
Fast poligonization and texture map extraction from volumetric objects based on
surface fairing using a modified discrete laplacian operator

Carlos Eduardo Vaisman Muniz Anselmo Montenegro Esteban Walter Gonzalez Clua

Universidade Federal Fluminense, Instituto de Computação, Brasil

ABSTRACT

This work proposes a new method for the polygonization and
texture map extraction from volumetric objects based on a
polyhedral surface extraction and surface fairing approach.
The surface faring approach is based on a mesh signal
processing technique that uses an approximation of an
adaptive low-pass filtering based on a function that combines
the discrete laplacian operator and an adaptation of the
Lanczos kernel. Differently from other works that propose
surface fairing approaches we deal mainly with voxelized
models created by artists for games which led us to design a
filtering approach that smoothes strongly in high frequency
regions to remove the jagging effects of the sampling and
less intensively in the low frequency regions to preserve the
natural behavior of the model. The overall aim of this work
is to propose a simple methodology in which it is efficient
and easy to use voxel manipulation techniques to produce a
final boundary representation of the model together with the
appearance function codified in a texture atlas. The proposed
method produced very promising results and enabled us to
extract smooth texturized models that preserve the features
of the original volumetric object at interactive times.

Keywords: polygonization of volumetric models, mesh
fairing, texture atlas, volumetric models

Authors’ contact:
{cmuniz,anselmo,esteban}@ic.uff.br

 1. INTRODUCTION

The use of boundary representations (b-rep) is recommended
for the storage of complex and large 3D objects describing
solids composed by homogeneous inner material. On the
other hand, it is not an efficient way to store detailed surfaces
with dense variation of attribute values, such as colors,
normals, etc. This limitation has been minimized with the
use of functional or procedural-based texture mapping
[Catmull and Clark, 1978].

Most existing 3D graphics editors uses b-rep, which is an
intuitive approach for modeling the geometry of the object.
However, these programs require an entire different user
interface or even different programs to manipulate texture
maps. It does not allow the user to preview the result of the
changes that the texture is receiving in real time and it is also
hard to visualize which part of the object is being modified
as the texture is being painted.

This problem can be circumvented with the direct
manipulation of voxel-based models [Levoy, 1988]. It allows
users to know which part of the object is being painted and
to preview their changes in real time. For this reason, it is a
more intuitive approach to add attribute details into a model
than mesh modeling combined with functional or procedural-
based texture mapping.

In order to make this voxel based modelling approach
viable, this work proposes a new method for the
polygonization and texture map extraction from volumetric
objects based on a polyhedral surface extraction and surface
fairing approach.

The surface faring approach is based on a mesh signal
processing technique that uses an approximation of an
adaptive low-pass filtering based on a function that combines
the discrete laplacian operator and a modification of the
Lanczos kernel. We compared our approach with Taubin's
work [Taubin, 1995] and it produced results more efficiently
being able to smooth a model with only one pass for the
voxelized models.

The aim of this work is to propose a simple methodology
in which it is easy to use voxel manipulation techniques to
produce a final boundary representation of the model
together with the appearance function codified in a texture
atlas to be used in games, allowing users to see which part of
the object is being painted and eliminating tasks related to
texture generation.

This technique produces results in interactive times and
was tested with the help of the program Voxel Section Editor
III [VXLSE3, 2010], which has a vast amount of free
graphical models, being constantly created using the file
format supported by it.

The results produced are quite promising and enabled us
to extract smooth texturized models that preserve the features
of the original volumetric objects in interactive times.

This paper is organized as follows. In section 2 we
present the motivation of our work and the works related to
the method proposed. In section 3 we pose the problem and
discuss its main challenges and unique characteristics that
make it a relevant problem to be solved. In section 4, we
present the proposed method, first by showing the overall
methodology and, in the sequel, the details of each step that
composes it. In section 5, we present some results of the
application of our method and finally, in section 6, we
present some remarks and propose some future work.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 138

2. MOTIVATION AND PREVIOUS WORKS

The method proposed in this work aims at fast
polygonization of volumetric data representing a solid that
describes a three-dimensional object as well as the extraction
of its appearance function in the form of a texture atlas.

Here we are mainly interested in a particular class of the
problem of polygonization of solids in which the objects of
interest are composed of homogeneous inner material. This
is the usual case of computer graphics models used in games,
interactive environments and the majority of objects in
mechanical simulations.

One of the main challenges of this work is to deal with
3D objects represented by shapes modeled by artists. In this
context, one must be aware that an artist may use all possible
artistic effects and resources to describe what he considers as
an expressive representation of the shape.

Frequently, the shapes produced in an artistic
environment are abstractions that are neither appropriate in a
mathematical sense nor adequate for computational
processes. For example, they are seldom discrete
representations of 2D manifolds.

In face of such characteristics we propose a simple and
efficient solution based on the smoothing and simplification
of the polyhedral surface determined by the faces extracted
from the boundary of volumetric data.

Our work is founded on top of three main techniques:
Polygonization of volumetric data, surface smoothing and
texture atlases extraction. Works related to each one of these
techniques are detailed in the next section and compared
with our approach.

2.1 Polygonization of volumetric data

Polygonization of volumetric data is a very well investigated
problem in the literature of computer graphics and
geometrical modeling.

Among the most known methods we highlight the
Marching Cubes Method [Lorensen and Cline, 1987] and its
different variants including the Extended Marching Cubes
[Kobbelt et al, 2001] and dual methods as, for example, the
Surface Nets [Gibson, 1998] and the Dual Contouring [Ju et
al, 2002].

The Surface Nets method generates one vertex
positioned near, or on the contour, for each cube that
intersects it.

An example of adaptive method, Dual Contouring is able
to produce a contiguous polygonal mesh from a signed
octree by minimizing a quadratic error function at each
heterogeneous leaf cells which yields vertices that are
combined into polygons by using a recursive algorithm.

These methods uses information collected from 3D
scanning devices, which includes implicit definitions from
the real surface of the object. This information is not

available on voxel based artistic assets. That's why all
methods based on Marching Cubes are useless for this work.

Our polygonization method is very simple compared to
the previous ones. It extracts the polygonal faces at the
boundaries of the dual grid defined by the centroid of the
voxels. Moreover, the objects are defined by a relatively
dense sampling of the volume of occupation of the object so
that the boundary voxels gives us, in most cases, but not
always, a reasonable detailed description of the overall shape
of the contour. In some situations, the artists modeling
process may produce sets of voxels that only indicates a
surface without describing it precisely in terms of the
geometry of the boundary faces of the voxels. How this
relates to our work will be discussed later.

2.2 Surface smoothing

Surface smoothing is a vastly investigated topic in geometric
modeling. The most used techniques are based on two main
approaches: discrete differential operators [Zhang et al,
2005] and optimization-based techniques [Freitag and
Plassmam, 2000].

The technique we used is based on the discrete laplacian
operator which was proposed in different works and
investigated more formally in the work of Taubin [1995] for
processing signals defined on discrete surfaces.

 The surface fairing method proposed by Taubin is based
on the approximation of low-pass filtering for discrete
surface signals.

In order to smooth a signal one can project it in the space
of low-frequencies using Fourier Descriptors. Nevertheless,
there is no extension of the Fast Fourier Transform for n-
dimensional signals which makes the process
computationally inexpensive. In order to deal with this
drawback Taubin proposed the use of an approximate
projection on low frequency spaces using the Gaussian
Filtering, a technique associated with space-scale filtering.

Let s=(s1,s2,…,sn)T be a discrete time n-periodic signal
defined on the vertices of a polyhedral surface S={V,E}.
Besides, let 0 ≤ λ ≤ 1 be a real value and ∆s the discrete
Laplacian of s. Then, a smoothed version s’ of s is given by
expression (1).

sss ∆+=′ λ (1)

In matricial form, assuming K=- ∆s this is written as:

)(KIs λ−=′ (2)
In intuitive ways, the new signal s’ is obtained by

moving each of its points in the direction of the
corresponding laplacian which causes a reduction in the
differences between each point and its neighbors which leads
to smoothing. Another way to understand that is to see
equation (1) as a discreticized version of the diffusion
equation (3).

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 139

)(sIsss
t
s ∆−=−′≈∇∇=

∂
∂ λ (3)

The discrete Laplacian can be defined more precisely for
a n-dimensional signal on a discrete surface in equation (4)
where ϕ is a function defined on the edges E of S, wij is a set
of weights, and i* is the first order neighborhood structure
on V, where for each pair of vertices (vi,vj), vi is a neighbor of
vj if vi and vj share a common face. The neighborhood
structure is symmetric if every time vi is a neighbor of vj then
vj is a neighbor of vi.











==

−=∆

∑∑

∑

∈
∈

∈

*

1,
),(

),(

)(

*

*

ij
ij

ih
ji

ji
ij

ij
ijiji

w
vv

vv
w

sswx

ϕ
ϕ (4)

Let W be the matrix weights with wij=0 if vj is not a
neighbor of vi. Then, matrix K can be rewritten as K = I - W
and the smoothing of the signal as:

Kss =′ (5)

It can be shown that the smoothing process based on an
iterative process sKs nn = of the Gaussian filtering does
not consist in a low-pass filtering leading to mesh shrinkage.

 We can understand this effect by knowing that it is
possible to project s onto the unit length linear independent
eigenvectors (u1,u2,…,un) of K with corresponding real
eigenvalues 0≤k1≤k2≤,…,≤kn≤2 (see appendix of [10]), for
any choice of weights obeying first order neighborhood as
shown in equation (6) .

∑ =
= n

i iis
1

µξ (6)

Hence, we have ∑ =
= n

i i
n

i
n

i
ksK

1
µξ and in order to

define a low-pass filtering we should have 1≈n
ik for the

smaller eigenvalues which correspond to the low frequencies
and 0≈n

ik for the higher frequencies. It can be observed
that this is not true by the interval of definition of the ki.

In order to guarantee the low-pass filtering effect, Taubin
proposes the definition of a new operator f(k) where f is a
transfer function which enforces the desired properties, that
is 1)(≈nkf for low frequencies and 0)(≈nkf for
higher frequencies.

Taubin proposes)1)(1()(kkkf n µλ −−≈ which
avoids shrinkage. In our work, we wanted to smooth the
surface in a minimum number of iterations - if possible in
one iteration - while preserving the object features. Hence,

differently from other works, we used a function based on
the Lanczos kernel [Duchon, 1979] (equation (7)).













=

≠≤≤−

=
otherwise ,0

0,1

0,,)/sin()sin(

)(

2

i

ii
ii

i s

sasa
s

assa

sL
π

ππ

(7)

2.3 Texture Atlases Construction

One fundamental problem in geometric modeling, computer
graphics and visualization is how to manipulate attribute
functions or maps. In special, the problem of attribute map
extraction is one of the most relevant.

The definition of attribute maps usually relies on
parameterizations 32: RRg → of the plane onto a subset
of the R3. Unfortunately, global parameterizations are rarely
available or are unknown in many cases, something that
leads to the use of attribute atlases.

The problem of texture atlases generation is usually
posed as an optimization problem where the goal is to
minimize the number of the charts and the distortion of each
mapping with or without restrictions imposed. Examples of
such approaches are the works of Jonas Sossai et al [Sossai
and Velho, 2007] and Cohen-Steiner [Cohen-Steiner et al,
2004]. Both works adopted variational approaches.

In our work we propose a very simple and naïve approach
because our intention is to extract the texture atlases in
interactive times.

3. THE PROBLEM DEFINITION

Now let us define more precisely the problem we are
supposed to solve by using the method that will be detailed
in the next section.

Let O1=(S1,F1) be a solid whose geometrical support S1 is
defined by a spatial decomposition of the Euclidian space R3,
that is S1 is represented by a set of voxels V that describe the
shape of O1 and F1 is the attribute function describing the
appearance (colors) associated to each element v in V. The
problem consists in reconstructing a new graphical object
O2=(S2,F2) where S2 is represented by a polyhedral surface
and F2 is represented as a texture atlas obtained from F1 by a
mapping g:F1→F2. We assume that the result of the
reconstruction process satisfies the following properties: (a)
S2 is a smoothed version of S1; (b) S2 preserves most of the
features in S1; (c) The topology of S1 is preserved in S2.

In a few words, the problem corresponds to the problem
of converting one representation based on spatial
decomposition into a representation based on intrinsic
decomposition of the object in parts that are composed by

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 140

simple elements: the faces of the polyhedral surface. The
conversion also must take the attribute function from one
representation to the other.

Before we proceed, some remarks must be done regarding
the choice for the method we will present in the next section.

First of all, the 3D graphical objects we are interested in
are solids with homogenous substance, that is, internally the
material is constant. Consequently, the extraction of different
level sets is not a major concern in this work; we are only
interested in the boundary of the solid.

The second important point is that the solid is described
by a characteristic function in an enumerative way – there is
no implicit function and we have no knowledge where the
real surface is – we know only a subsampling of the 3D
solid.

Last but not least, the topology of the original surface may
not be preserved when the voxelized model is constructed. In
fact, the artist may suggest a surface shape whose
representation cannot be directly converted into a manifold
associated to the surface originally thought. For example the
cannon of a tank is basically a cylinder, but may be
represented by the artist as a strip of voxels connected by one
vertex (or edge) if we consider a cubic representation of it
(Figure 1).

In face of such unique characteristics, conventional
methods are not the best choice for the extraction of the
polyhedral surface. Many are too computationally intensive
and are not able to deal with topological issues mentioned
before.

All these issues have led us to devise our own
methodology for the polygonization of the volumetric
representation of homogenous solids widely used in games
and virtual environments.

Figure 1. (a) Topological problem of type 1 – a voxel with oposite faces
that are neighbor to the exterior of the volume. (b) Topological problem of
type 2 – besides having the same property of type 1 the voxel is connected

to the model only by vertices or edges.

4. THE PROPOSED METHOD

In this section we describe our method. We start with a brief
overview and, in the sequel, we present in details the mesh
extraction approach we used, the surface fairing method

which is one of the main contributions of the work, followed
by the attribute smoothing technique and texture atlas
extraction. In the last subsection, we point out the
simplification method we used to simplify the mesh in order
to obtain the final result.

4.1 The method overview

There are five primary steps in our approach to solve the fast
polygonization problem. First we acquire the volumetric
model. Then, we extract a cube-based surface from it as a
mesh composed by a set of quad faces, where each has its
own surface normal and color. The third step is to smooth
this surface by applying a signal processing technique. Such
technique is responsible for smoothing the geometry keeping
most of its original details. In this step the mesh is converted
into triangles and the surface normal vectors and colors per
vertex are computed. The following step is to extract the
texture atlas of the model and generate a diffuse texture map.
The result will have many useless faces and vertexes that
need to be removed in the surface simplification step. The
diagram in figure 2 presents the workflow of this technique.

Figure 2. Method workflow.

The next sections will explain each step with more
details, starting from the mesh extraction.

4.2 Mesh extraction

This step starts by detecting which voxels are inside the
volume, outside or in the surface. Then, it detects which
faces of the voxels from the surface should be part of the
final model. The vertices of these faces must be ordered in
the counterclockwise direction and each quad should hold
the color of the original voxel that it belongs to. Once the
initial model is generated, unnecessary vertices are removed.

In order to detect which faces are inside and outside the
volume, it uses a new buffer to store the volume. This buffer
has the dimensions of the original volume plus two for each
axis. The volume is centralized in this new buffer and each
element should receive the value one for the non-used voxels
and zero for the used. This step proceeds with a flood and fill
algorithm that starts at the position (0,0,0) with the value
zero. That will provide the internal voxels that were not

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 141

originally painted by the user. Once this buffer is merged
with the painted voxels from the original volume, it obtains
all internal and external voxels. Figure 3 presents this
procedure in two dimensions.

Figure 3. Detection of inner pixels in 2d.

In order to discriminate the internal and surface voxels
we check if each voxel has a neighbor that is outside the
volume.

From now on, each voxel will be treated as a cube. The
list of vertices should contain all vertices corresponding to
the voxels that belong to the surface of the model. A new
buffer might be required to avoid repeating this process.

In order to build the faces as quads of the cube, it is
necessary to detect if each candidate face will be part of the
model or not by checking if only one of the voxels where it
belongs is part of the surface of the volume. Then, the
vertices of each face must be ordered in counterclockwise
direction. To find the correct direction, if suffices to know if
this is a back or front face of the surface voxel that originated
it.

Due to the culling procedure explained in the last
paragraph, some vertices will not be used by any face and
they must be excluded.

4.3 Surface fairing

The surface fairing step is responsible for smoothing the
geometry of a mesh composed of quads using an approach
based on signal processing techniques. In this case, the signal
is the whole description of the geometry.

As we mentioned before, we do not use an exact low-
pass filtering approach, based on the projection of the signal
in the space of low frequencies using the Fourier Descriptor
technique. Instead, we approximate such low-passing
filtering by using a smoothing mechanism based on the
displacement of each vertex v in the mesh so that it moves in
the direction of its neighbors. In this sense it is similar to
Taubin’s work but it is essentially different due the way we

deal with the frequency characteristics of the data we are
interested in.

The coordinates of each vertex v and the coordinates of
its neighbors vi are taken, combined and weighted into new
coordinates of v. The neighborhood vi of a vertex v is
obtained by scanning all vertices that belongs to the faces
adjacent to the v. The usage of a mesh composed by a set of
quads instead of triangles, for this operation, results in a
more accurate neighborhood because we increase the
connectivity of the vertices and the level of influence they
have on each other.

The weighted differences between each vertex v and its
neighbors vi is given by the discrete laplacian operator whose
application to the coordinates of v yields an estimate of the
curvature of the signal at v. This curvature estimate can also
be seen as a measure of the details of the signal.

This can be understood intuitively by considering two
point of views: one geometrical and another based on the
frequency of a wave.

According to the geometrical interpretation of the
operator, the higher frequencies correspond to sharp solid
angles, while the lower frequencies correspond to the
smoother regions of the surface. If the frequency is zero, the
surface is flat at that vertex and the amplitude is always zero.

 We can also understand the results produced by the
operator as a measure of the frequencies of the signal. The
position of a vertex v of the mesh can be understood as the
crest of a wave represented by the connection of v with its
neighbors vi. The base of this wave is a plane π determined
by all its neighbors while the amplitude is the distance of v to
π.

In order to compare the frequencies among different
vertices, we can scale all the waves to a common amplitude.
The smaller the period of the scaled wave the higher is the
frequency at that vertex. Another way to understand the
estimation of the frequency at any vertex, is to consider that
all waves should have a common amplitude value that will
be reached in a time t + ti. The faster the wave takes to reach
this amplitude, the smaller will be the period and, as a
consequence, the higher will be the frequency in that vertex.

Therefore, the laplacian term, which comes from the
diffusion equation, can be seen intuitively as an estimate of
the frequencies of the vertex.

 Let (x,y,z) be the current vertex coordinates, (xi,yi,zi) be
the coordinates of its n first order neighbors and λ a constant
proportional to the diffusivity constant in the diffusion
equation. The estimated frequencies (ω,ξ,ψ) corresponding
to the directions in x, y, and z components in space can be
obtained by using the laplacian where the weights are given
by the lengths of the edges between v and one of its
neighbors, as shown in equation (8):

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 142

















−+−+−
−=

−+−+−
−=

−+−+−
−=

∑

∑

∑

−

=

−

=

−

=

1

0
222

1

0
222

1

0
222

)()()(
)(

)()()(
)(

)()()(
)(

n

i iii

i

n

i iii

i

n

i iii

i

zzyyxx
zz

n

zzyyxx
yy

n

zzyyxx
xx

n

λψ

λξ

λω

(8)

The constant λ increases or decreases the effect of the
mesh processing technique to be used and it has to be
determined experimentally. In this work, we have used the
value 1.3, which still ensured that the value obtained for
every frequency was below 1. If λ is set to 1, the maximum
frequency found in a quad based mesh is 0.5.

The use of equation (8) will provide acceptable results if
the crest of the wave is detected correctly. We may consider,
for the cube-based models we used, the Euclidean distance,
in which the distances of each vertex to one of its first order
neighbors is either 1 or 2 . However, to ensure a more
precise solid angle measure we recommend to consider all
vertices with a fixed distance independent of the length of
the edges. This avoids an anisotropic measure of the angles
which would depend on the distance and direction from a
vertex.

The determination of the displacements of each vertex v
is done by evaluating a function on the frequencies obtained
as show before. Intuitively, this corresponds to obtain the
displacement in space as a function of the estimated
frequency.

 Here our work is essentially different from Taubin’s
work. We are interested in reconstructing the signal instead
of just smoothing it. The effects of the filter are stronger at
the regions of the signal corresponding to the higher
frequencies which in our case correspond to the jagging
effects introduced by the discrete sampling of the solid in the
form of a voxelized model. In the regions where we have
medium or low frequencies the smoothing process is less
intense.

In order to achieve such effect, which can be understood
as an adaptive low-pass filtering, we adopt a function based
on a modification of the Lanczos kernel as shown in
equation (9)















=

<−

>−

=

0,0

0,1)3/sin()sin(3

0,)3/sin()sin(31

)(22

22

u

u
u

uu

u
u

uu

uL
π

ππ
π

ππ

(9)

Finally, the new position of the vertex is calculated
using the equation (10):







+=
+=
+=

)('
)('
)('

wLzz
vLyy
uLxx

(10)

Compared to the simple Gaussian Filtering which
produces too much blurring, the adapted Lanczos kernel is
able to retain the details of the mesh, while it still smooths.
Besides, we achieved such results in only one pass, which
enabled us to build a interactive application that is able to
polygonize any voxelized model.

4.4 Attribute smoothing

This step smooths the surface normal vectors and colors of
the model, yielding new surface normal vectors and colors
for each vertex. The mesh extraction generates a model
without surface normal vectors and with colors per face. At
this stage, we convert the existing quads into triangles.

The procedure for smoothing the normal vectors starts
with the detection of the normal vectors of a face, which is
done by the cross product of its vertices in counterclockwise
direction. Then, the surface normal vector of a vertex is
calculated as the mean of the surface normal vectors of the
faces adjacent to such vertex. This calculation must ignore
repetitive directions.

Similarly, the color of a vertex v is computed as the
mean of the colors of the faces adjacent to it.

4.5 Texture atlas extraction

In order to extract the texture atlas, the model needs to be
splitted into a set of smaller partitions. Then, these partitions
are projected into small planar blocks, which are merged
into only one image. This operation requires the knowledge
of both normal vectors per face and per vertex.

The process of generating a partition starts with the
creation of a new buffer that will decide the order in which
the faces will be scanned.

In this work, we have ordered the faces using the
following criterion: the first ones in the list are those that are
most aligned with one of the axis x, y, z, picking the highest
absolute value of the direction of the surface normal. Once
the first face fc of the first partition is chosen, the rotation
angles θx and θy are obtained using the equation (11) with
the coordinates x, y, z of the normal vector from fc. The
angle θx must return a value between [-π/2, π/2] while θy

returns a value between [0,2π):

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 143

()















==

≠+−=

==

≠






+
−=

0,0

0,arccos

0,0

0,arccos

22

22

y

yzx
y
y
x

x
zx

z
x
x

x

x

y

y

θ

θ

θ

θ

(11)

 These angles are used to generate a matrix to project the
faces of the partition onto a 2-dimensional image plane. The
other faces of the partition are added by scanning the
neighbors of the face fc and verifying if the angle between
the normal of the current face with the face fc is lower or
equal than a pre-determined angle θmin. In this work, θmin is
60 degrees. If the face is added, its neighbors must be
scanned. A new partition is created when no other face can
be added to the current partition according to the insertion
criterion.

Each vertex must belong to only one partition. If a
vertex belongs to faces from different partitions, it must be
cloned. Each face also belongs to a single partition. During
the generation of the partitions, it is important to collect the
local projected positions (u,v) of each vertex generated with
the projection matrix. This data should be used to find out
the sizes of each partition.

Once the partitions are set and projected onto rectangles,
which will be merged into a big squared block. This step
starts with the translation of the origin of the coordinates of
all blocks and their respective vertices to position (0,0). We
will need at least 3 buffers: the first buffer Hb will order the
partitions by horizontal size; the second Vb will order by
vertical size and the third Btb will work like a binary tree of
partitions. The buffer Btb codifies the relative positions
among the partitions as they are inserted in the big squared
block.

The algorithm picks the last two elements of Hb and the
last two elements of Vb and determines which combination
will occupy less space in the texture atlas. The areas of the
partitions are given by axis aligned bounding boxes. The
winning team is merged into a new and bigger partition, one
of the elements is translated to the right/bottom of the other
by using the Btb and they are eliminated from both Hb and
Vb while the new partition is added to all buffers. This loop
ends once there is only one partition left in both Hb and Vb.

The final partition is converted to a square and all
partitions inside it are translated to become centralized
vertically or horizontally, depending on the lower
dimension. Then, the coordinates from all vertices is found
with the sum of its position in its partition with the starting
position of the partition where it belongs divided by the
maximum dimension of the largest partition.

4.6 Surface simplification

The model generated so far includes several unnecessary
vertices and faces, due to the discrete topology that
originated it. In order to be useful in video games and real
time simulation applications, its geometry must be
simplified.

Any method that simplifies the mesh keeping its texture
attributes can be used, such as Heckbert et al [Garland and
Heckbert, 1998], Hoppe [1999], Lu et al [2007], Zhang et al
[Zhang and Wu, 2008], among others.

5. RESULTS OBTAINED

This technique was implemented in the Voxel Section Editor
III. It is a free open source [VXLSE3SVN, 2010] volumetric
image editor with an active fan base that provides several
free models [PPM, 2010]. It was originally conceived to edit
volumetric models for the games Command & Conquer
Tiberian Sun and Command & Conquer Red Alert 2
[Classics, 2010].

Over 20 models were used to test this technique. Most of
them were created by Westwood Studios using 3ds max and
their own voxel exporter, while others were created with the
Voxel Section Editor III. The tested models features up to
64000 used voxels and over 250000 unused ones.

 The tests were conducted with at least 4 different
platforms. The slowest one was a tablet PC HP TX1120 US,
consisting of a dual core 1.8 GHz processor with 4gb RAM,
GeForce Go 6150 and Windows Vista. The table 1 shows the
time taken for each step using this system, as well as the
surface fairing using Taubin's Smooth method as
implemented in MeshLab 1.2.3 [MeshLab, 2010].

Figure 5. Texturized models generated with this technique.

The table 1 displays the execution time from the mesh
extraction, surface fairing, attribute smoothing and texture
atlas generation steps. In the end, it also shows the time that
10 iteractions of Taubin's Smooth takes to be executed with
these models in MeshLab.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 144

Execution Time (in ms)
Model Name Mesh

Extraction
Surface
Fairing

Attribute
Smooth

Texture
Atlas

Taubin's
Smooth

Demo Truck 35 11 14 316 47

Kirov 397 52 56 1237 203

Yuri Head 327 124 131 5522 485

Warhammer 359 186 201 6393 735

Table 1. Execution time of each step of the method and Taubin's smooth.

On every model, all operations together takes less than
one second to execute, except for the texture atlas extraction.
This means that this technique allows the result to be
previewed quickly by the user, because the extraction of the
texture atlas would be more useful to export the volume as a
geometric model once the user has finished its edition.

Voxel Section Editor III is a volume object editor and
the only way it opens a polygonal model is by importing into
a volume. It also has restriction that it prevents models with
sections bigger than 255x255x255 voxels from being
opened. This is why this work was tested with low polygon
models. The demo truck (Figure 6) has one section with
dimensions 21x21x48 voxels, with a total of 21168 voxels,
where 7893 are opaque. The Warhammer tank (figure 5)
features 429900 voxels in two sections with 66x30x130 and
60x25x115 voxels respectively. Only 63150 of these 429
thousands were painted by the user. The table 2 displays the
amount of vertices and triangles generated by this method for
each model.

Model Size
Model Name Original Volume After Texture Extraction

Voxels Opaque
Voxels

Vertices Triangles

Demo Truck 21168 7893 8987 13624

Kirov 554880 35841 36005 52620

Yuri Head 391680 42733 98324 121468

Warhammer 429900 63150 89750 185552

Table 2. Contents of each model.

Figure 6 shows the result of the conversion of Red Alert
2’s demo truck volume into a fully textured 3D model, while
figure 7 shows the same model smoothed with 10 iteractions
of Taubin's Smooth.

Figure 6. Result obtained with the conversion of a truck.

Figure 7. Result obtained with 10 iteractions of Taubin's smooth..

The desired result of the signal processing operation was
to smooth the model keeping as many details as possible.
The use of modified Lanczos kernel provided satisfactory
results, with the features being only lightly smoothed.
Moreover, it produced the expected results in curved areas
and also dealt appropriately with topological problems of
type 1 (see section 3), as shown in figure 8 and figure 9. The
topological problems of type 2 (see section 3) were not
solved. Differently from Taubin’s work, this result was
obtained with a single iteration.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 145

Figure 8. Surface fairing results.

Figure 9. Surface fairing results in wireframe.

The smooth level is controlled with the constant λ.
However, if it is raised too much and the frequency returns
values above 1, it will increase the noises in the mesh.

The texture map generated from the texture atlas
obtained with this work successfully covers the whole
model, which is enough for the needs of a game engine.
However, it is not intuitive for edition by the final user and it
features unnecessary micro partitions that will only confuse
whoever decides to modify it. Other methods, as for example
those presented in section 3 use more sophisticated
approaches for the extraction of the patches belonging to the
texture atlases but do not produce results in interactive times
as the greedy method we proposed. Cohen's work [COHEN-
STEINER, 2004] takes approximately 5 min just to compute an
approximated version of a mesh with 400k triangles via a
variational method which is just one step in the texture
atlases construction framework proposed in [SOSSAI, 2007.].
The texture for the truck is displayed in the figure 10.

Figure 10. Centralized partitons in the final diffuse texture map
generated for the truck.

6. CONCLUSION

This work presented a method for the polygonization and
texture extraction from volumetric objects based on a
polyhedral surface extraction and surface fairing.

We proposed a novel surface fairing approach that is
appropriate to smooth meshes obtained from voxelized
models with homogeneous inner material.

The surface fairing approach we proposed is based on an
adaptive low-pass filtering based on a function that combines
the discrete laplacian operator and a function of a modified
version of the Lanczos kernel.

Besides, we also presented an effective way to extract
texture atlases in a few seconds differently from previous
approaches based on variational methods.

By using our method, we were able to build a complete
3d modeling application that is able to produce mesh-based
texturized representations from volumetric data at interactive
times.
 As future work we intend to pursue the proposal of a
solution for the topological problem of type 2. This solution
can be obtained by using the subdivision ideas presented in
[Bischoff and Kobbelt, 2006]. We will also investigate the
extraction of other attribute maps like material maps, normal
maps and relief textures.

7. ACKNOWLEDGMENT

We are grateful to Faperj for the support of this work.
We are also grateful to the users of Project Perfect Mod

for helping with tests and supporting this research.
Command & Conquer, Tiberian Sun, Red Alert 2,

Westwood Studios and the voxel format used in this
experience are property of Electronic Arts.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 146

8. REFERENCES

BISCHOFF, S., KOBBELT, L., 2006. Extracting Consistent and
Manifold Interfaces from Multi-valued Volume Data Sets;
Bildverarbeitung für die Medizin 2006; Springer Berlin
Heidelberg; pp. 281–285.

CATMULL, E., CLARK, J.., 1978. Recursively Generated B-Spline
Surfaces on Arbitrary Topological Meshes; Computer Aided
Designs; Nov. 1978; vol. 10, No. 6; pp. 350-355.

CLASSICS, 2010. Command & Conquer Classic Download Page.
The games Command & Conquer Tiberian Sun, Red Alert 1
and Command & Conquer 95 are available for download in t
he official site of the publisher, Electronic Arts. http://www.
commandandconquer.com/classic

COHEN-STEINER, D., ALLIEZ, P., DESBRUN, M., 2004. Vari
ational Shape Approximation; ACM Trans. Graph, 23(3):905-
914, 2004.

DUCHON, C. E., 1979. Lanczos Filtering in One and Two
Dimensions; Journal of Applied Meteorology; Jan. 12-Mai
07, 1979; vol. 18, American Meteorological Society; pp.
1016-1022.

FREITAG, L., PLASSMAM P., 2000, Local optimization-based
simplicial mesh untangling and improvement, Intl. J.
Numer. Meth. Engin., 49 (2000), 109--125.

GARLAND, M., HECKBERT, P., 1998. Simplifying surfaces with
color and texture using quadric error metrics; Visualization
’98 Proceedings. 1998, IEEE, pp. 263–269.

GIBSON, S. F. F., 1998. Using distance maps for accurate surface
reconstruction in sampled volumes, Volume Visualization
Symposium - IEEE, pp. 23-30, 1998.

HOPPE, H., 1999. New quadric metric for simplifiying meshes
with appearance attributes, Proceedings of the conference on
Visualization '99: celebrating ten years, October 1999, San
Francisco, California, United States, p.59-66

JU, T., LOSASSO, F., SCHAEFER S., WARREN, J., 2002. Dual
contouring of hermite data. ACM Transactions on Graphics,
vol. 21, No. 3, pp. 339-346.

KOBBELT, L. P., BOTSCH, M., SCHWANECKE, U., SEIDEL H.
P., 2001. Feature sensitive surface extraction from volume
data ; Computer Graphics; Siggraph 2001 Conference
Proceedings; Ago. 2001; ACM Siggraph; pp. 57-66.

LEVOY, M., 1988. Display of Surfaces from Volume Data; IEEE
Computer Graphics and Applications; Mai. 1988; vol. 8, No.
3; pp. 29-37.

LORENSEN W. E., CLINE H. E., 1987. Marching Cubes: A High
Resolution 3D Surface Construction Algorithm; Computer
Graphics; Siggraph '87 Conference Proceedings; Jul. 27-31,
1987; vol. 21, No. 4; ACM Siggraph; pp. 163-169.

LU W., ZENG, D., PAN J., 2007. QEM-based mesh simplification
with effective feature-preserving; Proceedings of the 2nd
international conference on Virtual reality; July 22-27, 2007;
Beijing, China

MESHLAB, 2010. MeshLab. An open source, portable and
extensible system for the processing and editing of
unstructured 3D triangle meshes.
http://meshlab.sourceforge.net

PPM, 2010. Project Perfect Mod Voxels. Forum where members
of the Command & Conquer modding commmunity post their
volumetric models.
http://www.ppmsite.com/forum/index.php?f=111

SOSSAI, J. Jr, VELHO, L., 2007. Projective Texture Atlas
Construction for 3D Photography; The Visual Computer:
International Journal of Computer Graphics; Aug 2007; vol.
23, Springer-Verlag New York, Inc.; pp. 612-629.

TAUBIN, G., 1995. A Signal Processing Approach To Fair Surface
Design, Computer Graphics; Siggraph '95 Conference
Proceedings; Set. 1995; ACM Siggraph; pp. 351-358.

VXLSE3, 2010. Voxel Section Editor III. Free open source volume
modelling and editing tool.
http://www.ppmsite.com/index.php?go=vxlseinfo

VXLSE3SVN, 2010. Voxel Section Editor 3 SVN. Source code of
Voxel Section Editor III. http://svn.ppmsite.com/listing.php?
repname=OS%20Voxel
%20Tools&path=/vxlseiii14x/&rev=0&sc=0

ZHANG, S., WU, E., 2008. A shape feature based simplification
method for deforming meshes; Proceedings of the 5th
international conference on Advances in geometric modeling
and processing,; April 23-25, 2008; Hangzhou, China

ZHANG, Y., BAJAJ, C., GUOLIANG, X., 2005. Surface smoothing
and quality improvement of quadrilateral/hexahedral meshes
with geometric flow. In 14th International Meshing
Roundtable, 449--468.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 147

http://www.commandandconquer.com/classic
http://www.commandandconquer.com/classic
http://svn.ppmsite.com/listing.php?repname=OS%20Voxel%20Tools&path=/vxlseiii14x/&rev=0&sc=0
http://svn.ppmsite.com/listing.php?repname=OS%20Voxel%20Tools&path=/vxlseiii14x/&rev=0&sc=0
http://svn.ppmsite.com/listing.php?repname=OS%20Voxel%20Tools&path=/vxlseiii14x/&rev=0&sc=0
http://www.ppmsite.com/index.php?go=vxlseinfo
http://www.ppmsite.com/forum/index.php?f=111
http://meshlab.sourceforge.net/

