
An Architecture Using a Finite Difference Method to Calculate Realistic
Sound Equalization in Games

B. Moreira
E.W. C. Gonzales
M. Kischinhevsky

MediaLab
Computer Departament

Universidade Federal Fluminense

C.L.Kuryla*
Florida International University

D. Brandão**
Centro Federal de Ensino Tecnológico
Celso Suckow da Fonseca - CEFET/RJ

Computer Departament
Universidade Federal Fluminense

	 Figure 1: Illustration of the proposed Sound propagation approach.

Abstract

Most games and other interactive virtual environments focus on
rendering natural phenomena in the most believable manner by us-
ing accurate visuals and physics. However, not much effort has
been put into accounting for the physics of sound. The simula-
tion of the real behavior of sound through an environment, when
considering the speed of sound, reflection, and absorption, is com-
putationally expensive and is usually left aside. In this work, an
algorithm that calculates sound wave propagation using a finite dif-
ference method is used and extended to present a novel approach to
sound rendering. This approach reaches the objective more quickly,
and the sound generated has no perceptible loss of accuracy. The
approach is designed to be implemented in GPU architectures and
eventually enable real-time results.

Keywords:: Sound Wave Propagation, Finite Difference Method,
GPGPU, Audio Effects

Author’s Contact:

{bmoreira,esteban,kisch}@ic.uff.br
*ckury001@fiu.edu
**dbrandao@ic.uff.br

1 Introduction

Games are constantly being improved to describe reality in a more
believable way. Many electronic games, especially those which are
classified as simulation-games, rely on the modeling of natural phe-
nomena in order to immerse the player in the game and promote the
suspension of disbelief. However, simulating sound wave propaga-
tion has not been considered a priority, due in part to its computa-
tional complexity. Positional audio libraries have signifcantly con-
tributed to this field, but the industry, as well as most academic re-
search, has always been focused on providing more realistic graph-
ics and, to some extent, rigid-body physics simulations. Positional
audio libraries are now a common commodity and current imple-

mentations focus only on calculating intensity and pan based on the
relative position and orientation of the sound source and the virtual
listener. These libraries do not consider important issues such as
the time the sound takes to travel through the environment (i.e. air),
reflection, and the absorbency of the objects present in the scene.
Taking scene geometry into account would greatly improve the im-
mersion experience. Scene geometry affects the way sound travels
through the virtual environment, which often changes the perceived
equalization and the direction from which the listener hears the gen-
erated sound.

Despite the obvious benefits, simulation methods for such phenom-
ena are computationally intensive, and running them in real-time,
concurrently with all of the other expensive tasks, has not been a
viable option. However, current Graphics Processing Unit (GPU)
[GPGPU 2010] technology has the computing power to run and
implement a simulation like this in real-time without compromis-
ing the overall performance, i.e. the GPU works as mathematics
coprocessor.

When determining the scene geometries effect on sound travel-
ing through an environment, it is necessary to use a mathematical
model that represents this propagation physically. In order to solve
this model computationally, two methods commonly used are fi-
nite difference and finite element methods. Finite element methods
are more computationally expensive than finite difference methods
with an explicit approach, so the choice of the second method is
more appropriate for a game environment. [Zamith et al. 2010] im-
plemented an algorithm that uses the finite difference method in a
GPU. This work shows an accurate method for calculating the scat-
tering of acoustic waves in a non-homogeneous medium and can be
done in real-time.

In [Zamith et al. 2010], the sound wave propagation calculation was
used to consider scene geometry while rendering visual effects and
check the direction of the sound when it reached the listener. In
this paper, the previous work is extended and a first approach is
proposed using a finite difference method implemented in GPUs to
do the actual rendering of a sound that travels through a medium
and is heard by a listener at some distance.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1

After implementing code that took an audio file as input data for the
source position, as in [Zamith et al. 2010], code was created to cap-
ture the audio data at the destination (listener position) and generate
the output sound. When these functions were implemented, it was
found that with a sample rate of 44 kHz, the method could reach
a real-time processing speed for visual effects (as shown in Figure
1-right image), but not for sound rendering. This work proposes an
approach to capture the output audio in a faster way by using a par-
tial processing of the wave propagation, while still obtaining results
which are perceptually acceptable and close to how a human would
hear the sound if it were totally processed by the method.

2 Related Work

Techniques for simulating sound propagation may be classified into
two categories: geometric acoustics (GA) and numerical acous-
tics (NA). Previous works based on numeric methods are in gen-
eral too computationally expensive for real-time use, while ap-
proaches based on geometric techniques do not accurately represent
the physics of sound because they overlook effects such as diffrac-
tion and scattering.

Geometric acoustics assumes rectilinear propagation of sound
waves, so most approaches make use of ray-casting [Röber et al.
2007] and beam tracing [Funkhouser et al. 2004; Antonacci et al.
2004] techniques.

Numerical acoustics directly solves the wave equation governing
physical propagation of sound in a scene. With enough computa-
tion, all wave phenomena can be captured, including diffraction and
scattering in complex scenes. Numerical approaches are insensitive
to the complexity and polygon count of a scene and instead scale
with its physical dimensions. Two methods commonly used are
finite difference and finite element methods. Several works demon-
strate the use of these methods, such as [Balevic et al. 2008; Michea
and Komatitsch 2010; Raghuvanshi and Nico 2008; Savioja et al.
1994; Kowalczyk and Walstijn 2008], but they are not suitable for
real-time use.

Sound is considered to have low priority when making games real-
istic, so few works attempting to realistically render sound in games
were found. [Raghuvanshi et al. 2010; Siltanen 2010] uses a tech-
nique with a pre-computed scenario, but a problem arises when con-
sidering memory usage and the changing state of the game at run-
time. Moreover, all the GPU and CPU resources are typically used
for physics and computer graphics calculation. Since CUDA archi-
tecture basically allows only one concurrent thread, most engines
and commercial applications prefer to use the computer horsepower
for these tasks, so not many resources are available for the sound
computation. However, new architectures of GPUs are allowing the
execution of concurrent kernels, which allows real-time sound ren-
dering to be done in parallel with the computer graphics and typical
physics calculations. No previous work was found that uses nu-
meric methods without pre-computed scenarios to take the scene
geometry into account and still reach a real-time sound rendering
that is close to reality.

3 Acoustic Wave Equation

In this section, the mathematical model that physically repre-
sents the scattering of acoustic waves and the numerical approach
adopted are presented. The wave equation is a second order dif-
ferential equation that describes the behavior of sound waves over
time. The acoustic wave field is described by P (x, y, t) and
u(x, y, t) , where P is the pressure field and u is the particles dis-
placement.

The relation between P and u is given by P (x, y, t) =
−k∇2u(x, y, t) . Thus, the 2D wave equation can be represented
by Equation 1;

∂2P (x, y, t)

∂t2
= c2 +

[
∂2P (x, y, t)

∂x2
+

∂2P (x, y, t)

∂y2

]
+ f(x, y, t)

(1)

where x and y are Cartesian coordinates, t is time, c = c(x, y) is
the velocity of an acoustic wave, and f(x, y, t)is the source term.

To numerically solve the partial differential equation (PDE), sev-
eral techniques may be employed. The method that was chosen is
based on the Finite Difference Method (FDM), which replaces the
quest for a solution on the continuous domain by one on a finite
number of points, the grid points, which cover the whole domain.
Specifically, after the discretization of the PDE, one obtains a set of
equations, the finite-difference (FD) equations, which approximate
the differential equation at all grid points. Each FD equation around
a grid point is written as an algebraic expression which involves its
neighboring points to replace the spatial derivatives.

The approximation of the PDE at the grid points is done through
spatially centered differences, which offer second order spatial ac-
curacy. The technique used for the time discretization in this work
is second order as well. The proper algebraic expressions can be
obtained with Taylor series expansions. Using a second order ap-
proximation for space and time, as explained, and assuming that
h = ∆x = ∆y and t = n∆t , the wave equation is rewritten in its
discretized form as Equation 2;

Pn+1
i,j = 2Pn

i,j − Pn−1
i,j + ∆tf(x, y, t)+

A

12

[
Pn
i−1,j + Pn

i+1,j − 4Pn
i,j + Pn

i,j−1 + Pn
i,j+1

] (2)

where A =
(

c(x,y)∆t
h

)2

and n = 1, 2, 3, ... represents the time
instant. Since the velocity field does not vary with time, it is not a
function of time [Golub and Ortega 1991].

The discrete expression in Equation 2 provides explicit computa-
tion of approximate values at time instant (n + 1), once those at
time instants (n − 1) and (n) are available at all grid points. The
explicitness is a convenient feature that allows efficient use of par-
allelism since each grid points value at the (n + 1)th time instant
is computed independently. Another aspect of discrete approxima-
tions for differential equations is that some implicit discretization
strategies provide unconditional stability, while the one employed
here provides conditional stability. That is, time steps have to be
less than an upper limit, above which the numerical solution blows
up (the upper limit can be found with the von Neumann criterion),
i.e. its amplitude increases non-physically. On the other hand, un-
conditional stability would allow larger time steps than the explicit
methods upper limit. However, the implicit method is not efficiently
parallelized on GPUs. Consequently the explicit technique of Equa-
tion 2 was chosen, and a careful choice of time steps was made.

4 Finite Difference Method on GPU and
Implementation Aspects

The Graphics Processing Unit (GPU) is a hardware specially de-
signed to handle tasks related to visual effects. A GPU can be con-
sidered similar to a CPU, but with different processing units that are
designed specifically for graphical data processing. Modern high-
end GPUs have computational power far greater than CPUs.

Before CUDA, the concept of GPU Computing was to map the
problem as a set of vertex and fragments to generate a texture rep-
resenting the final desired solution. Since 2006, with the NVIDIA
CUDA release[Nvidia 2010], the world of high-performance com-
puting became more accessible. A GPU with hundreds of cores is
now available for a tenth of the price of a cluster with the same
computational power.

CUDA extends existing programming languages by adding a set
of instructions that allow code execution on NVIDIA GPU’s. As
a consequence of its original design, which was for visual effects,
GPU memory structure is divided into global, texture, and shared
memories. Shared memory is a small but extremely fast memory.
This speed comes from its physical proximity to the processing
core. Texture memory is a read only memory which is slower than

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2

	 Figure 2: Second order 2D finite difference operator. To compute
the next step (t + ∆t) it is necessary to fetch the actual (t) and the
past one (t−∆t).

the shared memory, but is almost twice as fast as the global mem-
ory.

As described in [Brandao et al. 2010; Sabino et al. 2011], efficient
finite-difference implementations take advantage of shared mem-
ory. Using a single GPU, the amount of memory that needs to be
allocated for the iterative solution of Equation 2 is equal to three
times the domain size. The past and present time instants and the
velocity field need to be available at any time. Figure 2 shows a 2D
FD explicit scheme with a second order spatial FD operator.

A typical CUDA application workflow consists of four basic steps:
(1) initialize the necessary data on the host (CPU side), (2) copy the
data from the host to the device (GPU side), (3) invoke the kernel
that will process the data in the device, and (4) read the data back
to the host.

For the FD problem, the velocity field is initially allocated and sent
to the device memory. Sufficient memory is initialized and allo-
cated to hold values for past and present instants of time. The am-
plitude values for P 0(x, y) and P 1(x, y) are determined using a
forward explicit approximation FD scheme. Equation 2 is then used
for subsequent time steps.

A GPU can run millions of lightweight threads efficiently. To help
with the management of these threads, CUDA uses the concept of a
grid of thread blocks. Threads are organized into blocks, which in
turn are organized in a grid. The proposed approach computes each
new value P (n+1)(x, y) with only one thread. To compute the next
step (t+ ∆t) it is necessary to fetch the actual (t) and the previous
one (t−∆t).

For efficient memory access, shared memory is used to hold val-
ues of some value in a simulation step. This avoids unnecessary
reads from global memory. Figure 2 shows that a thread must ac-
cess up to five values of the same instant P (n)(x, y) . Bringing
these values into shared memory makes the accesses much faster.
The values of P (n−1)(x, y) are fetched directly from global mem-
ory. Since all the threads of the same block will only access one
position, a coalesced memory read taking maximum advantage of
the performance of GPU architecture can be guaranteed.

5 Real Audio Reproduction

This section explains how an audio file works and how the imple-
mented method processes it to generate what this work considers to
be the real behavior of sound or the sound totally processed. This
will provide a basis for the next section, which will explain the
heuristic used for a faster calculation.

	 Figure 3: The comparison between the original sound file foot-
steps.wav and the processed file. The x-axis represents the sample
number and the y-axis is the amplitude.

5.1 Audio file

An audio file is composed of sample values that represent the dis-
cretization of the wavelength passing through the point of capture at
a given time interval [Farnell 2008]. This file has two parameters:
the number of samples per second, and the accuracy of the sample.
The former indicates how many wavelength values are analyzed per
second. The higher the value of samples per second, the greater the
number of frequencies the audio file can represent.

According to sampling theory, the number of sample points per sec-
ond must be at least two times greater than the highest frequency in
a signal. In order to cover the human hearing range, from 0Hz
to 20kHz, it is necessary to have at least 40000 sample points every
second [Farnell 2008]. The second parameter describes the order of
approximation. It is the precision of a sample (resolution or sample
size), i.e. the number of bits that are reserved to represent a single
sample value (16,32,64-bits, etc.). The higher the value per sample,
the more accurate the audio will be. However, the accuracy also
depends on the audio input and output hardware, so a very high
precision value for each sample time is usually not required.

5.2 Audio processing

To perform the audio processing using finite differences, pulses that
correspond to the samples in a sound file are inserted at a point in
the environment. This point is designated as a source (representing
a radio or speaker, for example), so that at each iteration the method
will calculate the propagation of the pulses that come out from the
point. The pulses are given until the audio file ends, at which point,
the source stops emitting sounds.

For each iteration of the finite difference method, the amplitude
of the waves propagated through the whole domain for a chosen
time interval can be calculated. Then, a sample of sound arriving
at a specific place can be read, using the considered method, by
reading the amplitude value at the specific place for a time instant.
To calculate the real behavior of a sound at a point of interest, the
samples at the point are read using the time interval required for
the given/desired precision of audio frequency, for example, 40000
samples per second. Reading the samples during the time of inter-
est will then give the real sound as it would be heard at the posi-
tion where the read was done. The sample values are stored and
then used to generate a new sound file. This new file contains the
sound observed when considering the real propagation of the waves
through the scene.

In Figure 3 an original and processed audio file are shown together.
This figure experiment used a sound source at position (x, y) =
(64, 20) in an open scene with the listener positioned at (x, y) =
(64, 64), simulating a distance around 44 meters.

The above figure confirms the intuition that when the receiver and
source are separated by a sufficient distance, the sound amplitudes

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3

are attenuated because of the dispersion of waves through the envi-
ronment. The figure also demonstrates that the amplitude variations
of the processed and original sounds are very similar, which means
that when the new sound is played, it closely resembles the original
sound, but with a lower volume.

The problem with this real reproduction of sound is the amount
of computing time required. It is not fast enough for a real-time
algorithm, and as the aim here is for use in games, it must happen
in real-time to be considered plausible for use. The results in the
following sections show the average processing time for different
audio files under the conditions described for Figure 3. The times
are clearly not viable for use in real-time applications.

The objective is now to create a method that not only considerably
reduces the processing time for the rendering of audio files, but
also maintains sufficient audio quality, so that the quality loss when
using the method is imperceptible to humans. This way, the resul-
tant audio file will sound realistic (or very close) when heard. The
proposed method in this work is still not suitable for real-time use.
However, it opens new possibilities for studies and improvements in
the algorithm, possibly enabling future work to attain a processing
time suitable for the purposes and requirements of games.

6 The Proposed Approach

The implementation of the method that considers the wave propaga-
tion through the scene, and the subsequent analysis of the resulting
sounds after they were completely processed, revealed the neces-
sity for the development of a new approach which could still make
use of the behavior of the propagation of a real wave, but possibly
reproduce the behavior for the whole audio file. This could result
in a significant reduction in the audio rendering time.

To address this improvement, a new approach was developed. A
method was created to analyze only one pulse of a wave, and then
reproduce the pulse behavior for an entire audio file. The pulse is
emitted from the source position and analyzed over an interval of t
seconds. In this work, the time interval used is 200ms, represented
by 8000 samples considering a system sample rate of 40kHz. This
interval was chosen only as an interval for first results; the criteria
taken into consideration to select this time were only that it was not
too short, so it was not short enough to lose some effects like late
reverberation and echo, and that it was not too long, so it was not
long enough to interfere with the calculation of the behavior of the
wave by sampling at a time after the wave had already spread out
and attenuated.

This single pulse analysis is done by reading the amplitude values
that reach the point (x,y) where the listener is positioned. This is
done in the same way as it is done for the entire audio processing
as described in Section 5.2. An example of the behavior of a single
propagated pulse is shown in Figure 4. After the single pulse prop-
agation is calculated, the values are compared to the original pulse
value, and the comparison yields the proportional values based on
the propagation time and the original amplitude.

After the analysis step comes the reconstruction phase. In the re-
construction phase, the system scans the whole original audio file,
and for each sample, applies the values that would represent the
same behavior as calculated through the pulse analysis. These val-
ues (that represent the behavior of each sample) are stored in mem-
ory and used to generate the new sound. Each sample generates
a window of values representing its individual behavior; this win-
dow will affect the next 200ms of sound (this was the chosen time
of pulse observation). As shown below, this behavior will overlap
for each sample, and when this happens the values are added. This
summation can be done because of the superposition property of
acoustic waves[Farnell 2008]. Figure 5 shows how the heuristic
works.

7 Results and Conclusion

Our implementation was made in C++ using OpenGL for visual-
ization and NVIDIA CUDA API for GPU processing. We used
irrKlang to manipulate audio files for reading and playing. The

	 Figure 4: The behavior of a single pulse propagation analyzed for
200ms.

computational environment employed was a TESLA C1060 com-
posed of 30 multiprocessors, and a quad core CPU with 2.4GHz,
4GB DDR3 memory, running on a Linux OS.

For the comparative tests (see Table 1) the scene used was con-
structed as follows: the sound source was at position (x,y) = (64,20)
in an open environment, with the listener established at (x,y) =
(64,64), simulating a distance of 44 meters from one to the other.
Four different audio files were used to compare the processing time
for different quantities of samples per file. As shown in Table 1,
significantly less time is needed to reproduce the sound when using
the approach presented in this work than the time needed to totally
process the audio for the real behavior.

Table 1: Comparative results of different audio files with different
numbers of samples in a 128×128 grid. The results are in seconds
and represent the time taken to render the complete audio or to
render the audio using this work’s heuristics. Errors between the
methods are shown in last two columns.

File Name Number Time to render: Time to render:
Approx of real behavior pulse analysis Error Error
Total Time Samples of sound file(s) heuristics (s) (db)
bell.wav 32449 84,685 23,295 116 1.99
/ 00:01
baby.wav 169984 444,234 39,382 45 1.07
/ 00:01
footsteeps 239616 609,182 47,258 11 1.61
.wav
/ 00:02
crowdtalk 5765766 14702,703 710,932 N/A N/A
.wav (estimated -
/ 01:00 not rendered)

As described in Section 6, the proposed method has two steps: anal-
ysis and reconstruction. For all of the files, the analysis step took 19
seconds (because the listener and source were in the same position
in every trial), and the rest of the time was the reconstruction phase.
To obtain a faster result, one suggestion is to have a preprocessing
step to minimize (or even almost eliminate) the time required for
the analysis phase. Another suggestion is to use a GPU calculation
kernel that could solve the reconstruction step operations in paral-
lel.

In reference to the sound quality, the test results were very encour-
aging. Figure 7 (at the end of the paper) shows a comparison be-
tween the original footstep audio file and the two methods used to
render the processed sound: the real behavior obtained by the to-
tal processing and the behavior rendered by the proposed method.
Observation shows the difficulty to even discern the difference be-
tween the two methods used to generate the processed sound since
the results are so close. Figure 8 (also at the end) only shows the
two methods, without the original file, for an easier comparison.
Two additional audio file tests are shown in Figure 9 and Figure 10
(also at the end of the paper).

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4

	 Figure 5: Visual representation of the heuristic, using an example of a pulse with 4 samples shown.

Observation of the superimposed graphs clearly shows that the re-
sults were very close, but the graphs are only part of the complete
analysis. An error analysis was performed on the values to de-
termine how close the proposed method came to the real, totally-
processed result, as well as the perceptibility of the difference. The
calculated errors are shown in the last two columns of Table 1. The
errors in the amplitude values were first calculated using Equation
3:

Error =
1

m
∗

m∑
1

(up − un) (3)

where m is the number of audio samples, up is the sample value
in the totally processed method, and un is the sample value the
new proposed method. Equation 3 gives the error in the form of
amplitude values, so further analysis regarding the perceptibility of
the difference was possible. The relationship between amplitude
and decibel is given by Equation 4:

dB = 20 ∗ log10

(
P

Pmax

)
, (4)

where Pmax is the reference amplitude and P is the amplitude be-
ing compared [Farnell 2008]. Using Equation 4, the values in the
last column of Table 1 were generated. The threshold for human
loudness discrimination is roughly 1 dB over all audible frequen-
cies [Jesteadt et al. 1977], so the differences between the results
obtained from the new method and the real behavior method were
almost imperceptible. Considering these tests, the proposed method
provides good results in practice, and if this range of error persists
for a large database, then sound rendered this way could be suitable
for a game.

Additional tests were performed in an open scene, but with the addi-
tion of buildings, to examine the results obtained when other acous-
tic effects are present due to a different geometry. Effects such as
reflections and diffractions can be observed in this type of simula-
tion. Figure 6 shows one of the tests as an example. This test is not
expressed in Table 1, but the figure shows that the rendering still
produces a close result when using the proposed method.

As suggestions for future works, the authors would be interested
in an improvement in the wave propagation method used, which in
this work was the [Zamith et al. 2010] method, because [Zamith
et al. 2010] uses a simple finite difference method of wave propa-
gation that, for example, does not consider attenuation and absorp-
tion. Another suggestion for future work is to include an adaptive
algorithm to calculate the number of samples needed for the pulse

	 Figure 6: Comparative graphic of the baby.wav file. The red is the
audio as it reaches the listener in the position (x,y) = (84,20) after
total processing, considering the source to be at (x,y) = (64,64).
The green is the process done by the proposed method. In this test
the environment had buildings and the listener was positioned be-
hind a building relative to the source position used.

in the analysis step. Using as few samples as possible without af-
fecting the result would greatly improve the processing time for the
reconstruction phase.

Acknowledgements

The authors gratefully acknowledge CNPq, CAPES and FAPERJ
for the financial support of this work.

References

ANTONACCI, F., FOCO, M., SARTI, A., AND TUBARO, S. 2004.
Real time modeling of acoustic propagation in complex envi-
ronments. In Proceedings of 7th International Conference on
Digital Audio Effects, 274–279.

BALEVIC, A., ROCKSTROH, L., TAUSENDFREUND, A.,
PATZELT, S., GOCH, G., AND SIMON, S. 2008. Accelerating
simulations of light scattering based on finite-difference time-
domain method with general purpose gpus. In IEEE Interna-
tional Conference on Computational Science and Engineering,
vol. 0, IEE, 327–334.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 5

BRANDAO, D., ZAMITH, M., CLUA, E., MONTENEGRO, A.,
BULCAO, A., MADEIRA, D., KISCHINHEVSKY, M., AND
LEAL-TOLEDO, R. 2010. Perfomance evaluation of optimized
implementations of finite-difference method fow wave propa-
gation problems on gpu architecture. In Proceedings of the
Computer Architecture and High Performance Computing Work-
shops, Sociedade Brasileira de Computação.

FARNELL, A. 2008. Designing Sound. Applied Scientific Press,
London.

FUNKHOUSER, T., TSINGOS, N., ARLBOM, I., ELKO, G.,
SONDHI, M., WEST, J., PINGALI, G., MIN, P., AND NGAN,
A. 2004. A beam tracing method for interactive architectural
acoustics. The Journal of the acoustical society of America 115,
2, 739–756.

GOLUB, G., AND ORTEGA, J. 1991. Scientific Computing and
Differential Equations: an Introduction to Numerical Methods,
1st ed. Academic Press.

GPGPU, 2010. General-purpose computation using graphics hard-
ware. www.gpgpu.org, February.

JESTEADT, W., WIER, C., AND GREEN, D. 1977. Intensity dis-
crimination as a function of frequency and sensation level. The
Journal of the acoustical society of America 61, 1, 169–177.

KOWALCZYK, K., AND WALSTIJN, M. V. 2008. Virtual
room acoustics using finite difference methods. In Proceedings
IEEE Int. Symp. Communication, Control Signal Processing (IS-
CCSP), 1504.

MICHEA, D., AND KOMATITSCH, D. 2010. Accelerating a three-
dimensional finite-difference wave propagation code using gpu
graphics cards. Geophysical Journal International 182, 389–
402.

NVIDIA. 2010. Cuda Programming Guide. Nvidia.

RAGHUVANSHI, N., AND NICO, G. 2008. Accelerated wave-
based acoustics simulation. In Proceedings of the 2008 ACM
Symposium on Solid an Physical Modeling, 91–102.

RAGHUVANSHI, N., SNYDER, J., MEHRA, R., LIN, M., AND
GOVINDARAJU, N. 2010. Precomputed wave simulation for
real-time sound propagation of dynamic sources in complex
scenes. ACM Transactions on Graphics 29, 4 (July), 11.

RÖBER, N., KAMINSKI, U., AND MASUCH, M. 2007. Ray acous-
tics using computer graphics technology. In Proceedings of the
10th International Conference on Digital Audio Effects, 01–08.

SABINO, T., ZAMITH, M., BRANDAO, D., MONTENEGRO, A.,
KISCHINHEVSKY, M., LEAL-TOLEDO, R., SILVEIRA, O.,
BULCAO, A., AND CLUA, E. 2011. Scalable simulation of 3d
wave propagation in semi-infinite domains using the finite dif-
ference method on a gpu based cluster. In Proceedings of the V
e-Science Workshop, vol. 1, 110–118.

SAVIOJA, L., RINNE, AND TAKALA, T. 1994. Simulation of room
acoustics with a 3-d finite difference mesh. In Proceedings of
Internation Computer Music Conference (ICMC94), 463–466.

SILTANEN, S. 2010. Efficient physics-based room-acoustics mod-
eling and auralization. Master’s thesis, Aalto University School
of Science and Technology, Espoo, Finland.

ZAMITH, M., PASSO, E., BRANDAO, D., CLUA, E., MON-
TENEGRO, A., KISCHINHEVSKY, M., AND LEAL-TOLEDO, R.
2010. Sound wave propagation applied in games. In Proceeding
of IX Brazilian Symposium of Games and Digital Entertainment.,
Sociedade Brasileira de Computação.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 6

	
Figure 7: Comparative graphic of the footsteps.wav file. Red represents the original sound. Green represents the real behavior audio arriving
for a listener at (x,y) = (64,64). Blue represents how the sound arrives with the proposed method.

	
Figure 8: Comparative graphic of the footsteps.wav file. Red represents the real behavior audio arriving for a listener at (x,y) = (64,64) after
processing. Green represents how the sound arrives with the proposed method.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 7

	
Figure 9: Comparative graphic of the bell.wav file. Red represents the real behavior audio arriving for a listener at (x,y) = (64,64) after
processing. Green represents how the sound arrives with the proposed method.

	
Figure 10: Comparative graphic of the baby.wav file. Red represents the real behavior audio arriving for a listener at (x,y) = (64,64) after
processing. Green represents how the sound arrives with the proposed method.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 8

