7. The architecture uses the OWL API8

and the reasoner HermiT9 for loading information defined in the ar-
chitecture’s knowledge base. The knowledge base hierarchy, figure
7, is divided into three ontologies: one tbox and two aboxes.

Figure 7: Knowledge base hierarchy

A “... t-box contains the axioms defining the classes and relations
in an ontology, while the a-box contains the assertions about the
individuals in the domain” [Jena 2011]. Thus, the tbox defines the
concepts used by the architecture, whereas the architecture’s abox
contains information that is shared among all story implementa-
tions: e.g. name of authors; character functions, genres, etc. Hence,
for the implementation of a story, the user of the architecture is re-
sponsible for the creation of an abox that imports the architecture’s
abox and for the assertion of the values of this new abox. For ev-
ery story implementation, the user of the architecture should assert
the values of the created abox according to the architecture’s tbox
presented in figure 8. For example, in the new abox, the user of
the architecture may define the location of JAVA classes that are
loaded through reflection, the location of the asl files that contain

6For example, beat(receiving the player, HAS KNOCKED)
7http://www.w3.org/TR/owl-guide/
8http://owlapi.sourceforge.net/
9http://hermit-reasoner.com/

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 5



the characters’ behaviors, the location of the asl file where the beats
are coded, and information that is added automatically to the en-
vironment’s lists of percepts (e.g. information about a scene, the
age of the characters, etc.). In fact, after processing the ontologies,
the story-related information is added to the environment’s lists of
percepts of the agents, being subsequently perceived and added as
beliefs to the belief bases of the characters and of drama manager.

Figure 8: The tbox of the architecture

4 An experiment in building an
interactive drama

You are invited to go to your friends’ apartment: Mary and
Bob, a couple having serious marriage problems. Bob, a

man marked by promiscuity and alcoholism. Mary, a
charming and vindictive woman, determined to get even.

Can you overcome the temptation?

In order to demonstrate the use of the architecture, together with
DGiovanni, it is included a prototype of an interactive drama called
Mary and Bob. According to Pressman [Pressman 2001], a proto-
type is “... a model of the software to be built” [Pressman 2001,
p.289] and “... can serve as the ‘first system’ ” [Pressman 2001,
p.31]; that is, prototyping may offer the best approach whenever
the developer is not certain of how the human/machine interaction
should happen, and when it is not identified detailed input, process-
ing, or output requirements [Pressman 2001]. Indeed,

“... any application that creates dynamic visual displays,
interacts heavily with a user, or demands algorithms
or combinatorial processing that must be developed in
an evolutionary fashion is a candidate for prototyping”
[Pressman 2001, p.289].

In this case, the selected prototyping approach is the evolutionary
prototyping where the “... prototype of the software is the first evo-
lution of the finished system” [Pressman 2001, p.289]. Therefore,

despite the fact that the use of sophisticated computer graphics and
highly interactive mechanisms is beyond the scope of this experi-
ment, there is a possibility of further improvements in the future.

Mary and Bob is an one-act story (consisting of two scenes) that
focuses on the intensification of a conjugal conflict. The story’s
structure is similar to the well-made play presented in figure 1. Nev-
ertheless, the inciting incident (the cheat) occurs before the start of
the story. In the case of the player’s being curious, he can eaves-
drop at the apartment’s door and listen about the cheat. As soon
as the player enters his friends’ apartment, he starts to face several
crises caused by their enticing suggestions. The story moves this
way until the climax, when the player is forced to take his ultimate
decision. Mary and Bob are the two protagonists of the story, being
Bob interested in convincing the player to drink and have fun, and
Mary seeking to revenge on Bob for the cheat by trying to seduce
the player. On the other hand, the player is both an antagonist and
a confidant. Antagonist because he may block the characters from
achieving their desires, and confidant in the sense that he is the one
for whom the NPCs deliver secret information. Three ends are pos-
sible: (1) The player is expelled by Bob, (2) the player is expelled
by Mary, and (3) the player flees covered in blood. The beat has
been used as the central building block of the story, consisting it of
at most eight beats. The table 1 shows these beats together with the
minimum and maximum tension that each beat can add to the story,
plus the number of player behaviors supported in each beat.

Name Minimum Maximum Player
Tension Tension Behaviors

At the door of the apartment +0.0 +1.2 2
Receiving the player +0.0 +0.2 5

Offering drink -0.1 +0.4 9
Bob suggests going to a +0.2 +0.9 4

massage parlor
Mary makes advances to +0.3 +1.5 15

the player
Making the player go away +0.6 +1.3 0

Fleeing -4.9 -4.9 0
Finis +0.0 +0.0 0

— — — more 6
misc behaviors

Table 1: The beats of the Mary and Bob story

The created story is somewhat impositional, allowing the player
just a narrow margin of choices and a few moments of interactivity.
Its plot structure is nodal (see figure 2(a)). Thus, there is a series of
noninteractive events, interrupted by points of interactivity where
the player can execute an action (e.g. knock on the door), or input a
text or an emoticon (or both). He is constrained by what is possible
for him to do in the representation (material cause), and by what
the story is trying to be (formal cause). Finally, it has been used the
architecture’s default user interface (see figure 3) to show the story,
and to provide the means for the player to interact with it. The
figure 9 shows the abox of the story. This is used to feed the system
with story-related information (e.g. what a character is wearing),
and to define the location of JAVA classes that are loaded through
reflection, the location of the asl files that contain the characters’
behaviors and the location of the asl file where the beats are coded.

Figure 9: The abox of the Mary and Bob story
Image generated by NeOn toolkit (http://neon-toolkit.org/)

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 6



The story’s structure is represented by the main structure asl file
(i.e. the beat sequencer agent.asl file) whose fragment is presented
in figure 10. After processing the ontologies, the story-related
information is added to the environment’s lists of percepts of the
agents, being subsequently perceived and added as beliefs to the
belief bases of the characters and of drama manager. The addition
of the act(1,apartment) belief to the belief base of the drama man-
ager triggers the +act(1,apartment) plan, and thus starts the story.
As can also be seen in the figure 10, the information added to the
belief bases of the agents (e.g. information about a scene, the age
of the characters, etc. ) is retrieved to be printed in the GUI.

Figure 10: Beginning the Mary and Bob story

In Mary and Bob, it is considered a beat every plan with the word
beat as functor and a behavior every plan with the word behav-
ior as functor. The beats and the behaviors have annotations at-
tached to themselves. Every beat has as annotations an id, a name,
a min tension (minimum tension), and a max tension (maximum
tension). On the other hand, each behavior has as annotations an id,
a name, and a significance (the quantity of tension that the behavior
adds to or subtracts from the beat). The beats are coded into the
beat sequencer agent file. Inside this file every beat consists of a
collection of behaviors; however, at run time each beat end up being

the size of the canonical beat (i.e. a short dialog exchange or small
amount of physical action). In relation to the drama management,
just the fourth beat is defined explicitly via the drama manager im-
plementation; the arrangement of the other beats is determined by
the beat sequencer agent file used by this drama manager. In that
case, if the story’s tension is lesser than or equal to 1.3, the beat Bob
suggests going to a massage parlor is added to the story.

The figure 11 shows a fragment of the beat Receiving the player.
After the start of this beat (figure 11, step 1), the drama manager
sends a message to the character Mary indicating that she must
receive the player (figure 11, step 2). When this is done, the
agent Mary sends a message to inform the drama manager that
the action has been completed (figure 12, step 3). The drama
manager receives the reply (figure 11, step 4) and this end up
triggering the +!behavior(bob receive the player) plan so that the
drama manager sends a message to Bob ordering him to receive
the player (figure 11, step 5). Bob welcomes the player and
asks “How are You?” (figure 13, step 6). Next, for example,
in the case of the player’s replying with “I am great today” , it
is added to the belief base of the drama manager the belief
behavior(player,bob,discourseAct(express happy,player),“I am great today”) ,

which makes the drama manager send a message to the player
agent asking him to print the player’s input on the GUI (figure
11, step 7). As soon as the input has been printed, the player
agent sends a message to the drama manager indicating that the
action has been completed (figure 14, step 8). Now, the drama
manager sends a message to the character for whom the player has
replied (i.e. Mary or Bob), commanding a reaction to the player’s
utterance (figure 11, step 9)). Lastly, one character reacts to the
player’s utterance (figure 12 and 13, step 10).

Figure 11: The start of the beat Receiving the player

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 7



As can be seen in figures 12, 13 and 14, the implementation of the
characters’ behaviors appear at their asl files. What is coded in the
beat sequencer agent asl file is just used to trigger the behaviors
of the characters. Consequently, in the Mary and Bob story imple-
mentation the characters are not autonomous.

Figure 12: Examples of Mary’s behaviors for the beat Receiving
the player

Figure 13: Examples of Bob’s behaviors for the beat Receiving the
player

Figure 14: Examples of Player’s behaviors for the beat Receiving
the player

For [Wooldridge 1999, p.29, emphasis in the original], an agent
“... is a computer system that is situated in some environment, and
that is capable of autonomous action on this environment in or-
der to meet its design objectives”. However, in [Mateas and Stern
2000] view, having the believable characters strongly autonomous
in a story world is problematic. In a story world, characters exist
not just to convey their personalities; in fact, they should have the
ability to take actions that move the story forward. Thus, the de-
cision about the next action that an agent will take should depend
not only on its internal state and on the environment condition, but
on the current story state as well [Mateas and Stern 2000]. There-
fore, similarly to Façade, in this experiment the characters are not
strongly autonomous but rather provide the ways to achieve low
level tasks [Mateas and Stern 2000]. The drama manager is the one

that defines what the characters should do. In fact, the drama man-
ager receives messages and perceives percepts in the environment
(e.g. caused by a knock on the door) in a format of a behavior be-
lief or percept that represents the way that the player has behaved
in a particular situation. Based on the interaction with the player
it decides how the NPCs should react. Therefore, to simplify the
process, all messages that the player addresses to the NPCs are be-
ing redirected to the drama manager itself. In this case, the drama
manager has all the power to decide how the NPCs must react.

The story implementation supports four types of input. The first
type are the actions realized in order to affect the environment or
character(s). For example, if the player character knocks on the
door, the generated percept that is added to the environment is
behavior(player,door,knock) . The second type of input is the textual

input. The figure 15 shows an example of generated behavior
belief for a textual input. Looking carefully the figure 11 you can
see the definition of a plan to handle the addition of this belief (i.e.
behavior(player,bob,discourseAct(express happy,player),“I am great today”) )

to the belief base of the drama manager (see figure 11, step 7).

(a) Example of textual input

(b) The generated behavior belief

Figure 15: Behavior belief for a textual input

For the player’s input to be considered by the drama manager, this
input must first be transformed conveniently. For example, in the
case of a textual input, the system tries to map the given input to a
discourse act. The table 2 shows the discourse acts utilized in the
Mary and Bob story.

agree disagree express happy
express sad praise aspect praise comportment

criticize aspect criticize comportment offer
drink flirt don giovanni10

Table 2: The discourse acts used in the Mary and Bob story

The mapping of English text to a discourse act is accomplished
by applying some rules that consider some information generated
by the Stanford Lexicalized Parser11 after parsing the input sen-
tence (e.g. grammatical information in general, typed dependen-
cies, etc.), and a XML file that maps words and emoticons to dis-
course acts. The figure 16 presents a fragment of the XML file used
to map words and emoticons to discourse acts. The figure 17 shows
an example of rule used to map a given textual input to discourse
act. Note how the Stanford typed dependency representation (a bi-
nary grammatical relation held between a governor and a dependent
[de Marneffe and Manning 2008]) play an important role in the def-
inition of the discourse act. Also, it is important to point out that

10A special discourse act type where the player enters some sentences
contained in the opera Don Giovanni of Wolfgang Amadeus Mozart with
libretto by Lorenzo Da Ponte (e.g. “Voi non siete fatta per esser paesana”).

11http://nlp.stanford.edu/software/lex-parser.shtml

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 8



the definition of the discourse act that maps to the given input may
also depend on factors such as the story context. For example, in
the beat Mary makes advances to the player a praise to Mary means
that the player is flirting whereas in other beats a praise has not such
connotation.

Figure 16: Example of discourse act in the Mary and Bob story

// Example: “I am great today”
// Typed dependencies:
// nsubj (nominal subject), cop (copula), tmod(temporal modifier)
// [nsubj(great-3, I-1), cop(great-3, am-2), tmod(great-3,today-4)]

// Generated by the parser from the given input
// nsubj(great-3, I-1)
nsubj dep = “I” // dependent
nsubj gov = “great” // governor
TYPED DEPENDENCIES={nsubj, cop, tmod}
ADJECTIVES={word | word is tagged as JJ}

// Generated from the discourse acts xml file
EXPRESS HAPPY={“fine”, “great”,“happy”, “well”}
EXPRESS SAD={“sad”, “bad”,“unhappy”}

// Verifying if the player is expressing happiness
IF (nsubj dep = “I”)

IF (nsubj gov ∈ ADJECTIVES
AND cop ∈ TYPED DEPENDENCIES)

IF ((nsubj gov ∈ EXPRESS HAPPY //e.g. “I am happy”
AND neg /∈ TYPED DEPENDENCIES)

OR
(nsubj gov ∈ EXPRESS SAD // e.g. “I am not sad”

AND neg ∈ TYPED DEPENDENCIES))
RETURN discourse act(express happy, player)

Figure 17: Mapping a given textual input to a discourse act.

The third type of input is the emoticon. The figure 18 shows an
example of generated behavior belief for an emoticon input. No-
tice that in such cases just the XML file is considered to define the
discourse act for the input.

(a) Example of emoticon input

(b) The generated behavior belief

Figure 18: Behavior belief for an emoticon input

The last type of input is the textual input accompanied by an emoti-
con conveying a similar idea (or not). The figure 19 shows an ex-
ample of generated behavior belief for a textual input accompanied
by an emoticon. But what happens when the player’s input consists
of a textual input accompanied by an emoticon that contradicts the
idea communicated by the textual input? The figure 20 shows an

example where the player says “I’m very fine” at the same time he
is crying. Note that the character Bob has reacted to this input in a
different way (Bob appears confused). Contradictions are detected
at plan level. Therefore, as can be seen in figure 14, behavior plans
are added to the agents’ asl files in order to treat them.

(a) Example of textual input accompanied by an emoticon

(b) The generated behavior belief

Figure 19: Behavior belief for a textual input accompanied by an
emoticon

(a) Example of textual input accompanied by an emoticon that contradicts it

(b) The generated behavior belief

Figure 20: Behavior belief for a textual input accompanied by an
emoticon that contradicts it

5 Conclusion

This work has presented DGiovanni, an open source multi-agent ar-
chitecture for building interactive dramas. It has been developed in
JAVA and uses the Jason’s BDI engine, being available for down-
load under the GNU General Public License Version 3. It borrows
several ideas from the interactive drama Façade: the use of dis-
course acts, the use of the beat as the central building block of the
interactive story, the use of the term behavior to mean a character
activity, and the use of a drama manager to provide the high-level
plot decisions. However, differently from Façade, for the developed
architecture, none specific-purpose authoring language (such as the
ABL and the beat sequencing language) has been created. Actually,
the Jason’s agent-oriented programming language has been utilized
for performing the drama management and for authoring the char-
acters’ behaviors. In this regard, the architecture has adopted a
multi-agent approach due to motives such as the resultant reduction

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 9



of coupling; the ability of agents to work in unpredictable, unreli-
able, and dynamic environments; and the more human-like manner
that agents deal with problems which results from their proactive-
ness and reactiveness. In addition, Jason has been used because of
several reasons: It is implemented in JAVA, thus multi-platform;
it is available open source; it is highly customizable; it is a reac-
tive planning language; the elegance of the AgentSpeak notation is
particularly appealing to the symbolic representation of beats and
behaviors; and lastly, because the use of the BDI paradigm may
be interesting to the creation of characters that must exhibit a wide
range of complex behaviors and interact with players that are usu-
ally unpredictable. The architecture also uses ontologies to support
the creation of different stories and to feed the system with story-
related information. Last, an experiment in building an interactive
drama using the developed architecture has been presented as well.

In this context, the main contribution of this work is to provide an
open source architecture that may be used in researches related to
interactive drama. Additionally, it also shows how Jason can be
used for performing the drama management and for representing
beats and behaviors. However, there is still a lot of work to be
done. One is to develop an interactive drama with better graphics
and more interactive capabilities in order to evaluate the effective-
ness and the scalability of the architecture. In addition, it would
be interesting to have a program for helping in the authoring work,
since the creation of beats and behaviors is very demanding. Also,
the use of ontologies in the architecture must still be better stud-
ied. For example, the ontologies could keep much more informa-
tion about the story such as those related to the characters’ relation-
ships (e.g. isFriendOf , loves , etc.). Moreover, in contrast to the
realized experiment where the relation between the drama manager
and the other agents is hierarchical (i.e. the drama manager sends
commands to the agents), other schemes based on cooperation may
be considered, such as the cooperative and the dialogical view of
drama management [Szilas 2005]. Indeed, the hierarchical scheme
has been adopted in the Mary and Bob implementation mainly to
simplify the drama management. Therefore, since the architecture
itself does not intend to impose the use of a hierarchical scheme, as
a future work it is desirable to create a story where the NPCs have
more autonomy. Finally, the Jason’s customization capabilities can
still be more exploited. For instance, the function that selects an in-
tention for further execution can be customized in order to prioritize
some of the intentions that are competing for attention.

References

BORDINI, R. H., HÜBNER, J. F., AND WOOLDRIDGE, M. 2007.
Programming multi-agent systems in AgentSpeak using Jason.
Wiley, Chichester.

BORDINI, R. H., 2010. Agentspeak [personal e-mail]. E-mail re-
ceived on 4th November 2010.

DE MARNEFFE, M.-C., AND MANNING, C. D., 2008.
Stanford typed dependencies manual. Available
from: http://nlp.stanford.edu/software/
dependencies manual.pdf. [Accessed: July 2011].

FORSTER, E. 1956. Aspects of the novel. Mariner Books.

HAMMOND, S., PAIN, H., AND J.SMITH, T. 2007. Player agency
in interactive narrative: Audience, actor & author. In AISB’07
Symposium: AI and Narrative Games for Education, 2007, New-
castle upon Tyne, UK. Proceedings of AISB’07, 386–393.

JENA, 2011. Common ontology application problems [online].
Available from: http://jena.sourceforge.net/
ontology/common-problems.html#aBox-tBox.
[Accessed: 22th July 2011].

LOYALL, A. B., AND BATES, J. 1991. Hap: A reactive, adap-
tive architecture for agents. Technical Report CMU-CS-91-147,
Carnegie Mellon University, Pittsburgh, PA.

MAGERKO, B. 2002. A proposal for an interactive drama architec-
ture. In Proceedings of the AAAI Spring Symposium on Artificial
Intelligence and Interactive Entertainment, AAAI Press.

MATEAS, M., AND STERN, A. 2000. Towards integrating plot
and character for interactive drama. In AAAI Fall Symposium
on Socially Intelligent Agents: The Human in the Loop, AAAI
Press.

MATEAS, M., AND STERN, A., 2002. A behavior language
for story-based believable agents. Available from http://
users.soe.ucsc.edu/∼michaelm/publications/
mateas-aaai-symp-aiide-2002.pdf. [Accessed:
July 2011].

MATEAS, M., AND STERN, A., 2003. Façade: An experiment
in building a fully-realized interactive drama. Available from:
http://www.interactivestory.net/papers/
MateasSternGDC03.pdf. [Accessed: July 2011].

MATEAS, M., AND STERN, A., 2005. Structuring content in
the Façade interactive drama architecture. Available from:
http://www.interactivestory.net/papers/
MateasSternAIIDE05.pdf. [Accessed: July 2011].

MATEAS, M. 2002. Interactive drama, art and artificial intelli-
gence. PhD thesis, School of Computer Science, Carnegie Mel-
lon University, Pittsburgh, PA, USA.

MCKEE, R. 1997. Story: Substance, structure, style, and the prin-
ciples of screenwriting. HarperCollins, New York.

MEADOWS, M. S. 2002. Pause & Effect: The art of interactive
narrative. New Riders, Indianapolis.

NORLING, E., AND SONENBERG, L. 2004. Creating Interactive
Characters with BDI Agents. In Proceedings of the Australian
Workshop on Interactive Entertainment.

NOY, N. F., AND MCGUINNESS, D. L. Ontology development
101: A guide to creating your first ontology. Available from:
http://ksl.stanford.edu/people/dlm/papers/
ontology-tutorial-noy-mcguinness.pdf. [Ac-
cessed: July 2011].

PADGHAM, L., AND WINIKOFF, M. 2004. Developing intelligent
agent systems: a practical guide. Wiley, Chichester.

PRESSMAN, R. S. 2001. Software engineering: a practitioner’s
approach, 5th ed. McGrawHill, Boston.

PRITNER, C., AND WALTERS, S. E. 2005. Introduction to play
analysis. McGraw-Hill, New York.

RUSH, D. 2005. A student guide to play analysis. Southern Illinois
University Press, Carbondale.

RUSSELL, S. J., AND NORVIG, P. 2009. Artificial intelligence: A
modern approach, 3rd ed. Prentice Hall, Upper Saddle River.

RYAN, M.-L. 2008. Interactive narrative, plot types, and inter-
personal relations. In ICIDS ’08: Proceedings of the 1st Joint
International Conference on Interactive Digital Storytelling,
Springer-Verlag, Berlin, Heidelberg, 6–13.

SZILAS, N., WANG, J., AND AXELRAD, M. 2008. Towards mini-
malism and expressiveness in interactive drama. In Proceedings
of the 3rd international conference on Digital Interactive Media
in Entertainment and Arts, ACM, New York, 385–392.

SZILAS, N. 2005. The future of interactive drama. In Proceedings
of the second Australasian conference on Interactive entertain-
ment, Creativity & Cognition Studios Press, Sydney, 193–199.

TOBIAS, R. B. 1993. 20 master plots (and how to build then).
Writer’s Digest Books, Cincinnati, Ohio.

WOOLDRIDGE, M. 1999. Multiagent Systems: A modern approach
to distributed artificial intelligence. Mit Press, London, ch. In-
telligent agents, 27–79.

ZANG, P., MEHTA, M., MATEAS, M., AND RAM, A. 2007. To-
wards runtime behavior adaptation for embodied characters. In
Proceedings of the 20th international joint conference on Artif-
ical intelligence, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1557–1562.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 10




